TY - THES A1 - Spieler, Valerie T1 - Bioinspired drug delivery of interleukin-4 T1 - Bioinspirierte Wirkstofffreisetzung von Interleukin-4 N2 - Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients’ lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4’s lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide–alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases. N2 - Chronische Entzündungskrankheiten wie rheumatoide Arthritis, Typ-2-Diabetes oder Herz-Kreislauf-Erkrankungen werden durch das Ungleichgewicht eines von mehreren physiologischen Systemen in Verbindung mit fehlender spontaner Remission verursacht, wodurch die Krankheiten lebenslang bestehen bleiben. Die zugrunde liegenden Entzündungsreaktionen beruhen hauptsächlich auf im Gewebe vorhandenen Makrophagen und deren Polarisation in Richtung des entzündlichen M1-Phänotyps, was gleichzeitig die Möglichkeit einer therapeutischen Intervention bietet. Entzündungshemmende Zytokine, einschließlich Interleukin-4 (IL4), haben ein großes therapeutisches Potenzial, da sie Makrophagen in Richtung des entzündungshemmenden M2-Phänotyps zu polarisieren vermögen. Leider ist ihre systemische Anwendung durch eine kurze Serumhalbwertszeit und dosislimitierende Toxizität eingeschränkt. Auf dem Weg zu Zytokintherapeutika mit verbesserter Sicherheit und Wirksamkeit konzentriert sich diese Arbeit auf die Entwicklung von bioresponsiven Freisetzungssystemen für das entzündungshemmende Zytokin IL4. Kapitel 1 beschreibt, wie entzündungshemmende Zytokine bei chronischen systemischen Entzündungen wie rheumatoider Arthritis im Vergleich zu akuten lokalen Entzündungen wie dem Myokardinfarkt reguliert werden. Beide Erkrankungen zeigen einen charakteristischen Verlauf, währenddessen die Freisetzung von entzündungshemmenden Zytokinen von unterschiedlich großem Nutzen ist. Gewöhnliche, passive Arzneimittelfreisetzungssysteme sind nicht in der Lage, Zytokine in idealer Menge zur optimalen Unterdrückung des dynamischen, (patho-)physiologischen Verlaufs der Krankheit freizusetzen. In diesem Kapitel werden deshalb aktive Arzneimittelfreisetzungssysteme vorgestellt, die mit einer Sensorik für die Entzündung ausgestattet sind, mit der sie kontinuierlich die Konzentration von Matrix-Metalloproteinasen (MMP) als Indikatoren für den Krankheitsverlauf erfassen können. Somit kann das aktive Arzneimittelfreisetzungssystem krankes Gewebe zum richtigen Zeitpunkt und am richtigen Ort mit Zytokinen behandeln. Solche bioresponsiven Depots können zur vorbeugenden Behandlung von asymptomatischen Patienten eingesetzt werden, da sie während Phasen geringer Krankheitsaktivität inaktiv sind. Das Freisetzungssystem wird erst durch Entzündungsschübe aktiviert, die dann sofort durch die freigesetzten Zytokine unterdrückt werden. Dadurch könnte die dauerhafte Schädigung durch subklinische, chronische Entzündung verhindert und als Konsequenz die Hospitalisierungsrate gesenkt werden. In einer ersten Machbarkeitsstudie wurden in Kapitel 2 IL4-dekorierte Partikel mit dem Ziel entwickelt, eine langanhaltende und lokalisierte Zytokinaktivität zu gewährleisten. Dazu wurden IL4-Muteine erzeugt, bei denen das Lysin 42 mittels Erweiterung des genetischen Codes durch zwei verschiedene unnatürliche Aminosäuren ersetzt wurde, die jeweils eine für Klick-Chemie geeignete Seitenkette tragen. Die IL4-Muteine wurden ausführlich charakterisiert, um eine korrekte Faltung und volle Bioaktivität sicherzustellen. Beide Muteine zeigten zellstimulierende Fähigkeit und Bindungsaffinität an IL4-Rezeptor-alpha, die mit der von Wildtyp-IL4 vergleichbar ist. Anschließend wurde kupferkatalysierte (CuAAC) und kupferfreie (SPAAC) Azid-Alkin-Cycloaddition verwendet, um IL4 ortsspezifisch auf Agarosepartikeln zu verankern. Die Partikel waren in der Lage, die IL4-Aktivität über längere Zeit aufrecht zu erhalten, was durch TF-1-Zellproliferation und M2-Polarisation von M-CSF-generierten, humanen Makrophagen gezeigt werden konnte. Dieser Ansatz der ortsspezifischen Verankerung von IL4 auf Agarosepartikeln zeigt, dass zytokinfunktionalisierte Partikel anhaltende und räumlich kontrollierte, immunmodulierende Stimuli liefern können. Die Idee eines MMP-gesteuerten Zytokinfreisetzungssystems mit 24/7-Sensorik, das im Einleitungskapitel vorgestellt wurde, wurde in Kapitel 3 umgesetzt. Der natürliche Prozess der Zytokinspeicherung in der extrazellulären Matrix (EZM) wurde mithilfe einer injizierbaren IL4-Lösung zur enzymatischen Depotbildung durch kovalente Bindung an EZM-Komponenten, z. B. Fibronektin, simuliert. Nach der Bindung soll das Konstrukt durch Matrix-Metalloproteinasen (MMPs), die während Entzündungsschüben hochreguliert werden, aus der EZM freigesetzt werden können. Eine Peptidsequenz, die ein Protease-sensitives Verbindungsstück und eine Sequenz, mit der das Zytokin bei gleichzeitiger Injektion von aktivierter menschlicher Transglutaminase FXIIIa (TGase) kovalent auf der EZM immobilisiert wird enthält, wurde ortsspezifisch über eine unnatürliche Aminosäure an Position 42 von IL4 gekoppelt. Dadurch wurde die Bioaktivität von IL4 vollständig erhalten, während das Protease-sensitive Verbindungsstück auf MMPs reagierte und das Konstrukt durch TGase an das Fibronektin der EZM gebunden werden konnte. Die IL4-Peptid-Konjugate waren in einem Osteoarthritis-Modell bei Kaninchen in der Lage, die Entzündung des Kniegelenks zu verringern und den nicht-tragenden Knorpel sowie das vordere Kreuzband vor Degradation zu schützen. Dies ist der erste Schritt in Richtung einer minimalinvasiven Behandlung durch Verwendung von bioresponsiven Zytokindepots mit potenziellem klinischem Nutzen bei Entzündungserkrankungen. Eine der Herausforderungen bei diesem Vorgehen war die Herstellung der Zytokinkonjugate, wobei der Einbau der unnatürlichen Aminosäure in IL4 den größten Engpass darstellte. Deshalb wurde in Kapitel 4 eine vereinfachte Version dieses Depotsystems entworfen, indem das bifunktionelle Peptid über eine flexible Verbindungssequenz mit murinem IL4 genetisch fusioniert wurde. Während humanes IL4 bei C-terminaler Verlängerung an Aktivität verliert, ist murines IL4 durch die Modifikation nicht beeinflusst. Die murinen IL4-Fusionsproteine konnten in Gegenwart von TGase wirksam an in vitro generierte extrazelluläre Matrix gebunden werden. Darüber hinaus wurde das Protease-sensitive Verbindungsstück selektiv von MMPs erkannt und gespalten, wobei intaktes und aktives IL4 freigesetzt wurde, wenn auch mit einer langsameren Rate als erwartet. Murines IL4 bietet die Möglichkeit das bioresponsive Zytokindepot in den vielen verfügbaren Mausmodellen zu testen, was mit humanem IL4 aufgrund der Speziesselektivität nicht möglich ist. Für murines IL4 wurde die Entwicklung in Kapitel 5 auf die systemische Applikation ausgeweitet. Um die Serumhalbwertszeit zu erhöhen und eine Wirkstofflokalisation im entzündeten Gewebe zu erreichen, wurde eine murine IL4-Variante entwickelt, die mit einer Folat-tragenden PEG-Kette konjugiert wurde, um aktivierte M1 Makrophagen zu adressieren. Das bioaktive IL4-Konjugat wies eine hohe Serumstabilität auf und die PEGylierung erhöhte die Halbwertszeit in vivo auf 4 h. Allerdings konnte durch die Konjugation der Folatgruppe an IL4 die Wirkstofflokalisation in einem Mausmodell mit Antigen-induzierter Arthritis (AIA) nicht verbessert werden. IL4-PEG akkumulierte sich stärker im entzündeten Gelenk, während IL4-PEG-Folat eine stärkere Anreicherung in der Leber zeigte. Erfreulicherweise erleichtert der modulare Aufbau des IL4-Konjugats die bequeme Anpassung der PEG-Kettenlänge und der zielorientierten Einheit, um die Halbwertszeit und Lokalisierung des Zytokins weiter zu verbessern. Zusammenfassend beschreibt diese Arbeit eine Plattformtechnologie zur kontrollierten Freisetzung von Zytokinen als Reaktion auf Entzündungen. Durch die Beschränkung der Freisetzung des Therapeutikums auf den Ort der Entzündung kann das Nutzen-Risiko-Verhältnis dieser potenten Klasse von Biologika positiv beeinflusst werden. Zukünftige Forschungen werden dazu beitragen zu verstehen, wie Zytokin, Protease-sensitives Verbindungsstück und Immobilisierungsanhängsel oder etwaige zielorientierte Einheiten zur Bekämpfung verschiedener Krankheiten perfekt kombiniert werden können. KW - Targeted drug delivery KW - Kontrollierte Wirkstofffreisetzung KW - Interleukin 4 KW - Cytokine KW - Drug delivery platform KW - Protease-sensitive release KW - Site-specific protein conjugation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193590 ER - TY - THES A1 - Gutmann, Marcus T1 - Functionalization of cells, extracellular matrix components and proteins for therapeutic application T1 - Funktionalisierung von Zellen, extrazellulären Matrixbestandteilen und Proteinen für die therapeutische Anwendung N2 - Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by “strain promoted azide-alkyne cycloaddition“ (SPAAC) and/or “copper(I)-catalyzed azide-alkyne cycloaddition“ (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier – spacer – payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site. N2 - Glykosylierung beschreibt einen auf biochemischen Reaktionen basierenden Prozess, welcher durch die Verknüpfung von Glykanen (Kohlenhydraten) mit Proteinen, Lipiden oder einer Vielzahl kleiner organischer Moleküle zur Bildung von Glykokonjugaten führt. Die Entstehung der Kohlenhydratketten erfolgt hierbei durch die kovalente Verknüpfung eines oder mehrerer verschiedener Einfachzucker, welche auf Grund unterschiedlicher Zusammensetzung der Bausteine, Verknüpfungsregion, Länge und Verzweigung eine hohe Diversität aufweisen. Diese Besonderheit ermöglicht eine außergewöhnliche Feinabstimmung im Bereich der Informationsübertragung, Erkennung, Stabilität und Pharmakokinetik. Aufgrund ihrer intra- und extrazellulären Omnipräsenz spielen Glykane zudem eine essentielle Rolle in der Regulierung verschiedenster körpereigener Prozesse (z.B. hormonelle Wirkung, Immunmodulation, Entzündungsreaktionen) und sind folglich ein zentraler Bestandteil bei der Aufrechterhaltung der zellulären Homöostase. Durch die Strategie des „Glycoengineering“ ist man in der Lage, strukturähnliche, aber chemisch modifizierte Zuckerbausteine in die natürlichen Glykosilierungswege einzubinden und diese somit in der Architektur der Kohlenstoffketten von neu-synthetisierten Glykokonjugaten zu verankern. Die hierfür zur Verfügung stehenden, unnatürlichen Zuckermoleküle führen auf Grund ihrer Ähnlichkeit zu körpereigenen Zuckern zu kaum relevanten Störungen der zellulären Funktion, bieten aber durch zahlreiche funktionelle Gruppen die Möglichkeit der gezielten Verknüpfung mit einer Zielsubstanz/-struktur und der Bildung neuer biologischer Eigenschaften. „Glycoengineering“ als chemisch-enzymatische Strategie bietet dabei eine wertvolle Ergänzung zu gentechnischen Ansätzen. Entsprechend beschäftigt sich diese Dissertation primär mit der Beschreibung potentieller Anwendungsgebiete des „Glycoengineering“ und dessen möglichen Einsatz in Klinik und Forschung. Der letzte Abschnitt dieser Arbeit beschreibt einen gentechnischen Ansatz, bei dem mit Hilfe von speziellen Escherichia coli Systemen chemisch modifizierbare Aminosäuren in den Biosyntheseweg von Proteinen eingebunden werden, wodurch anschließend eine spezifische und gerichtete Verknüpfung mit Zielsubstanzen ermöglicht wird. Hierbei benutzt das E. coli-System die genetische Information des methanbildenden Archaeas, Methanosarcina barkeri, mit der es in der Lage ist, eine weitere Aminosäure, das Pyrrolysin, bei der Translation eines Proteins am Ribosom einzufügen. Als Codon für diese neu gewonnene proteinogene Aminosäure fungiert das natürliche Stopp-Codon („amber codon“) UAG. Kapitel I beschreibt zwei Systeme für den Einbau von chemisch modifizierten Zuckern und zeigt Methoden für die Charakterisierung dieser Systeme auf. Es gibt zudem eine allgemeine Übersicht über den Aufbau und die Verwendung von Glykanen und veranschaulicht verschiedene Glykosilierungswege. Des Weiteren wird auch die Strategie des „metabolic glycoengineering“ erläutert. Hierbei wird der Aufbau der dabei verwendeten Grundbausteine dargestellt und auf die Epimerisierung der Zucker während deren Metabolismus eingegangen. Kapitel II überträgt das Konzept des „metabolic glycoengineering“ auf das extrazelluläre Netzwerk von Fibroblasten. Hierbei bietet der Einbau eines chemisch modifizierten Zuckerbausteins in die Matrix eine neue, elegante und biokompatible Möglichkeit der gezielten Verknüpfung von Zielsubstanzen. Die an der Neusynthese der Matrix beteiligten Bindegewebszellen sowie die isolierte Matrix wurden dabei im Vergleich zu nicht modifizierten Bindegewebszellen und Matrices charakterisiert. Durch den Aspekt des “metabolic glycoengineering” wird die natürliche Fähigkeit der Matrix erweitert und ermöglicht durch die Kombination verschiedener enzymatischer und bioorthogonal-chemischer Strategien die selektive Immobilisation einer Vielzahl von therapeutischen Substanzen. Dieser Ansatz erweitert das natürliche Spektrum der Extrazellulärmatrix (ECM), wie Bindung von spezifischen Wachstumsfaktoren, Rekrutierung von Oberflächenrezeptoren und damit einhergehend synergistische Effekte der gebundenen Stoffe. Durch die Auswahl des Zelltyps wird zudem ein breites Spektrum an verschiedenen Matrices ermöglicht. Kapitel III befasst sich mit der Möglichkeit, die Zellmembran von lebenden Fibroblasten sowie menschliche embryonale Nierenzellen gezielt zu verändern. Durch „metabolic glycoengineering“ werden auch hier chemisch modifizierte Zuckerbausteine eingefügt, die dabei auf der Zelloberfläche präsentiert werden. Anschließend können diese Zucker mittels „ringspannungs-geförderter Azid-Alkin Cycloaddition“ (“strain promoted azide-alkyne cycloaddition“, SPAAC) und „Kupfer(I)-katalysierter Azid-Alkin Cycloaddition“ (“copper(I)-catalyzed azide-alkyne cycloaddition“, CuAAC) umgesetzt werden, was eine kovalente Verknüpfung mit einer Zielsubstanz ermöglicht. Aufgrund der Toxizität des Kupferkatalysators in der CuAAC wurde anhand von zytotoxischen Untersuchungen nach einem in vivo vertretbaren Bereich für diese Reaktion gesucht, um die CuAAC auch für lebende Systeme verwendbar zu machen. Zuletzt wurde die Effizienz dieser bioorthogonalen Reaktionen miteinander verglichen. Kapitel IV beschreibt zwei vielseitig einsetzbare „carrier – spacer – payload“ Therapiesysteme (Träger-Verbindungsstück-Therapeutikum-Systeme), basierend auf einem Verbindungsstück (Linker), dessen Spaltung enzymatisch durch krankheitsspezifisch prävalente Proteasen ausgelöst wird. Bei der Auswahl der Trägersysteme wurde für das nicht-zielgerichtete System Polyethylenglycol (PEG) als Träger eingesetzt, eine gut untersuchte, „Food and Drug Administration“ zugelassene Substanz, welche als sehr gängiges Mittel zur Verbesserung der pharmakologischen Eigenschaften verwendet wird. Für das zielgerichtete System diente Revacept als Träger, ein humaner Glykoprotein VI-Antikörper. Der Protease-sensitive Linker wurde genetisch in der N-terminalen Region des Fibroblasten-Wachstumsfaktor 2 verankert, ohne dabei die Bioaktivität zu gefährden. Durch den Austausch der Protease-sensitiven Erkennungssequenz oder des Therapeutikums stellen beide Systeme einen vielversprechenden und anpassungsfähigen Ansatz für therapeutische Systeme dar, welche auf ein bereits bestehendes Erkrankungsbild genau zugeschnitten werden können. Zusammengefasst setzt diese Arbeit durch eine spezifische Funktionalisierung von verschiedenen Therapiesysteme einen wichtigen Meilenstein für vielversprechende Strategien zur Verbesserung der klinischen Anwendbarkeit. Durch den Austausch einer oder mehrerer Komponenten des Systems gewährleisten die hier beschriebenen Therapiesysteme eine hohe Anpassungsfähigkeit, wodurch sie individuell auf die jeweilige Krankheit oder den jeweiligen Zielort angepasst werden können. KW - Glykosylierung KW - Extrazelluläre Matrix KW - Zelloberfläche KW - Antikörper KW - Fibroblastenwachstumsfaktor KW - Glycoengineering KW - Drug delivery platforms KW - Protease-sensitive release Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170602 ER -