TY - THES A1 - Heinze, Andreas T1 - Bestimmung des Ausmaßes der Proteinbindung von Arzneistoffen mittels automatisierter kontinuierlicher Ultrafiltration T1 - Determination of the extent of the protein binding of drugs by means of automated continuous ultrafiltration N2 - Das Ausmaß der Proteinbindung eines Arzneistoffs hat Auswirkungen auf eine Vielzahl pharmakokinetischer Parameter wie z.B. das Verteilungsvolumen, die Metabolisierung oder Ausscheidung. Da nur der freie, ungebundene Anteil eines Arzneistoffs durch bio-logische Membranen diffundieren kann, ist dieser direkt für die pharmakologische Wirkung verantwortlich. Lediglich diese ungebundenen und damit frei beweglichen Arzneistoffmoleküle sind also in der Lage, an Rezeptoren zu binden und damit einen Effekt auszulösen. Je größer der ungebundene Anteil eines Arzneistoffs ist, desto größer kann auch der Effekt sein, den er zu bewirken vermag. Wird nun diese freie Konzentration verändert, so kann sich demzufolge die Wirkintensität des Arzneistoffs verändern. Daraus folgt, dass die Kenntnis über die Proteinbindung speziell für die Dosisfindung eines Arzneistoffs unerlässlich ist. Diese Zusammenhänge veranschaulichen, welche Bedeutung das Ausmaß der Proteinbindung eines Arzneistoffs hat. Für die Bestimmung der Proteinbindung existiert eine Vielzahl von Methoden. Neben der klassischen Gleichgewichtsdialyse werden vor allem Ultrafiltrationstechniken angewendet. Neuere Verfahren stellen verschiedenste kapillarelektrophoretische Methoden dar. Allen Verfahren ist gemein, dass es sich um In-vitro-Methoden handelt. Als einzige In-vivo-Methode hat sich die Mikrodialyse etabliert. Die im Rahmen dieser Arbeit entwickelte Bestimmungsmethode für das Ausmaß der Proteinbindungen stellt eine kontinuierliche Variante der Ultrafiltration dar. Mit Hilfe des in dieser Arbeit beschriebenen Verfahrens ist es im möglich, mit einem einzigen Experiment Proteinbindungen über einen großen Bereich verschiedener Arzneistoff-Protein-Verhältnisse zu berechnen. Dadurch wird die Bestimmung schneller und auch kostengünstiger. Zusätzlich wurde dieses Verfahren teilweise automatisiert, d.h. die Versuche werden programmgesteuert durchgeführt und ein manuelles Eingreifen ist nur noch an wenigen Stellen eines Versuches notwendig. Die Messanlage zur kontinuierlichen Ultrafiltration wurde nach dem Vorbild der Anlage von Oehlmann aufgebaut und im Zuge dessen fortentwickelt. Herzstück ist die Messzelle aus Plexiglas. Sie besteht aus einem Ober- und einem Unterteil. In diesem befindet sich eine Vertiefung für die Rührscheibe. Beim Zusammenbau werden zwischen die beiden Teile die Filterunterstützung und eine Ultrafiltrationsmembran gelegt. Die Ultrafiltrationsmembran hält hierbei aufgrund ihrer Trenngrenze die Proteinmoleküle in der Messzelle zurück und lässt nur freie Arzneistoffmoleküle durch. Ein Dichtungsring sorgt dafür, dass die Zelle, nachdem sie in einem Gestell fixiert wurde, nach außen hin dicht abschließt. Während eines Versuches werden abwechselnd Arzneistofflösung und reine Pufferlösung durch die Messzelle gepumpt. Am Auslass der Ultrafiltrationszelle wird die Absorption gemessen, die zu Absorptions-Zeit-Diagrammen führen. Wird nun der gleiche Versuch durchgeführt, nachdem eine Proteinlösung in die Messzelle injiziert wurde, verschiebt sich diese Kurve aufgrund der Wechselwirkung zwischen Arzneistoff und Proteinlösung nach rechts. Die Fläche zwischen diesen beiden Kurven kann als Maß für die Proteinbindung herangezogen werden. Für die Auswertung der Versuche wird aus den Messdaten errechnet, wie viel Arzneistoff sich zu jedem Zeitpunkt des Versuchs in der Messzelle befunden hat und wie viel ungebunden vorlag und damit am Detektor messbar ist. Da die Konzentration an Arzneistoff in der Messzelle im Laufe eines Versuches kontinuierlich gesteigert wird, erhält man Bindungsdaten über einen weiten Bereich von Arzneistoff-Protein-Verhältnissen. In dieser Arbeit wurden sowohl Versuche mit Rinderserumalbumin (BSA) als auch mit humanem Serumalbumin (HSA) durchgeführt. Die Standardabweichungen der bestimmten Proteinbindungswerte steigen mit fallender Proteinbindung. Damit sind sie nach außen hin neutral und ihre Löslichkeit sinkt. Wie die Ergebnisse zeigen, konnte dennoch das Ausmaß der Proteinbindung für eine Reihe von Fluorochinolonen bestimmt werden. Zusätzlich wurden mit dem Oxazolidinon Linezolid und dem Ketolid Telithromycin weitere Antibiotika vermessen. Die Proteinbindungen aller untersuchten Arzneistoffe gegenüber HSA stimmen mit Daten aus der Literatur überein. Wie bereits erwähnt lassen sich hierbei kleine Abweichungen sowohl mit unterschiedlichen Bestimmungsmethoden als auch mit verschiedenen eingesetzten Proteinen erklären. Die Literaturdaten geben meist die Plasmaproteinbindung eines Arzneistoffes wider und die Messungen in der vorliegenden Arbeit wurden allesamt mit Albumin, sei es vom Mensch oder Rind, durchgeführt. Da jedoch neben dem Albumin auch noch weitere Bestandteile des Plasmas mit den Arzneistoffmolekülen wechselwirken können, sind unterschiedliche Proteinbindungen zu erwarten. N2 - The extent of the protein binding of drugs influences many pharmacokinetic parameters such as the volume of distribution, the metabolism or excretion of a drug. Only the free and unbound fraction of a drug is capable to penetrate biological membranes and as a result, only this fraction is responsible for the pharmacological effect. Just these unbound and therefore mobile drug molecules are able to bind to receptors and cause a certain effect. The larger the free fraction of a drug, the stronger the effect which can be expected. Changes of the concentration of the free drug likely affect the intensity of the pharmacological response. Therefore, the knowledge about the extent of the protein binding is especially important for the finding of the dosage of a drug. All these points demonstrate the importance of the extent of the protein binding for a drug. There are many methods available for the determination of the extent of the protein binding. Besides the classical method of equilibrium dialysis, mainly ultrafiltration techniques are used. Among the new methods are various capillary electrophoretic methods. All methods have in common that they represent in-vitro methods. Only microdialysis has been established as an in-vivo method. Comparing binding data achieved by different methods is difficult because these data often vary a lot. The aim is to develop a method which measures under almost physiological conditions and which allows a fast and easy determination of the protein binding of a drug so that many experiments being carried out with a similar method can be compared. The method for the determination of the extent of the protein binding of drugs developed in this work utilizes continuous ultrafiltration. Using the method described in this work, with one single experiment protein binding data can be calculated over a wide range of drug-protein ratios. Therefore, the determination is faster and even cheaper. Additionally, this method was automated which means that experiments are mostly done by computer and a manual intervention is only necessary at a few points. The measuring system for continuous ultrafiltration is build up according to Oehlmann and was further developed. The heart of the system is the ultrafiltration cell made of acrylic glass. It consists of two parts, a bottom and a top part. The bottom part has a dent for the stirrer. In assembled state, a filter support and an ultrafiltration membrane is put between the two parts. The ultrafiltration membrane keeps the protein molecules inside the ultrafiltration cell due to its molecular weight cut-off. Only unbound drug molecules can pass the membrane. A gasket seals the cell when it is fixed tightly in a frame. During the steps of an experiment, a drug-buffer solution and a pure buffer solution are pumped alternatively through the cell. The absorbance is measured at the outlet side and absorbance-time curves are obtained. Repeating this experiment after injection of protein solution into the cell, gives a curve which is moved to the right due to the interaction between drug and protein. The area between both curves represents the degree of the extent of the protein binding. For evaluation of the data, the amount of drug in the cell and the amount of the detected unbound drug at every single time point is calculated. Since the concentration of the drug in the ultrafiltration cell is continuously increased throughout the experiment, binding data over a wide range of drug/protein ratios are calculated. During this work, measurements using bovine and human serum albumin were performed. Zlotos et al.42 and Oehlmann95 already showed that the determination of drugs with a high extent of the protein binding was easier than the determination of drugs with lower extents of protein binding. The standard deviations of the data increase with decreasing protein binding. Furthermore, the solubility of the drugs should be high enough. The difficulties in the experiments with some fluoroquinolones occur because they are zwitterionic under physiological conditions, thus they are neutral and their solubility is low. However, as the data shows, the extent of the protein binding of some fluoroquinolones could be determined. Additionally, more antibiotics including the new oxazolidinone linezolid and the macrolide telithromycin were determined. The protein binding of all examined drugs measured with HSA was in accordance to literature data. As described earlier, slight differences in the results may result from different methods or different proteins. In literature, mostly the binding towards human plasma is given and the experiments in this work were performed with human or bovine albumin. Apart from albumin, also other molecules of the plasma can interact with drug molecules and can therefore contribute to the whole binding constant. Therefore, different data could be easily expected. KW - Proteinbindung KW - Ultrafiltration KW - Chinolone KW - Antibiotika KW - protein binding KW - ultrafiltration KW - quinolones KW - antibiotics Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11277 ER - TY - JOUR A1 - Schmidt, Sebastian A1 - Holzgrabe, Ulrike T1 - Do the enantiomers of ketamine bind enantioselectively to human serum albumin? JF - European Journal of Pharmaceutical Sciences N2 - The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 % and 64.9 % for enantiomerically pure R- and S-ketamine, respectively, and 66.5 % for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pK\(_{aff}\) values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate. KW - protein binding KW - albumin KW - electrophoresis KW - nuclear magnetic resonance spectroscopy KW - ultrafiltration KW - enantioselectivity Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349791 VL - 192 ER - TY - JOUR A1 - Schmidt, Sebastian A1 - Zehe, Markus A1 - Holzgrabe, Ulrike T1 - Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein JF - European Journal of Pharmaceutical Sciences N2 - Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine. KW - protein binding KW - AGP KW - ultrafiltration KW - saturation transfer difference NMR KW - epitope mapping KW - ephedrine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300848 VL - 181 ER - TY - JOUR A1 - Shah, Nirav R. A1 - Bulitta, Jürgen B. A1 - Kinzig, Martina A1 - Landersdorfer, Cornelia B. A1 - Jiao, Yuanyuan A1 - Sutaria, Dhruvitkumar S. A1 - Tao, Xun A1 - Höhl, Rainer A1 - Holzgrabe, Ulrike A1 - Kees, Frieder A1 - Stephan, Ulrich A1 - Sörgel, Fritz T1 - Novel population pharmacokinetic approach to explain the differences between cystic fibrosis patients and healthy volunteers via protein binding JF - Pharmaceutics N2 - The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound β-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for β-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50% in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding. KW - cystic fibrosis patients KW - healthy volunteers KW - cefotiam KW - beta-lactam antibiotics KW - population pharmacokinetics KW - protein binding KW - allometric scaling KW - body size KW - body composition KW - S-ADAPT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196934 SN - 1999-4923 VL - 11 IS - 6 ER -