TY - JOUR A1 - Noll, Niklas A1 - Krause, Ana-Maria A1 - Beuerle, Florian A1 - Würthner, Frank T1 - Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis JF - Nature Catalysis N2 - Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2’-bipyridine-6,6’-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{−1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O–O bond formation via nucleophilic attack. KW - water oxidation KW - enzyme KW - catalysis KW - molecular KW - catalyst synthesis KW - catalytic mechanisms KW - homogeneous catalysis KW - photocatalysis KW - supramolecular chemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302897 N1 - This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/s41929-022-00843-x ET - accepted version ER - TY - JOUR A1 - Kim, Jin Hong A1 - Liess, Andreas A1 - Stolte, Matthias A1 - Krause, Ana-Maria A1 - Stepanenko, Vladimir A1 - Zhong, Chuwei A1 - Bialas, David A1 - Spano, Frank A1 - Würthner, Frank T1 - An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye JF - Advanced Materials N2 - A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications. KW - squaraine dyes KW - crystal engineering KW - J-aggregates KW - near-infrared sensitivity KW - organic photodiodes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256374 VL - 33 IS - 26 ER - TY - JOUR A1 - Kraft, Andreas A1 - Stangl, Johannes A1 - Krause, Ana-Maria A1 - Müller-Buschbaum, Klaus A1 - Beuerle, Florian T1 - Supramolecular frameworks based on [60]fullerene hexakisadducts JF - Beilstein Journal of Organic Chemistry N2 - [60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements. KW - chemistry KW - fullerenes KW - hexakisadducts KW - hydrogen bonding KW - porous materials KW - structure elucidation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171996 VL - 13 ER - TY - JOUR A1 - Zhang, Fangyuan A1 - Michail, Evripidis A1 - Saal, Fridolin A1 - Krause, Ana-Maria A1 - Ravat, Prince T1 - Stereospecific Synthesis and Photophysical Properties of Propeller-Shaped C\(_{90}\)H\(_{48}\) PAH JF - Chemistry - A European Journal N2 - Herein, we have synthesized an enantiomerically pure propeller‐shaped PAH, C\(_{90}\)H\(_{48}\), possessing three [7]helicene and three [5]helicene subunits. This compound can be obtained in gram quantities in a straightforward manner. The photophysical and chiroptical properties were investigated using UV/Vis absorption and emission, optical rotation and circular dichroism spectroscopy, supported by DFT calculations. The nonlinear optical properties were investigated by two‐photon absorption measurements using linearly and circularly polarized light. The extremely twisted structure and packing of the homochiral compound were investigated by single‐crystal X‐ray diffraction analysis. KW - chirality KW - enantiomers KW - helicenes KW - polycyclic aromatic hydrocarbons KW - stereospecific sythesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208682 VL - 25 IS - 71 ER - TY - JOUR A1 - Meza-Chincha, Ana-Lucia A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Schmidt, David A1 - Krause, Ana-Maria A1 - Röhr, Merle I. S. A1 - Mitrić, Roland A1 - Würthner, Frank T1 - Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation N2 - Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites. KW - water oxidation KW - self-assembly KW - solar fuels KW - supramolecular materials KW - catalysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204653 UR - https://doi.org/10.1039/D0SC01097A SN - 2041-6539 ER -