TY - JOUR A1 - Plauth, Annabell A1 - Geikowski, Anne A1 - Cichon, Susanne A1 - Wowro, Sylvia J. A1 - Liedgens, Linda A1 - Rousseau, Morten A1 - Weidner, Christopher A1 - Fuhr, Luise A1 - Kliem, Magdalena A1 - Jenkins, Gail A1 - Lotito, Silvina A1 - Wainwright, Linda J. A1 - Sauer, Sascha T1 - Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress JF - Free Radical Biology and Medicine N2 - Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general < 50 mu M), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61 mV mmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress. KW - Trans-reservatrol KW - Hydrogen-peroxide KW - In-vitro KW - Hormesis KW - Ethanol KW - Oxygen KW - Nrf2 KW - Glutathione KW - Metabolism KW - Polyphenols KW - ROS KW - Oxidative stress KW - Redox environment KW - Skin KW - Epidermis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187186 VL - 99 ER - TY - THES A1 - Bankoglu, Ezgi Eylül T1 - Oxidative status and genomic damage in an obesity model T1 - Oxidativer Status und Genom-Schäden in einem Adipositas-Modell N2 - Several cohort studies showed that obesity increases the risk of chronic disease such as T2DM, hypertension and non-alcoholic fatty liver disease and various types of cancer. Different factors were described that might be involving in these diseases in obesity. Some of these suggested factors were chronic infection, elevated free fatty acids, increased ROS formation, mitochondrial dysfunction and raised NAPDH oxidase activity. Obesity is a multifactorial disease and it is very hard to distinguish between all of these factors. In this study, we wanted to focus on the association between obesity, oxidative stress and genomic damage in kidney, liver and colon, which are the most relevant organs for cancer risk according to the cohort studies. Our findings indicated elevated oxidative stress in kidney, liver and colon together with elevated lipid, RNA and DNA oxidation in the whole body. Additionally, we were able to show increased DNA damage in kidney, liver and colon. Since obesity has become an epidemic all over the world, possible therapeutic applications such as life style changes (diet and sport), pharmacological supplements and various type of surgeries are increasing. As a second question, we focused on the effect of weight loss, which is supplied either by Roux-en-Y gastric bypass surgery or by caloric restriction designed in a way to provide the same extent of weight loss, on oxidative stress and genomic damage. Our results indicated that weight loss either by gastric bypass surgery or by caloric restriction led to reduced oxidative stress and genomic damage in kidney, liver and colon. We could not find any difference between the weight loss methods, except the DNA oxidation and repair marker urinary 8-oxodG, which was still elevated after RYGB, but not after caloric restriction. It is known that hyperinsulinemia and in the long term T2DM are among the biggest concerns in obese individuals. Since we know the mutagenic potential of elevated insulin levels from previous data in our working group, the correlation between the highly mutagenic DNA DBSs marker, γ-H2AX and the plasma insulin level was tested and the findings indicated a positive correlation. In order to demonstrate the association between insulin-related oxidative stress and genomic damage, we used in vitro and in vivo models with Pten deficiency. In this part of study, the work was focused on liver. Pten is a known negative regulator of the PI3K/Akt pathway, which is responsible for the elevated NADPH oxidase activity and mitochondrial dysfunction through elevated insulin levels. Pten inhibition or deficiency were used to sensitize the system to insulin. Non-transformed immortalized human hepatocytes were used to show the mutagenic potential of elevated insulin and these in vitro data revealed once more the link between insulin signaling, elevated oxidative stress and genomic damage. Since the metabolic function of the liver is not only due to the extent of the hepatic insulin response but is also affected by systemic interactions, a whole-body Pten haplodeficient mouse model with an additional Pten+/-/Akt2-/- group was utilized for in vivo investigation of insulin-mediated toxicity. Our findings in this model suggested that Pten deficiency alone can cause an increase in oxidative stress. HFD alone was sufficient to increase the expression of HO-1 and genomic damage significantly. Moreover, the combination (whole-body Pten haplodeficient mice fed with HFD) showed significantly elevated oxidative stress and genomic damage in mouse liver. However, Akt2 knockout could only reduce the oxidative stress and DNA damage in high fat diet fed mice significantly. All these findings demonstrated that obesity can induce oxidative stress and genomic damage. Elevated insulin levels are associated with obesity-mediated oxidative stress and genomic damage. However, the underlying mechanisms are surely multifaceted and complicated. For example, Pten as oncogene might also induce other mechanisms besides the elevation of the PI3K/Akt pathway activity. In conclusion, it is clear that oxidative stress and DNA damage are linked to obesity and that weight loss can reduce these two factors. Since DNA-damage is associated with an elevated cancer risk, it might be logical to use an antioxidant therapy in obese individuals to reduce the side effects and oxidative stress dependent mutagenicity and cancer risk in these individuals. However, much more research will be needed to support this idea experimentally. N2 - Mehrere Kohorten-studien zeigten, dass Adipositas das Risiko chronischer Erkrankungen wie Diabetes Mellitus Typ 2 (T2DM), Bluthochdruck, nicht-alkoholische Fettleber sowie das Risiko für unterschiedliche Krebsarten erhöht. Verschiedene Faktoren, die in Zusammenhang mit den Erkrankungen stehen, die Adipositas verursachen wurden bereits beschrieben. Einige dieser möglichen Faktoren sind chronische Infektionen, gesteigerte freie Fettsäuren, sowie reaktive Sauerstoffradikale, mitochondriale Dysfunktion und erhöhte Aktivität von NADPH-Oxidase. Adipositas ist eine multifaktorielle Erkrankung und unter von diesen Faktoren schwierig zu trennen. In dieser Studie wurde der Schwerpunkt auf den Zusammenhang von Adipositas, oxidativem Stress und Genomschäden in der Niere, Leber und dem Darm gelegt. Diese Organe sind gemäß der Kohortenstudien die anfälligsten hinsichtlich des Krebsrisikos. Unsere Befunde zeigten einen erhöhten oxidativen Stress in Niere, Leber und Darm, zusammen mit gesteigerter systemischer RNA-, DNA- und Fettoxidation, detektierbar anhand von Urinmarkern. Zusätzlich konnte eine Zunahme von DNA-Schäden in Niere, Leber und Darm aufgezeigt werden. Da Adipositas weltweit eine Epidemie geworden ist, nehmen mögliche therapeutische Anwendungen sowie eine Änderung des Lebensstils (Diät und Sport), pharmazeutische Ergänzungsmittel und verschiedene Arten von chirurgischen Behandlungen zu. Hier wurde der Fokus auf die Wirkung des Gewichtsverlustes, der durch Roux-en-Y Magen-Bypass-Chirurgie oder durch Kalorienreduzierung mit der Vorgabe eines gleichen Ausmaßes an Gewichtsverlust vorgegeben war, auf die Intensität des oxidativen Stress und des Genomschadens gerichtet. Unsere Befunde zeigten, dass der Gewichtsverlust sowohl durch Magen-Bypass-Chirurgie als auch durch Kalorienreduzierung zu einem reduzierten oxidativem Stress und Genomschaden in der Niere, der Leber und im Darm führten. Es konnte kein Unterschied zwischen den Methoden zur Reduzierung des Gewichtes gefunden werden, außer bei der DNA-Oxidation und dem Reparaturmarker 8-oxodG im Urin, der nach der RYGB immer noch erhöht war, aber nicht nach der Kalorienreduzierung. Es ist bekannt, dass Hyperinsulinämie bzw. Diabetes Mellitus Typ 2 eines der häufigsten Probleme bei übergewichtigen Patienten ist. Da wir das mutagene Potenzial von erhöhten Insulinspiegeln aus vorherigen Daten unserer Arbeitsgruppe kannten, wurde der Zusammenhang zwischen dem hoch mutagenen DNA-DSBs-Marker γ-H2AX und dem Plasma-Insulinspiegel analysiert. Die Befunde wiesen eine positive Korrelation auf. Um die Beziehung zwischen Insulin-verursachtem oxidativem Stress und Genomschaden aufzuzeigen, wurden in-vitro und in-vivo-Modelle mit Pten-Mangel benutzt. In diesem Teil der Studie wurde das Augenmerk auf die Leber gelegt. Das Protein Pten ist als negativer Regulator des PI3K/Akt Signalwegs bekannt, der unter anderem für die erhöhte Aktivität von NADPH Oxidase und mitochondrielle Dysfunktion durch erhöhten Insulinspiegel verantwortlich ist. Pten-Hemmung oder Pten-Mangel wurde genutzt, um unsere Versuchsmodelle für Insulin zu sensibilisieren. Nicht transformierbare immortalisierte menschliche Hepatozyten wurden verwendet, um das mutagene Potenzial von erhöhtem Insulin zu untersuchen, und die damit erzielten in -vitro-Daten wiesen wiederum auf die Beziehung zwischen Insulin-Signalwegen, oxidativem Stress und Genomschaden hin. Da die metabolische Funktion der Leber nicht nur dem Ausmaß der hepatischen Insulin-Reaktion geschuldet ist, sondern auch von systemischen Interaktionen beeinflusst wird, wurde ein Mausmodell für eine in-vivo-Untersuchung eingesetzt, das neben einem haploiden Pten-Mangel (Pten+/-) in einer Tiergruppe mit einer zusätzlichen Akt2-/- Defizienz (Pten+/-/Akt2-/-). Defizienz ausgestattet war. Unsere Befunde in diesem Modell zeigten, der Pten-Mangel alleine bereits erhöhten oxidativen-Stress verursachen kann. HFD war ebenfalls alleine bereits ausreichend, um die Expression von HO-1 und Genomschäden signifikant zu steigern. Darüber hinaus zeigte die Kombination (Pten-Mangel gefüttert mit HFD) eine signifikante Erhöhung des oxidativen Stresses und der Genomschäden in der Mäuseleber. Allerdings konnte das Fehlen von Akt2 den oxidativen Stress und Genomschaden nur in den mit HFD gefütterte Tieren signifikant verringern. Alle diese Befunde wiesen darauf hin, dass Adipositas oxidativen Stress und Genomschaden hervorrufen kann. Erhöhte Insulinspiegel sind mit Insulin-verursachtem oxidativem Stress und Genomschaden assoziiert. Allerdings sind die zugrunde liegenden Mechanismen sicherlich vielfältig und kompliziert. Zum Beispiel könnte Pten als Onkogen auch andere Mechanismen außer dem Anstieg der Aktivität des PI3K/Akt-Signalwegs- herbeiführen. Zusammenfassend ist es klar, dass oxidativer Stress und DNA-Schäden mit Adipositas zusammenhängen, und dass Gewichtsreduzierung diese zwei Faktoren verringern kann. Da DNA-Schäden mit erhöhtem Krebsrisiko assoziiert sind, könnte es folglich eine logische Konsequenz sein, Antioxidantien therapeutisch bei adipösen Patienten anzuwenden, um die Nebenwirkungen und die auf oxidativem Stress beruhende Mutagenität und das Krebsrisiko dieser Patienten zu verringern. Allerdings wird weitere intensive Forschung nötig sein, um dies mit experimentellen Daten zu untermauern.   KW - Übergewicht KW - DNS-Schädigung KW - Oxidativer Stress KW - DNA damage KW - Oxidative stress KW - Obesity KW - RYGB Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137566 ER - TY - JOUR A1 - Schupp, Nicole A1 - Ali, Badreldin H. A1 - Beegam, Sumyia A1 - Al-Husseni, Isehaq A1 - Al-Shukaili, Ahmed A1 - Nemmar, Abderrahim A1 - Schierling, Simone A1 - Queisser, Nina T1 - Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats JF - PLoS One N2 - Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-a and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for c-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. KW - adenine KW - blood plasma KW - creatinine KW - inflammation KW - inflammatory diseases KW - Kidneys KW - Oxidative stress KW - Water resources Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95787 ER - TY - THES A1 - Rajaraman, Gnana Oli T1 - Oxidative stress: Role in genomic damage and disease T1 - Oxidativer Stress: Bedeutung für genomische Schäden und Krankheit N2 - Bei einem Ungleichgewicht zwischen reaktiven Sauerstoffspezies (ROS) und endogenen Antioxidantien (Glutathion (GSH), Superoxiddismutase (SOD), Katalase etc.) ist der oxidative Stress erhöht, was zur Oxidation von Lipiden, Proteinen und DNA führt. Obwohl auch oxidierte Lipide und Proteine mit steigendem Alter akkumulieren können, führen nur DNA-Oxidationen zu veränderter genomischer Information. Ein möglicher Signalweg für gesteigerte ROS-Produktion ist die Aktivierung des Enzyms NADPH-Oxidase (NOX) und die damit verbundene Generierung von ROS durch viele endogene und exogene Substanzen. p47phox ist ein cytosolisches Protein, das eine wichtige Rolle bei der NOX-Aktivierung spielt. Angiotensin II (Ang II) ist ein Beispiel für eine endogene Verbindung, die über NOX-Aktivierung ROS produziert. Rosuvastatin ist ein Arzneistoff mit antioxidativen Eigenschaften (Hochregulation endogener Antioxidantien). Es gehört zur Gruppe der Cholesterinsenker und reduziert ausserdem erhöhtes Auftreten des Angiotensin-II-Typ-1-Rezeptors (AT1R). Normalerweise ist oxidativer Stress im Alter und bei Alterskrankheiten (z. B. Parkinson-Krankheit) erhöht. Das Ziel der vorliegenden Arbeit war, mit Hilfe unterschiedlicher Modelle in vitro und in vivo die Rolle von DNA-Schaden durch NOX-vermittelte ROS zu untersuchen und den Einfluss von ROS auf den Alterungsprozess und auf Alterskrankheiten zu bestimmen. N2 - When there is an imbalance between reactive oxygen species (ROS) and endogenous antioxidants (glutathione (GSH), superoxide dismutase (SOD), catalase etc.) the oxidative stress is increased and results in the oxidation of lipids, proteins and DNA. Although oxidation of lipids and proteins may also accumulates with age, only DNA oxidation leads to altered genomic information. As one pathway for increased ROS production, many endogenous and exogenous substances activate NADPH oxidase (NOX) enzyme and produce ROS. p47phox is a cytosolic organizer protein which plays an important role in NOX activation. Angiotensin II (Ang II) is an example for an endogenous compound which causes ROS through NOX activation. Rosuvastatin is an example for a drug with antioxidative capacity (upregulation of endogenous antioxidants). It is a lipid lowering drug which also reduces an elevated level of angiotensin II type 1 receptor (AT1R). Commonly, oxidative stress is elevated in ageing and age related diseases (eg. Parkinson’s disease (PD)). The aim of the present study was to investigate the role of NOX derived ROS induced oxidative DNA damage and the influence of ROS in ageing and age related diseases, using different in vitro and in vivo models. KW - Oxidativer Stress KW - DNS-Schädigung KW - Oxidativer Stress KW - genomische Schäden KW - Oxidative stress KW - genomic damage Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64869 ER -