TY - THES A1 - Schwemmer, Tilman T1 - Relativistic corrections of Fermi surface instabilities T1 - Relativistische Korrekturen zu Fermiflächeninstabilitäten N2 - Relativistic effects crucially influence the fundamental properties of many quantum materials. In the accelerated reference frame of an electron, the electric field of the nuclei is transformed into a magnetic field that couples to the electron spin. The resulting interaction between an electron spin and its orbital angular momentum, known as spin-orbit coupling (SOC), is hence fundamental to the physics of many condensed matter phenomena. It is particularly important quantitatively in low-dimensional quantum systems, where its coexistence with inversion symmetry breaking can lead to a splitting of spin degeneracy and spin momentum locking. Using the paradigm of Landau Fermi liquid theory, the physics of SOC can be adequately incorporated in an effective single particle picture. In a weak coupling approach, electronic correlation effects beyond single particle propagator renormalization can trigger Fermi surface instabilities such as itinerant magnetism, electron nematic phases, superconductivity, or other symmetry broken states of matter. In this thesis, we use a weak coupling-based approach to study the effect of SOC on Fermi surface instabilities and, in particular, superconductivity. This encompasses a weak coupling renormalization group formulation of unconventional superconductivity as well as the random phase approximation. We propose a unified formulation for both of these two-particle Green’s function approaches based on the notion of a generalized susceptibility. In the half-Heusler semimetal and superconductor LuPtBi, both SOC and electronic correlation effects are prominent, and thus indispensable for any concise theoretical description. The metallic and weakly dispersive surface states of this material feature spin momentum locked Fermi surfaces, which we propose as a possible domain for the onset of unconventional surface superconductivity. Using our framework for the analysis of Fermi surface instability and combining it with ab-initio density functional theory calculations, we analyse the surface band structure of LuPtBi, and particularly its propensity towards Cooper pair formation. We study how the presence of strong SOC modifies the classification of two-electron wave functions as well as the screening of electron-electron interactions. Assuming an electronic mechanism, we identify a chiral superconducting condensate featuring Majorana edge modes to be energetically favoured over a wide range of model parameters. N2 - Relativistische Effekte bestimmen die Eigenschaften vieler Quantenmaterialien entscheidend. Im beschleunigten Bezugssystem eines Elektrons transformiert sich das elektrische Feld des Kerns in ein Magnetfeld, welches an den Spin des Elektrons koppelt. Die resultierende Wechselwirkung zwischen dem Spin eines Elektrons und seinem Bahndrehimpuls, bekannt als Spin-Bahn-Kopplung (engl. spin-orbit coupling SOC), ist für viele Phänomene der kondensierten Materie von grundlegender Bedeutung. In niedrigdimensionalen Quantensystemen, wo die Koexistenz von SOC und Inversionssymmetriebrechung zu einer Aufspaltung der Spinentartung und Kopplung des Spins an den Impulsfreiheitsgrad führen kann, besonders wichtig. Mit dem Paradigma von Landaus Fermi-Flüssigkeits-Theorie lässt sich die Physik des SOC in einem effektiven Ein-Teilchenbild gut modellieren. Ausgehend von einem schwach gekoppelten Bild können elektronische Korrelationseffekte, die über diese einfache Theorie hinausgehen, eine Instabilität der Fermi-Fläche auslösen, die zu Magnetismus, elektronisch-nematischen Phasen, Supraleitung oder anderen symmetriegebrochenen Materialzuständen führt. In dieser Dissertation verwenden wir einen auf schwacher Kopplung basierenden Ansatz, um die Wirkung von SOC auf Instabilitäten der Fermi-Fläche und insbesondere auf Supraleitung zu untersuchen. Wir betrachten eine störungstheoretische Renormierungsgruppenformulierung für unkonventionellen Supraleitung die Random-Phase-Approximation (RPA). Auf Grundlage der verallgemeinerten Suszeptibilität entwickeln wir eine einheitliche Formulierung für diese beiden Ansätze. Im Halb-Heusler-Halbmetall und Supraleiter LuPtBi sind sowohl SOC- als auch elektronische Korrelationseffekte für jede theoretische Beschreibung von großer Bedeutung. Der metallische und schwach dispersive Oberflächenzustand dieses Materials weist Fermi-Flächen mit gekoppeltem Spin und Impuls auf, die wir als mögliche Domäne für den Beginn unkonventioneller Oberflächensupraleitung vorschlagen. Wir kombinieren ab-initio Dichtefunktionaltheorieberechnungen für die Oberflächenbandstruktur von LuPtBi mit der Renormierungsgruppe und der RPA für eine Analyse der Fermi-Oberflächeninstabilitäten and der Kristalloberfläche. Wir untersuchen, wie die Existenz von starkem SOC die Klassifizierung von Zwei-Elektronen-Wellenfunktionen sowie die Abschirmung von Elektron-Elektronen-Wechselwirkungen modifiziert. Unter der Annahme eines elektronischen Mechanismus identifizieren wir ein chirales supraleitendes Kondensat mit Majorana-Randmoden, das über einen weiten Bereich von Modellparametern energetisch begünstigt ist. KW - Supraleitung KW - Random-phase-Approximation KW - Renormierungsgruppe KW - Fermionensystem KW - Spin-Bahn-Wechselwirkung KW - Correlated Fermions KW - Perturbative KW - Functional Renormalization Group KW - Quantum many-body systems KW - Spin-Orbit interaction KW - Unconventional/Topological superconductivity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319648 ER - TY - THES A1 - Breunig, Daniel Manfred T1 - Transport properties and proximity effect of topological hybrid structures T1 - Transporteigenschaften und Proximity-Effekt von topologischen Hybridstrukturen N2 - Over the last two decades, accompanied by their prediction and ensuing realization, topological non-trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenomena all on their own, even more fascinating features emerge when superconducting order is included. Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected surface states, unconventional superconductivity, and even to the emergence of exotic bound states in appropriate setups. This Thesis explores various junctions built from - or incorporating - topological materials in contact with superconducting order, placing particular emphasis on the transport properties and the proximity effect. We begin with the analysis of Josephson junctions where planar samples of mercury telluride are sandwiched between conventional superconducting contacts. The surprising observation of pronounced excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory, has long been an ambiguous issue in this field, since the necessary presumptions are seemingly not met. We propose a resolution to this predicament by demonstrating that the interface properties in hybrid nanostructures of distinctly different materials yet corroborate these assumptions and explain the outcome. An experimental realization is feasible by gating the contacts. We then proceed with NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconducting order. Due to the anisotropy of the electron band structure, both the transport properties as well as the proximity effect depend substantially on the orientation of the interfaces between the materials. Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal contacts. We show that such a system features a tunable dipole character with possible applications in spintronics. Finally, we consider partially superconducting surface states of three-dimensional topological insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a filter for non-local singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved by mere electronic switching processes and in the absence of any magnetic order, rendering such a nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes non-local Andreev processes. N2 - Seit nun gut zwei Jahrzehnten stehen Materialien wie Topologische Isolatoren, Dirac Halbmetalle und Weyl Halbmetalle im Fokus der Forschung der mesoskopischen Festkörperphysik. Diese topologisch nicht-trivialen Materialien weisen sich durch eine Vielzahl faszinierender Eigenschaften aus, insbesondere, wenn sie in Kombination mit supraleitender Ordnung untersucht werden. Die intrinsisch sehr stark ausgeprägte Spin-Bahn Kopplung führt zu charakteristischen Oberflächenzuständen, die durch die Zeitumkehrsymmetrie geschützt sind, zu unkonventioneller Supraleitung und sogar zur Ausbildung exotischer, gebundener Zustände in entsprechenden Strukturen. Diese Dissertation untersucht die Transporteigenschaften als auch den Proximity-Effekt in verschiedenen Kontakten aus topologischen Materialien und Supraleitern. Zu Beginn befassen wir uns mit Josephson-Kontakten, in denen planare Proben aus Quecksilbertellurid in Kontakt mit konventionellen Supraleitern gebracht werden. In solchen Nanostrukturen wurden ausgeprägte Exzessströme gemessen, die zudem in guter Übereinstimmung mit der Blonder-Tinkham-Klapwijk Theorie stehen. Diese Beobachtungen sind jedoch kontraintuitiv, da die Voraussetzungen für den Formalismus scheinbar nicht gegeben sind. Wir zeigen anhand der Grenzflächeneigenschaften zwischen sich deutlich unterscheidenden Materialien, dass diese Annahmen dennoch korrekt sind und die Messergebnisse erklären. Dies lässt sich mit Hilfe von Seitenkontakten in einem Experiment nachweisen. Des Weiteren untersuchen wir Weyl Halbmetalle mit gebrochener Zeitumkehrsymmetrie und im Kontakt mit einem zentralen Supraleiter. Die Transporteigenschaften, wie auch der Proximity-Effekt, hängen wegen der Anisotropie der Bandstruktur stark von der Ausrichtung der Grenzflächen zwischen den Materialien ab. Zudem lässt sich ein Ungleichgewicht in der Elektronenpopulation zwischen Weylknoten unterschiedlicher Chiralität einstellen, was zu einer endlichen Spinpolarisation der Cooper-Paare führt, die in die normalleitenden Kontakte eindringen. Das System weist dann einen steuerbaren Dipolcharakter auf, welcher interessant für Anwendungen in der Spintronik ist. Schlussendlich analysieren wir den Oberflächenzustand eines dreidimensionalen topologischen Isolators, der lokal supraleitende Ordnung aufweist. Wird ein solches System in den sogenannten bipolaren Setup eingestellt, kann es zur Erzeugung und Manipulation von Triplet-Cooper-Paaren mit endlicher Spinpolarisation im Supraleiter verwendet werden. Gleichzeitig stellt es einen Filter für nicht-lokale Spin-Singlet-Paarung dar. Realisiert wird dies mit Hilfe elektrischer Spannung, und bedarf insbesondere keiner magnetische Ordnung zur Ausrichtung des Spin. Stattdessen verlassen wir uns auf die starke Spin-Bahn-Kopplung des Oberflächenzustands sowie den bipolaren Setup, welcher den nicht-lokalen Transport deutlich verstärkt. KW - Supraleitung KW - Elektronischer Transport KW - Topological Materials KW - Superconductivity KW - Mesoscopic Transport Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250546 ER - TY - THES A1 - Lundt, Felix Janosch Peter T1 - Superconducting Hybrids at the Quantum Spin Hall Edge T1 - Supraleitende Hybrid-Strukturen auf Basis von Quanten-Spin-Hall-Randzuständen N2 - This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with $s$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies. N2 - Diese Dissertation behandelt Strukturen auf der Grundlage von Quanten-Spin-Hall-Isolatoren, in denen deren Randzustände mit supraleitender und magnetischer Ordnung in Verbindung gebracht werden. Quanten-Spin-Hall-Isolatoren sind Beispiele für Systeme in der Festkörperphysik, deren physikalische Eigenschaften auf die topologische Struktur der Energiebänder zurückzuführen sind. Eine bemerkenswerte Konsequenz daraus ist die Entstehung von besonderen Randzuständen an der Oberfläche. Im Fall der zweidimensionalen Quanten-Spin-Hall-Isolatoren sind diese eindimensional und bestehen aus leitenden, metallischen Zuständen von gegenläufigen Elektronen mit entgegengesetztem Spin -- sogenannte helikale Randzustände. Sie bergen großes Potenzial für Anwendungen in der Spintronik, bei der Informationen nicht durch die Ladung, sondern den Spin von Elektronen übertragen werden, und als Plattform für Quantencomputer. Am Beginn der Dissertation werden eindimensionale topologische Supraleiter allgemeiner besprochen. Ausgehend von der Kitaev-Kette und einem kontinuierlichen Modell werden grundlegende Konzepte anschaulich eingeführt, insbesondere im Hinblick auf die topologische Unterscheidung von trivialer und nicht-trivialer Phase und dem Auftreten von Majorana-Zuständen an deren Enden. Letztere sind die entscheidenden Bausteine auf dem Weg zu geschützten Operationen für Quanten-Bits. Da Randzustände von Quanten-Spin-Hall-Isolatoren im Zusammenspiel mit $s$-Wellen-Supraleitung und Magnetismus eine Möglichkeit für die Realisierung eines solchen eindimensionalen topologischen Supraleiters ist, wird in der Folge untersucht, unter welchen Bedingungen Majorana-Zustände auftreten können. Es wird gezeigt, dass dies zwischen Gebieten geschieht, in denen die Randzustände entweder nur von Supraleitung oder von Supraleitung und Magnetismus beeinflusst werden. In Systemen mit mehr als einer supraleitenden Region spielt die Phasendifferenz dabei eine übergeordnete Rolle und kann sogar dazu benutzt werden, Majorana-Zustände zu manipulieren. Weiterhin behandelt die Dissertation die Auswirkungen der helikalen Randzustände auf anomale Korrelationsfunktionen, die von der Supraleitung induziert werden. Es zeigt sich, dass Helizität und Magnetismus deren Eigenschaften bereichern können und unkonventionelle, exotische Paarungs-Mechanismen auftreten. Zusätzlich wird ein Zusammenhang zu Majorana-Zuständen demonstriert. Abschließend wird eine mögliche thermoelektrische Anwendung eines hybriden Systems besprochen, die die besonderen supraleitenden Eigenschaften ausnutzt, um eine Temperaturdifferenz zur Erzeugung von Cooper-Paaren mit Spin-Polarisierung zu verwenden. Diese stellen im Rahmen der supraleitenden Spintronik vielversprechende Einheiten zur verlustarmen Übertragung von Informationen dar. KW - Mesoskopisches System KW - Kondensierte Materie KW - Theoretische Physik KW - Topologische Phase KW - Supraleitung KW - Quantum Spin Hall Effect KW - Topological Superconductivity KW - Majorana fermions KW - Topological Quantum Computing KW - Thermoelectricity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216421 ER - TY - THES A1 - Fleckenstein, Christoph Thomas T1 - Conception and detection of exotic quantum matter in mesoscopic systems T1 - Konzeption und Detektion von exotischer Quantenmaterie in mesoskopischen Systemen N2 - In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements. We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials – a structure we coin anti-wire – are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions. N2 - In der vorliegenden Arbeit untersuchen wir Nanobauteile auf der Basis von topologischen Isolatoren. Diese neue Materialklasse zeichnet sich in erster Linie durch ein isolierendes Inneres aus, während gleichzeitig die Oberfläche leitende Eigenschaften besitzt. Zustände, welche mit diesen leitenden Eigenschaften in Verbindung gebracht werden, können in niedrigster Ordnung durch eine Dirac-Theorie beschrieben werden. Im Falle eines zweidimensionalen topologischen Isolators impliziert das, zusammen mit Zeit-Umkehr Symmetrie, eine helikale Natur dieser Randzustände. Interessante Physik entsteht dann insbesondere, wenn zwei solcher helikalen Randkanalzustände in einer Verengung zusammengeführt werden. Dies hat verschiedene Konsequenzen. Innerhalb der Verengung findet man die gleiche Anzahl an fermionischen Feldern wie man sie auch in einem Quantendraht erwartet. Gleichzeitig besitzt eine solche Konstruktion aber mehr Symmetrien verglichen mit gewöhnlichen Quantendrähten. Außerdem kann eine Verengung in einem zwei-dimensionalen topologischen Isolator auf natürliche Weise helikal kontaktiert werden, so dass spin-aufgelöste Transportmessungen durchgeführt werden können. Diese einzigartige Kombination von Eigenschaften impliziert verschiedenste physikalische Effekte. Wie wir in dieser Arbeit zeigen entsteht in engen Schlitzen, welche in einen homogenen zwei-dimensionalen topologischen Isolator tranchiert werden, eine topologisch supraleitende Phase mit nicht-Abelschen Majorana Moden an den Systemrändern. Diese exotischen Teilchen können mit einem relativ einfachen Transportexperiment nachgewiesen werden, indem man diesen sogenannten Anti-Quantendraht schwach mit einem helikalen Randkanal koppelt und dort die Transportcharakteristiken misst. Die Präsenz von Majorana Moden ist verknüpft mit dem Entstehen von unkonventioneller Supraleitung, insbesondere von sogenannter odd-frequency Supraleitung. Wir zeigen, dass dies vielmehr eine allgemeine Erscheinung in derartigen supraleitenden Strukturen ist. Symmetrien sind von elementarer Bedeutung für viele physikalische Effekte. So führt zum Beispiel die natürlich auftretende Ladungs-Konjugation Symmetrie zusammen mit einem zeit-periodischen elektromagnetischen Feld in topologischen Anti-Quantendrähten zu einer topologischen Floquet Nichtgleichgewichts-Phase, welche wiederum durch Transportmessungen detektiert werden kann. Symmetrien spielen auch und insbesondere für Wechselwirkungseffekte eine wichtige Rolle. Hier ist besonders die Existenz eines Dirac-Punktes von großer Bedeutung. In dessen (energetischer) Nähe ist es möglich wechselwirkungs-induzierte Bandlücken zu erzeugen. Anders als Einteilchen-Bandlücken können wechselwirkungs-induzierte Bandlücken zu einer hohen Grundzustandsentartung führen. Diese wiederum ermöglicht die Entstehung komplexer nicht-Abelscher Teilchen, falls zusätzlich supraleitende Ordnung vorhanden ist. Interessanterweise können derartige Vielteilchen-Bandlücken in unserem System schon bei nur schwacher elektronischer Wechselwirkung auftreten. Dieses untypische Verhalten ermöglicht letztendlich die Entstehung von Z4 parafermionen an Grenzflächen unterschiedlicher Ordnung. KW - Kondensierte Materie KW - Supraleitung KW - Topologie KW - non-Abelian anyons Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212847 ER - TY - THES A1 - Platt, Christian T1 - A Common Thread in Unconventional Superconductivity: The Functional Renormalization Group in Multi-Band Systems T1 - Unkonventionelle Supraleitung in Multi-Band Systemen N2 - Die supraleitenden Eigenschaften von komplexen Materialsystemen, wie den erst kürzlich entdeckten Eisen-Pniktiden oder den Strontium-Ruthenaten, sind oftmals durch das Zusammenspiel vieler elektronischer Orbitale bestimmt. Um die Supraleitung in derartigen Systemen besser zu verstehen, entwickeln wir in dieser Arbeit eine Multi-Orbital-Implementierung der funktionalen Renormierungsgruppe und untersuchen die Elektronenpaarung in verschiedenen charakteristischen Materialverbindungen. In den Eisen-Pniktiden finden wir hierbei mehrere Spinfluktuationskanäle, die eine Elektronenpaarung hervorrufen, sofern die Paarwellenfunktion einen Vorzeichenwechsel zwischen den verschiedenen genesteten Bereichen der Fermifläche aufweist. Abhängig von den spezifischen Materialeigenschaften, wie der Dotierung oder der Position des Pniktogenatoms, führen diese Spinfluktuationen dann zu $s_{\pm}$-wellenartiger Paarung mit durchgängiger Energielücke oder mit Knoten auf der Fermifläche. In manchen Fällen wird zudem auch $d$-wellenartige Paarung induziert, die in der Nähe des Übergangs zur $s_{\pm}$-Symmetrie einen gemischten $(s+id)$-Zustand mit gebrochener Zeitinversionssymmetrie aufweist. Diese neuartige Phase zeigt faszinierende Eigenschaften, wie zum Beispiel das spontane Entstehen von Supraströmen am Probenrand und um nichtmagnetische Störstellen. Auf Grund der durchgängigen Energielücke ist dieser $(s+id)$-Zustand energetisch begünstigt. Im Folgenden untersuchen wir zudem auch die elektronischen Instabilitäten eines weiteren außergewöhnlichen Materials -- dotiertes Graphen. Diese rein zweidimensionale Kohlenstoffverbindung ist schon seit mehreren Jahren im Fokus der Festkörperforschung und wurde mittlerweile auch durch neuartige experimentelle Verfahren dotiert, ohne die zugrundeliegende hexagonale Gittersturktur merklich zu stören. Eine theoretische Beschreibung dieses Systems erfordert die Berücksichtigung zweier nicht-equivalenter Gitterplätze, was wiederum effektiv als Zwei-Orbital-System aufgefasst werden kann. Durch die besondere Symmetrie der hexagonalen Gitterstruktur sind beide $d$-wellenartigen Paarungskanäle entartet und ahnlich der $(s+id)$-Paarung in den Pniktiden finden wir hier eine chirale $(d+id)$-Paarung in einem weiten Dotierungsbereich um van-Hove Füllung. Des Weiteren identifizieren wir Spin-Triplet-Paarung und eine exotische Form der Spindichtewelle, welche beide durch leichte Veränderung der langreichweitigen Hüpfamplituden und Wechselwirkungensparameter realisiert werden können. Als drittes Beispiel betrachten wir die Supraleitung in dem Strontium-Ruthenat Sr$_2$RuO$_4$. Die Besonderheit dieser Materialverbindung liegt in der möglichen Realisierung einer chiralen Spin-Triplet Paarung, die wiederum faszinierende Eigenschaften wie die Existenz von halbganzzahligen Flussvortizes mit nicht-Abelscher Vertauschungsstatistik aufweisen würde. Mittels eines mikroskopischen Drei-Orbital-Modells und der Berücksichtigung von Spin-Bahn-Kopplung finden wir hierbei, dass moderate ferromagnetische Spinfluktuationen immer noch ausreichen, um diesen speziellen Paarungszustand anzutreiben. Die berechnete Energielücke zeigt im Weiteren sehr starke Anisotropien auf dem $d_{xy}$-Orbital-dominierten Bereich der Fermifläche und verschwindet nahezu vollständig auf den anderen beiden Fermiflächen. N2 - The superconducting properties of complex materials like the recently discovered iron-pnictides or strontium-ruthenate are often governed by multi-orbital effects. In order to unravel the superconductivity of those materials, we develop a multi-orbital implementation of the functional renormalization group and study the pairing states of several characteristic material systems. Starting with the iron-pnictides, we find competing spin-fluctuation channels that become attractive if the superconducting gap changes sign between the nested portions of the Fermi surface. Depending on material details like doping or pnictogen height, these spin fluctuations then give rise to $s_{\pm}$-wave pairing with or without gap nodes and, in some cases, also change the symmetry to $d$-wave. Near the transition from nodal $s_{\pm}$-wave to $d$-wave pairing, we predict the occurrence of a time-reversal symmetry-broken $(s+id)$-pairing state which avoids gap nodes and is therefore energetically favored. We further study the electronic instabilities of doped graphene, another fascinating material which has recently become accessible and which can effectively be regarded as multi-orbital system. Here, the hexagonal lattice structure assures the degeneracy of two $d$-wave pairing channels, and the system then realizes a chiral $(d+id)$-pairing state in a wide doping range around van-Hove filling. In addition, we also find spin-triplet pairing as well as an exotic spin-density wave phase which both become leading if the long-ranged hopping or interaction parameters are slightly modified, for example, by choosing different substrate materials. Finally, we consider the superconducting state of strontium-ruthenate, a possible candidate for chiral spin-triplet pairing with fascinating properties like the existence of half-quantum vortices obeying non-Abelian statistics. Using a microscopic three orbital description including spin-orbit coupling, we demonstrate that ferromagnetic fluctuations are still sufficient to induce this $\bs{\hat{z}}(p_x\pm ip_y)$-pairing state. The resulting superconducting gap reveals strong anisotropies on the $d_{xy}$-dominated Fermi-surface pocket and nearly vanishes on the other remaining two pockets. KW - Supraleitung KW - Renormierungsgruppe KW - Eisen-basierte Supraleiter KW - iron-pnictides KW - ruthenates KW - graphene KW - multi-band superconductivity KW - functional renormalization group KW - Hochtemperatursupraleitung KW - Ruthenate KW - Pnictide Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78824 ER - TY - THES A1 - Kiesel, Maximilian Ludwig T1 - Unconventional Superconductivity in Cuprates, Cobaltates and Graphene: What is Universal and what is Material-Dependent in strongly versus weakly Correlated Materials? T1 - Unkonventionelle Supraleitung in Kupraten, Cobaltaten und Graphen: Was ist universell und was ist material-abhängig in stark- gegenüber schwach-korrelierten Materialien? N2 - Eine allgemeingültige Theorie für alle unterschiedlichen Arten von unkonventionellen Supraleitern ist immer noch eine der ungelösten Kernfragen der Festkörperphysik. Momentan ist es nicht einmal bewiesen, dass es überhaupt einen gemeinsamen grundlegenden Mechanismus gibt, sondern es müssen vielleicht mehrere verschiedene Ursachen für unkonventionelle Supraleitung berücksichtigt werden. Der Einfluss der Elektron-Phonon-Wechselwirkung ist dabei noch nicht abschließend geklärt. In dieser Dissertation wird ein rein elektronischer Paarungsmechanismus untersucht, in welchem die Paarung durch Spin-Fluktuationen vermittelt wird, was nach dem aktuellen Stand der Forschung auf dem Gebiet der unkonventionellen Supraleiter am wahrscheinlichsten ist. Der Schwerpunkt liegt dabei auf der Bestimmung von Material-unabhängigen Eigenschaften der supraleitenden Phase. Diese können durch eine Auswahl sehr unterschiedlicher Systeme herausgearbeitet werden. Eine Untersuchung der Phasendiagramme gibt außerdem Auskunft darüber, welche konkurrierenden Quantenfluktuationen den supraleitenden Zustand abschwächen oder verstärken. Für diese Analyse von sehr unterschiedlichen supraleitenden Materialien ist der Einsatz einer einzelnen numerischen Lösungsmethode unzureichend. Für diese Dissertation ist dies aber kein Nachteil, sondern vielmehr ein großer Vorteil, da der Einsatz verschiedener Techniken die Abhängigkeit der Ergebnisse von der verwendeten Numerik reduziert und dadurch der grundlegende Mechanismus besser untersucht werden kann. Im speziellen werden in dieser Dissertation die Kuprate mit der Variationellen Clusternäherung ausgewertet, weil die Elektronen hier eine starke Wechselwirkung untereinander besitzen. Besonders die Frage eines möglichen Klebstoffs für die Cooper-Paare wird ausführlich diskutiert, auch mit einer Unterscheidung in retardierte und nicht-retardierte Beträge. Den Kupraten werden das Kobaltat NaCoO sowie Graphen gegenübergestellt. Diese Materialien sind jedoch schwach korrelierte Systeme, so dass hier die Funkionelle Renormierungsgruppe als numerisches Grundgerüst dient. Die Ergebnisse sind reichhaltige Phasendiagramme mit vielen verschiedenen langreichweitigen Ordnungen, wie zum Beispiel d+id-wellenartige Supraleitung. Diese bricht die Zeitumkehr-Symmetrie und besitzt eine vollständige Bandlücke, welche im Falle von NaCoO jedoch eine stark Dotierungs-abhängige Anisotropie aufweist. Als letztes wird das Kagome-Gitter allgemein diskutiert, ohne ein konkretes Material zu beschreiben. Hier hat eine destruktive Interferenz zwischen den Elektronen auf verschiedenen Untergittern drastische Auswirkungen auf die Instabilitäten der Fermi-Fläche, so dass die übliche Spin-Dichte-Welle und die damit verbundene d+id-wellenartige Supraleitung unterdrückt werden. Dadurch treten ungewöhnliche Spin- und Ladungsdichte-Ordnungen sowie eine nematische Pomeranchuck Instabilität hervor. Zusammengefasst bietet diese Dissertation einen Einblick in unterschiedliche Materialklassen von unkonventionellen Supraleitern. Dadurch wird es möglich, die Material-spezifischen Eigenschaften von den universellen zu trennen. N2 - A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate NaCoO and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on the kagome lattice are completing the discussion, where a sublattice interference dramatically affects the Fermi-surface instabilities, suppressing the usual spin-density wave and d+id-wave superconductivity. Thereby, some different fascinating charge and bond orders as well as a nematic are observable. In short, this thesis provides an insight to distinct classes of unconventional superconductors with appropriate simulation techniques. This facilitates to separate the material specific properties from the universal ones. KW - Supraleitung KW - Kuprate KW - Cobaltate KW - Superconductivity KW - Cuprates KW - Cobaltates KW - Graphene KW - functional Renormalization Group KW - Graphen KW - Keramischer Supraleiter KW - Cluster-Entwicklung KW - Renormierungsgruppe Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76421 ER - TY - THES A1 - Jöstingmeier, Martin T1 - On the competition of superconductivity, antiferromagnetism and charge order in the high-Tc compounds T1 - Über das Wechselspiel von Supraleitung, Antiferromagnetismus und Ladungsordung in den Kuprat-Supraleitern N2 - Diese Arbeit läßt sich in zwei grobe Abschnitte gliedern. Der erste Teil umfaßt die Kapitel 1-3, in denen drei verschiedene Konzepte beschrieben werden, die zum Verständis stark korrelierter Vielteilchen-Systeme dienen. Dies sind zunächst einmal die SO(5)-Theorie in Kapitel 3, die den allgemeinen Rahmen vorgibt und auf der numerischen Seite die Stochastische Reihen Entwicklung (SSE) in Kapitel 1 und der Contractor Renormierungsgruppen Ansatz (CORE), s.Kapitel 2). Die zentrale Idee dieser Dissertationsschrift besteht darin, diese verschiedenen Konzepte zu kombinieren, um ein besseres Verständnis der Hochtemperatursupraleiter zu erhalten. Im zweiten Teil dieser Arbeit (Kap. 4 und Kap. 5) werden die so gewonnenen Ergebnisse dargestellt. Die zentrale Idee dieser Arbeit, d.h. die Kombination der SO(5)-Theorie mit den Fähigkeiten bosonischer Quanten-Monte-Carlo Verfahren und den überlegungen der Renormierungsgruppe, hat sich sich am Beispiel der Physik der Hochtemperatur-Supraleiter als sehr tragfähig erwiesen. Die numerischen Simulationen reproduzieren bei den behandelten Modelle eine Reihe wichtiger experimenteller Daten. Die Grundlage für eine künftige weitere schrittweise Erweiterung des Modells wurde so geschaffen. Eine offene Frage ist z.B. die Restaurierung der SO(5)-Symmetrie an einem multi-kritischen Punkt, wenn die längerreichweitigen Wechselwirkungen mit in das Modell einbezogen sind. N2 - This thesis contains two major parts: The first part introduces the reader into three independent concepts of treating strongly correlated many body physics. These are, on the analytical side the SO(5)-theory (Chap.3), which poses the general frame. On the numerical side these are the Stochastic Series Expansion (SSE) (Chap.1) and the Contractor Renormalization Group (CORE) approach (Chap. 2}). The central idea of this thesis was to combine these above concepts, in order to achieve a better understanding of the high-T_c superconductors (HTSC). The results obtained by this combination can be found in the second major part of this thesis (chapters 4 and 5). The main idea of this thesis, i.e., to combine the SO(5)-theory with the capabilities of bosonic Quantum-Monte Carlo simulations and those of the CORE approach, has been proven to be a very successful Ansatz. Two different approaches, one based on symmetry and one on renormalization-group arguments, motivate an effective bosonic Hamiltonian. In a subsequent step the effective Hamiltonian has been simulated efficiently using the SSE. The results reproduce salient experiments on high-T_c superconductors. In addition, it has been shown that the model can be extended to capture also charge ordering. These results also form a profound basis for further studies, for example one could address the open question of SO(5)-symmetry restoration at a multicritical point in the extended pSO(5) model, where longer ranged interactions are included. KW - Hochtemperatursupraleitung KW - Simulation KW - Numerisches Verfahren KW - Supraleitung KW - Antiferromagnetismus KW - Ladungsordung KW - Kuprat-Supraleiter KW - SO(5)-Theorie der Supraleitung KW - superconductivity KW - antiferromagnetism KW - charge density waves KW - cuprate-superconductor KW - SO(5)-theory of superconductivity Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13036 ER -