TY - THES A1 - Hegerfeldt, Yael T1 - Kollektive Invasion in Melanomexplantaten: Bedeutung von Zell-Matrix-Interaktionen T1 - Collective Invasion in Melanoma Explants: Role of Cell-Matrix-Interactions N2 - Zellmigration ist essentiell für die Invasion und Metastasierung maligner Tumore. Neben der Bewegung von Einzelzellen zeigen Tumore sowohl epithe¬lialen als auch mesenchymalen Ursprungs auch kollektive Migration und Invasion multizellulärer Zellverbände, die sich unter Beibehaltung von Zell-Zell-Adhäsionen koordiniert als Gruppe bewegen. Ziel der Arbeit war, primäre humane Melanomexplantate mittels organotypischer Kultur in 3D Kollagenmatrices einzusetzen, um mittels Zeit-raffermikroskopie und experimentellen Blockadestrategien die zellulären und molekularen Grundlagen kollektiver Migration darzustellen, insbesondere die Bedeutung von Zell-Matrix-Interaktionen und Integrinen. In 3D Explantatkulturen bildeten primäre Melanomexplantate reproduzierbar Invasionszonen und sich ablösende und kollektiv wandernde Zellcluster aus. Diese zeichneten sich durch eine ausgeprägte Polarität mit motiler Vorderfront mit zugartig reorientierten Kollagenfasern und nachgezogenem hinteren Teil der Gruppen aus, vergleichbar der Asymmetrie haptokinetisch migrierender Fibroblasten. β1 Integrine zeigten ein heterogenes Verteilungsmuster mit Fokalisierung an Zell-Matrix-Interaktionen vor allem an der Vorderfront und linearer Anordnung entlang der Zell-Zell-Grenzen. Adhäsionsblockierende anti- β1 Integrin-Antikörper bewirkten nahezu vollständige Hemmung der kollektiven Migration, mit Verlust der Zellgruppenpolarität und Migrationspersistenz. Nach Integrinblockade zerfielen Zellverbände infolge Loslösung von Einzelzellen, die sich mittels β1 Integrin-unabhängiger, amöboider Migration durch die Kollagenmatrix bewegten. Der Übergang von β1 Integrin-abhängiger, kollektiver Migration zu amöboider Einzelzellwanderung (kollektiv-amöboide Transition) ist ein Beispiel für die Plastizität von Tumorzellwanderung, die in Anpassung an das Milieu einen Wechsel der Migrationsstrategie erlaubt. Die Plastizität der Tumorzellmigration muss bei der Entwicklung therapeutischer Konzepte, die auf Hemmung von Tumorinvasion und -metastasierung abzielen, berücksichtigt werden. N2 - Cell migration is essential for invasion and metastasis of malignant tumors. Besides migration of single cells tumors of epithelial as well as mesenchymal origin show collective migration and invasion of multicellular Clusters, which move coordinated as a group while maintaining cell-cell-adhesions. The purpose of this study was to cultivate primary human melanoma explants in an organotypic 3D collagen matrix and examine the cellular and molecular basis of collective cell migration by time-lapse videomicroscopy and blocking experiments with a special emphasis on integrins and cell-matrix-interactions. In 3D culture primary melanoma explants reproducibly formed invasion zones and detaching cell clusters then migrating collectively as a group. These Clusters exhibited a strong polarity with a mobile front and tension-reoriented collagen fibers and a passively gliding rear end, comparable to the asymmetry found in the haptokinetic migration of fibroblasts. β1 integrins were distributed heterogeneously with focalization predominantly in cell-matrix-interactions at the front and linearly in cell-cell-interactions. Adhesion-blocking anti-β1 integrin-antibodies lead to a near complete inhibition of collective migration with a loss of polarity of the group and loss of persistence of migration. After Integrin blockade clusters disrupted due to detaching single cells that continued to migrate independently of β1 integrins through the collagen matrix using an ameboid migration strategy. The switch of β1 integrin-dependent collective migration to single cell ameboid migration (collective-to-ameboid transition) is an example for the plasticity of tumor cell migration while adapting to the milieu that allows a change in migration strategy. Plasticity of tumor cell migration needs to be considered in the development of therapeutic concepts targeting tumor invasion and metastasis. KW - Melanom KW - Zellmigration KW - kollektive Invasion KW - Metastasierung KW - extrazelluläre Matrix KW - melanoma KW - metastasis KW - cell migration KW - collective invasion KW - extracellular matrix Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73849 ER - TY - THES A1 - Storim, Julian T1 - Dynamic mapping of the immunological synapse in T cell homeostasis and activation T1 - Dynamische Untersuchung der immunologischen Synapse während T-Zellhomöostase und -aktivierung N2 - Polarity and migration are essential for T cell activation, homeostasis, recirculation and effector function. To address how T cells coordinate polarization and migration when interacting with dendritic cells (DC) during homeostatic and activating conditions, a low density collagen model was used for confocal live-cell imaging and high-resolution 3D reconstruction of fixed samples. During short-lived (5 to 15 min) and migratory homeostatic interactions, recently activated T cells simultaneously maintained their amoeboid polarization and polarized towards the DC. The resulting fully dynamic and asymmetrical interaction plane comprised all compartments of the migrating T cell: the actin-rich leading edge drove migration but displayed only moderate signaling activity; the mid-zone mediated TCR/MHC induced signals associated with homeostatic proliferation; and the rear uropod mediated predominantly MHC independent signals possibly connected to contact-dependent T cell survival. This “dynamic immunological synapse” with distinct signaling sectors enables moving T cells to serially sample antigen-presenting cells and resident tissue cells and thus to collect information along the way. In contrast to homeostatic contacts, recognition of the cognate antigen led to long-lasting T cell/DC interaction with T cell rounding, disintegration of the uropod, T cell polarization towards the DC, and the formation of a symmetrical contact plane. However, the polarity of the continuously migrating DC remained intact and T cells aggregated within the DC uropod, an interesting cellular compartment potentially involved in T cell activation and regulation of the immune response. Taken together, 3D collagen facilitates high resolution morphological studies of T cell function under realistic, in vivo-like conditions. N2 - Zellpolarität und Migration sind essentielle Voraussetzungen für T Zellaktivierung und homöostase sowie für Rezirkulation, und Effektorfunktionen. Um unter homöostatischen bzw. aktivierenden Bedingungen die Koordi¬nation von Polarisation und Migration von T Lymphozyten, die mit dendritischen Zellen (DC) interagieren, zu untersuchen, wurde ein Kollagenmatrix-Model mit niedriger Kollagendichte für konfokale Zeitraffermikro¬skopie und die hochaufgelöste Rekonstruktion fixierter Proben genutzt. Bei kurzen (5-15 min), migratorischen homöostatischen Kontakten behielten voraktivierte T-Zel¬len ihr amöboide Polarisation bei, während sie sich gleichzeitig Richtung DC polarisierten. Die hieraus resultie¬rende, dynamische und asymmetrische Kontaktflä¬che bestand aus allen Kompartimenten der migrierenden T-Zelle: Der F-Aktin-reiche vordere Zellpol („leading edge“) sorgte für Vor¬schub, hatte aber nur einen geringen Anteil an der Singaltransduktion; im mittleren Bereich („mid-zone“) waren MHC/TCR-abhängige Signale mit homöostatischer Proliferation assozi¬iert; und im als Uropod bezeichneten hintere Zellpol fanden sich vor allem MHC-unabhän¬gige Signale, die möglicherweise im Zusammenhang mit kontaktabhängigem Überleben stehen. Diese „dynamische immuno¬logische Synapse“ mit ihren Signaltransduktionsbereichen versetzt wan¬dernde T-Zellen in die Lage, nacheinander Kontakt zu mehreren antigenpräsen¬tierenden oder gewebsspezifischen Zellen aufzunehmen und so Informationen „im Vorbeigehen“ zu sammeln. Im Gegensatz zu homöostatischen Kontakten führte die Bindung des spezifischen Antigens zu langlebigen T Zellen/DC Kontakten, die mit der Abrundung der T Zelle und der Pola¬risation Richtung DC, der Auflösung ihres Uropods sowie der Ausbildung einer symmetri¬schen Kontaktfläche einher gin¬gen. Die Polarität der währenddessen fortge¬setzt migrierenden DC blieb dem gegenüber erhal¬ten und T-Zellen akkumulierten im DC-Uropod, einem interes¬santen Zellkompartiment, dass an T Zell-aktivierung und der Regu¬lation der Immunantwort beteiligt sein könnte. Zusammenge¬fasst ermöglicht das 3D Kollagenmatrix-Modell die hoch aufgelöste morphologische Untersu¬chung von T-Zell¬funk¬tionen unter realistischen, in vivo-artigen Bedingungen. KW - T-Lymphozyt KW - Dendritische Zelle KW - Zellmigration KW - Immunologische Synapse KW - T-Zellaktivierung KW - T-Zellhomöostase KW - Kollagen KW - T lymphocyte KW - dendritic cell KW - immunological synapse KW - migration Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70114 ER - TY - THES A1 - Adae, Jasmin T1 - Interaktion von malignen Tumorzellen mit extrazellulärer Matrix und Migration: Rolle von Rac und ROCK T1 - Interaction of malignant tumor cells with extracellular matrix and migration: role of Rac and ROCK N2 - Auf dem Weg vom Primärtumor zur systemischen Metastasierung, der Haupttodesursache von Krebserkrankungen, ist die Einzelzellmigration von Tumorzellen durch dreidimensionales Bindegewebe ein entscheidender Schritt. Die vorliegende Arbeit zeigt Untersuchungen zur Tumorzellmigration und –plastizität in einem 3D-Migrationsmodell. Kleine G-Proteine kontrollieren Zytoskelettfunktionen, insbesondere Aktinpolymerisation und die Bildung von Zellprotrusionen durch Rac sowie Actomyosinkontraktion durch Rho. Durch pharmakologische Inhibitoren von Rac und dem Rho-Effektor ROCK soll deren Bedeutung für Einzelzellmigration in einem dreidimensionalen Modell und vor allem der Effekt auf Morphologie, Plastizität und Migration von Tumorzellen geklärt werden. Nach Inhibition von ROCK zeigen hochinvasive HT1080 Fibrosarkomzellen einen multipolar-dendritischen und sessilen Phänotyp. Nach Hemmung von Rac wird hingegen ein rundlicher, aber ebenfalls apolarer und sessiler Phänotyp induziert. Bei simultaner Inhibition von Rac und ROCK entstehen rundliche, apolare, sessile Zellen mit abortiven Pseudopodien. Wird das Gleichgewicht von Rac und ROCK durch konstitutive Aktivierung von ROCK gestört, so entsteht eine zweigeteilte Population, bestehend aus rundlichen Zellen, die Blebs bilden, und langgezogenen Zellen. Nach Sortierung nach ihrem ß1-Integrinexpressionsniveau zeigten Zellen mit niedriger Integrin-Expression einen rundlichen Migrationstyp mit blasenartigen dynamischen Protrusionen, während Zellen mit hoher Integrin-Expression langgezogen-mesenchymal migrierten. Somit steuern ROCK und Rac gemeinsam und zeitgleich die mesenchymale Einzelzellmigration. Während Rac Protrusion vermittelt, ist ROCK für Kontraktilität und Retraktion verantwortlich. Erst durch Koordination von Rac und Rho/ROCK entsteht somit Polarität und 3D mesenchymale Migration. N2 - In the development from a primary tumor to metastatic dissemintation, which is the main cause of death from cancer, single cell migration through three-dimensional tumor stroma is an essential step. This work presents data concerning tumor cell migration and plasticity in a three-dimensional migration model. Small G-proteins control cytosceletal functions, especially actin polymerisation and the formation of cell protrusions through Rac as well as actomyosin contractility through Rho. Using pharmacological inhibitors of Rac and the Rho effector ROCK their impact on single-cell-migration in a three-dimensional model and particularly on morphology and plasticity of migration of tumor cells should be clarified. After inhibition of ROCK highly invasive HT1080 fibrosarcoma cells show a multipolar-dendritic and sessile phenotype. Inhibtion of Rac however induced a rounded phenotype which was also apolar and sessile. Simultaneous inhibition of ROCK and Rac resulted in rounded, apolar, sessile cells with abortive pseudopods. After disturbing the balance of ROCK and Rac by constitutive activation of ROCK, a divided population of cells developed, consisting of rounded, blebby cells and elongated cells. After sorting the cells according to their level of ß1-integrin expression, cells with low expression of integrins adopted a rounded type of migration with blebby dynamic protrusions, whereas cells with high integrin expression migrated in a elongated-mesenchymal way. Thus ROCK and Rac control together and simultaneously mesenchymal single cell migration. While Rac mediates protrusion, ROCK is responsible for contractility and retraction. Consequently only by coordination of Rho/ROCK and Rac polarity and mesenchymal 3D migration becomes possible. KW - Zellmigration KW - Invasion KW - Karzinomzellen KW - Rac KW - ROCK KW - Zellmigration KW - Invasion KW - Karzinomzellen KW - Rac KW - ROCK KW - cell migration KW - invasion KW - carcinoma cells KW - Rac KW - ROCK Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52894 ER - TY - THES A1 - Daryab, Neda T1 - Plastizität der Tumorinvasion: Zelluläre und molekulare Mechanismen der Beta1-Integrin unabhängigen Migration von Melanomzellen und murinen embryonalen Fibroblasten T1 - Plasticity of the Tumor invasion: cellular and molecular mechanisms of β1 Integrin independent migration of melanom cells und murine embryonic fibroblasts N2 - Die Migration von Tumorzellen im Bindegewebe erfordert adhäsive Zell-Matrix-Interaktionen, die durch Integrine und andere Adhäsionsmoleküle auf der Zelloberfläche vermittelt werden. In 3DKollagenmatrices benötigen hochinvasive MV3-Melanomzellen überwiegend α2β1-Integrine zur Elongation, Adhäsion an den Kollagenfasern und zur Faserbündelung, sowie zur Kraftgenerierung und Migration. Wir haben untersucht, ob die Migration von Tumorzellen in 3D-Kollagenmatrices vollständig durch die Blockade der Integrinfunktion inhibierbar ist, oder ob es kompensatorische Mechanismen gibt, die zur Migration beitragen. Die β1-Integrinfunktion wurde durch verschiedene Methoden reduziert: a) durchflusszytometrische Sortierung der Zellen in Subgruppen mit niedriger und hoher β1-Integrin-Oberflächenexpression; b) Adhäsionsblockade mit monoklonalem anti β1-Antikörper 4B4 oder Rhodocetin, einem selektiven α2β1-Integrininantagonist; und c) Expression von dominant-negativen Peptiden zur Blockade der Funktion der β1-Integrin-zytoplasmatischen Domäne. Alle β1-Integrin-Interferenzstrategien induzierten einen Übergang der konstitutiv vorhandenen mesenchymalen Migration in einen neuen, amöboiden Migrationstyp (Mesenchymal-Amoeboid Transition, MAT), ähnlich der Migrationsweise von Monozyten oder Lymphozyten. Der Übergang zu amöboider Migration ging einher mit dem Verlust der zellvermittelten Kollagenkontraktion und -reorganisation. Subtotale Inhibition der Integrinfunktion (ca. 50%) durch Antikörper 4B4 ergab eine schnelle (0,3-0,4 >m/min) amöboide Migration, während 90-95%ige Absättigung des β1-Integrin- Epitops zu langsamer amöboider Migration (0,03-0,2 >m/min) führte. Induzierte amöboide Migration verursachte eine gleichmäßige Verteilung der β1-Integrine auf der Zelloberfläche, ein diffuses kortikales Aktin-Zytoskelett, und war mit einer ausgeprägten Formanpassung der Zelle an die Matrixstrukturen verbunden, die von kleinen Filopodien oder Oberflächenblebs getragen wurde. Die Befunde wurden für β1-Integrin-defiziente murine embryonale Fibroblasten (MEF) und murine embryonale Stammzellen (GD25) bestätigt. β1-Integrin-defiziente Fibroblasten zeigten eine schnelle, und GD25 ES-Zellen eine langsame amöboide Migration. Somit erfolgte die amöboide Migration ohne β1-Integrin-vermittelte Zell-Matrix-Interaktionen. Weil keine vollständige Immobilisierung der Zellen erzielt wurde, haben wir alternative Mechanismen von Zell-Matrix-Interaktionen untersucht, die zur Restaktivität der amöboiden Migration beitragen. Als potentielle Kandidaten wurden αv-Integrine, die an denaturiertes Kollagen binden, und Oberflächen-Glycokonjugate getestet. Es wurden keine promigratorischen Funktionen RGDabhängiger Integrine (αv oder β3) mittels zyklischer Arginin-Glycin-Asparaginsäure (cRGD)beobachtet. Um herauszufinden, welche Rolle die Oberfächen-Glycokalyx bei der Zellmigration spielen, wurden verschiedene Methoden angewandt: a) Die an die Proteine gebundenen Glycokonjugate wurden mit Hilfe von N- und O-Glycosidasen von der Oberfläche der lebenden Zellen enzymatisch abgespalten; b) um die Sulfatierung der Glycokonjugate zu verhindern, wurden die Zellen in sulfatfreiem Medium kultiviert. Durch beide Methoden wurde die Bindung von Rutheniumrot an die Zelloberfläche(Glycokalyx) um 60% bzw. die von Heparansulfat der Zelloberfläche um 60% bis 100% reduziert. Nicht die Desulfatierung führte zur Ablösung der Zellen vom Kulturflaschenboden, sondern allein dieBehandlung mit N- und O-Glycosidasen. Die gleichzeitige Behandlung von MV3 Melanomzellen mit N-, O- Glycosidase mit Inhibition der β1-, αvβ3-Integrine führten zur Abrundung der Mehrzahl der Zellen, gefolgt von oszillierender Immobilität (‚Running on the spot’) bzw. sehr langsamer Restmigration (<0,1 >m/min). Dagegen war die Migration der MV3-Zellen nach Kultivierung in sulfatfreiem Medium unverändert. Eine ähnliche Hemmung der Migration erfolgte in β1-/- MEFs nach Glycanverdau. Folglich sind β1-Integrine essentiell für fokalisierte Zell-Matrix-Interaktionen, für die mesenchymale Migration und den Matrixumbau, während amöboide Migration ohne Beteiligung von β1-Integrinen erfolgt, aber durch niedrigaffine, diffuse Zell-Matrix-Interaktionen von Oberflächenglycanen vermittelt wird. Somit ist die Glycokalyx ein alternatives Adhäsionssystem für die integrinunabhängige Zellmigration. N2 - Cancer cell migration through connective tissue requires adhesive cell matrix interactions mediated by surface integrins and other adhesion molecules. We investigated whether invasive migration in 3D ECM environments is fully abrogated by blocking integrin functions and whether compensation mechanisms might support migratory rescue. Within 3D collagen matrices, highly invasive MV3 melanoma cells preferentially utilize α2β1 integrins for elongation, adhesion to collagen fibers, fiber bundling, force generation, and migration. β1 integrin function was reduced by a) flow cytometric sorting for subsets expressing low integrin levels; b) blocking anti β1 mAb 4B4 at different concentrations or using rhodocetin, a selective α2β1 integrin inhibitor; and c) expression of dominantnegative peptides to compete with the β1 integrin cytoplasmatic domain function. For migration in 3D collagen lattices, all β1 integrin-lowering strategies uniformly resulted in conversion from constitutive mesenchymal migration to a novel amoeboid type of migration resembling monocytes or lymphocytes. The conversion to amoeboid movement was accompanied by abrogation of cell-mediated collagen contraction and reorganisation. Inhibition of integrin function by blocking antibody by approximately 50% led to fast (0.3-0.4 >m/min) but near-100% amoeboid migration, whereas 90 to 95% epitope saturation let to slow (0.03-0.2 >m/min) amoeboid migration. Induced amoeboid migration was accompanied by cell shape changes supported by small filopodia and/or surface blebs, uniform distribution of surface integrins and the lack of focalization of the cytoskeleton. Results were corroborated in β1-deficient murine embryonic fibroblasts (MEFs)and murine embryonic stem cells (GD25). β1-/- MEFs displayed a fast, and GD25 ES cells a slow amoeboid migration. Thus, migration could be sustained without β1 integrin-mediated cell-matrix interactions. Because no complete immobilization was achieved, alternative cell-matrix interaction mechanisms underlying residual amoeboid migration were investigated. As candidates, αv integrins binding denatured collagen and the surface glycoconjugates were tested, yet no promigratory role of RGD dependent integrins (αv or β3) was found using cyclic tripeptide arginine-glycine-aspartic acid (cRGD). To investigate the role of surface glycoconjugates, we a) enzymatically removed protein-bound glycoconjugates of the living cells using N-and O-glycosidases and b) prevented sulphation of glycoconjugates by culturing cells in sulphate-free medium. Both methods reduced surface Ruthenium red binding by 60% and heparan sulphate surface levels by 60 and 100% respectively, however only N- and O-glycosidase treatment but not desulphation caused cell detachment from the culture flask. Simultaneous treatment of MV3 melanoma cells with N- and O-glycosidase and inhibition of β1, αvβ3 integrins resulted in complete loss of polarity, cell rounding of most cells and oscillating immobility (“running on the spot”), or extremely slow residual migration below 0.1 >m/min. Sulphate-depleted medium alone did not yield any migration reduction in MV3 cells. Similar inhibition after N- und O-glycosidase treatment was obtained in β1-/- MEFs. In conclusion, β1 integrins are sufficient to maintain focalized cell-matrix interactions, mesenchymal migration, and matrix remodelling the abrogation of with supports transition to amoeboid migration mediated by low affinity interactions via surface glycans but not sulphated residues. Thus, the surface glycocalyx provides an alternative adhesion system sustaining integrin-independent amoeboid migration, which may approximate the minimal requirements of cell migration in an interstitial 3D tissue. KW - Melanomzelle KW - Tumorzelle KW - Zellmigration KW - Integrine KW - Integrin KW - Migration KW - integrin KW - migration KW - melanoma cells Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37343 ER - TY - THES A1 - Wolf, Katarina T1 - Migration of tumor cells and leukocytes in extracellular matrix : proteolytic and nonproteolytic strategies for overcoming tissue barriers T1 - Migration von Tumorzellen und Leukozyten in extrazellulärer Matrix : proteolytische und nicht-proteolytische Strategien zur Überwindung von Gewebsbarrieren N2 - The extracellular matrix within connective tissues represents a structural scaffold as well as a barrier for motile cells, such as invading tumor cells or passenger leukocytes. It remains unclear how different cell types utilize matrix-degrading enzymes for proteolytic migration strategies and, on the other hand, non-proteolytic strategies to overcome 3D fibrillar matrix networks. To monitor cell migration, a 3D collagen model in vitro or the mouse dermis in vivo were used, in combination with time-lapse video-, confocal- or intravital multiphoton-microscopy, and computer-assisted cell tracking. Expression of proteases, including several MMPs, ADAMs, serine proteases and cathepsins, was shown by flow cytometry, Western blot, zymography, and RT-PCR. Protease activity by migrating HT-1080 fibrosarcoma cells resulting in collagenolysis in situ and generation of tube-like matrix defects was detected by three newly developed techniques:(i) quantitative FITC-release from FITC-labelled collagen, (ii) structural alteration of the pyhsical matrix structure (macroscopically and microscopically), and (iii) the visualization of focal in situ cleavage of individual collagen fibers. The results show that highly invasive ollagenolytic cells utilized a spindle-shaped "mesenchymal" migration strategy, which involved beta1 integrindependent interaction with fibers, coclustering of beta1 integrins and matrix metalloproteinases (MMPs) at fiber bundling sites, and the proteolytic generation of a tube-like matrix-defect by MMPs and additional proteases. In contrast to tumor cells, activated T cells migrated through the collagen fiber network by flexible "amoeboid" crawling including a roundish, elliptoid shape and morphological adaptation along collagen fibers, which was independent of collagenase function and fiber degradation. Abrogation of collagenolysis in tumor cells was achieved by a cocktail of broad-spectrum protease inhibitors at non-toxic conditions blocking collagenolysis by up to 95%. While in T cells protease inhibition induced neither morphodynamic changes nor reduced migration rates, in tumor cells a time-dependent conversion was obtained from proteolytic mesenchymal to non-proteolytic amoeboid migration in collagen lattices in vitro as well as the mouse dermis in vivo monitored by intravital microscopy. Tumor cells vigorously squeezed through matrix gaps and formed constriction rings in regions of narrow space, while the matrix structure remained intact. MMPs were excluded from fiber binding sites and beta1 integrin distribution was non-clustered linear. Besides for fibrosarcoma cells, this mesenchymal-toameboid transition (MAT) was confirmed for epithelial MDA-MB-231 breast carcinoma cells. In conclusion, cells of different origin exhibit significant diversity as well as plasticity of protease function in migration. In tumor cells, MAT could respresent a functionally important cellular and molecular escape pathway in tumor invasion and migration. N2 - Die extrazelluläre Matrix (EZM) des Bindegewebes stellt sowohl ein strukturelles Gerüst als auch eine Barriere für migrierende Zellen dar, wie z.B. invadierende Tumorzellen oder zirkulierende Leukozyten. Es ist bisher unklar, wie diese verschiedenen Zelltypen matrix-degradierende Enzyme für eine proteolytische Migrationsstrategie benutzen bzw. ob und wie sie ohne deren Hilfe durch das Gewebe gelangen. Um Zellmigration in EZM zu untersuchen, wurde ein dreidimensionales Kollagenmodell in vitro wie auch Maus-Dermis in vivo eingesetzt und Zellmigration mittels Zeitraffer-Video-, Konfokal- und Multiphoton-Mikroskopie sowie computer-gestützter Zelltracking-Analyse dargestellt. Expression von Proteasen verschiedener Klassen, wie der MMPs, ADAMs, Serinproteasen und Cathepsine, wurde mittels Durchfluss-Zytometrie, Western blot, Zymographie oder RT-PCR detektiert. Gegen Kollagen gerichtete zelluläre Protease-Aktivität wurde mit Hilfe drei neu entwickelter Techniken dargestellt: (i)quantitative Messung von löslichem FITC aus FITC-markiertem fibrillären Kollagen, (ii) mikro-und makroskopische Reorganisation der physikalischen Matrix-Struktur, und (iii) Visualisierung der Topologie fokaler Degradation von Matrixfasern. Die Ergebnisse zeigen, dass hochinvasive spindelförmige HT-1080 Fibrosarkomzellen eine sogenannte "mesenchymale" Migrationsstrategie mit folgenden Charakteristika entwickelten: (i) beta1 Integrin-abhängige Interaktion mit Kollagenfasern, (ii) das "Co-clustering" von beta1 Integrinen und Matrix-Metalloproteinasen an Faserzugstellen und (iii) eine röhrenförmige, durch Proteasen verursachte Matrixdefektbildung. Im Gegensatz zu proteolytischen Tumorzellen migrierten T-Zellen rundlich-elliptoid mittels flexibler Morphodynamik, ähnlich wie Amöben, durch das Kollagennetzwerk und orientierten sich entlang Kollagenfasern, wobei sie keine biochemisch und strukturell detektierbare Faserdegradation zeigten. Um Tumorzell-vermittelte Kollagenolyse zu hemmen, wurde ein Cocktail, bestehend aus Breitspektrum-Protease-Inhibitioren, etabliert, der die Kollagenolyse unter nicht-toxischen Bedingungen um bis zu 98% blockierte. Während in T-Zellen keine morphodynamischen Veränderungen detektiert wurden, entwickelten Tumorzellen eine Verschiebung von proteolytisch mesenchymaler zu unverminderter nicht-proteolytisch amöboider Migration (mesenchymale-amöboide Transition - MAT) aus, sowohl in Kollagenmatrices in vitro als auch in Maus-Dermis in vivo, dargestellt mittels Intravital-Multiphoton-Mikroskopie. Die Tumorzellen "quetschten" sich dabei durch Lücken in der Matrix und bildeten sogenannte Konstriktionsringe aus, während die Matrixstruktur intakt blieb. MMPs lokalisierten nicht mehr an Faser-Kontakstellen auf der Zelloberfläche, und beta1 Integrine lagen nicht mehr geclustert vor. Neben HT-1080 Fibrosarkomzellen wurde MAT auch für MDA-MB-231 Brustkrebszellen epithelialer Herkunft nach Protease-Blockade detektiert. Somit entwickeln migrierende Zellen verschiedener Herkunft eine signifikante Diversität wie auch Plastizität bei der Migration durch EZM aus, resultierend aus der Funktionalität von Matrix-Proteasen. In Tumorzellen könnte MAT einen funktionell wichtigen zellulären und molekularen Anpassungsmechanismus für die Tumorinvasion und -migration darstellen. KW - Zellmigration KW - Grundsubstanz KW - Tumorzelle KW - Leukozyt KW - Zellmigration KW - Invasion KW - Karzinomzellen KW - Leukozyten KW - Matrixproteasen KW - Kollagenasen KW - Proteaseinhibitoren KW - cell migration KW - invasion KW - carcinoma cells KW - leukozytes KW - matrix proteases KW - collagenases KW - protease inhibitors Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5670 ER -