TY - JOUR A1 - Neuchel, Christine A1 - Fürst, Daniel A1 - Niederwieser, Dietger A1 - Bunjes, Donald A1 - Tsamadou, Chrysanthi A1 - Wulf, Gerald A1 - Pfreundschuh, Michael A1 - Wagner, Eva A1 - Stuhler, Gernot A1 - Einsele, Hermann A1 - Schrezenmeier, Hubert A1 - Mytilineos, Joannis T1 - Impact of donor activating KIR genes on HSCT outcome in C1-ligand negative myeloid disease patients transplanted with unrelated donors - a retrospective study JF - PLOS One N2 - Natural Killer cells (NK) are lymphocytes with the potential to recognize and lyse cells which escaped T-cell mediated lysis due to their aberrant HLA expression profiles. Killer cell immunoglobulin-like receptors (KIR) influence NK-cell activity by mediation of activating or inhibitory signals upon interaction with HLA-C (C1, C2) ligands. Therefore, absence of ligands for donor inhibitory KIRs following hematopoietic stem cell transplantation (HSCT) may have an influence on its outcome. Previous studies showed that C1 negative patients have a decreased HSCT outcome. Our study, based on a cohort of 200 C1-negative patients, confirmed these findings for the endpoints: overall survival (OS: HR = 1.41, CI = 1.14–1.74, p = 0.0012), disease free survival (DFS: HR = 1.27, CI = 1.05–1.53, p = 0.015), treatment related mortality (TRM: HR = 1.41, CI = 1.01–1.96, p = 0.04), and relapse incidence (RI: HR = 1.33, CI = 1.01–1.75, p = 0.04) all being inferior when compared to C1-positive patients (n = 1246). Subsequent analysis showed that these findings applied for patients with myeloid malignancies but not for patients with lymphoproliferative diseases (OS: myeloid: HR = 1.51, CI = 1.15–1.99, p = 0.003; lymphoblastic: HR = 1.26, CI = 0.91–1.75, p = 0.16; DFS: myeloid: HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21; RI: myeloid: HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21). Interestingly, within the C1-negative patient group, transplantation with KIR2DS2 resulted in better OS (9/10 matched: HR = 0.24, CI = 0.08–0.67, p = 0.007) as well as DFS (9/10 matched: HR = 0,26, CI = 0.11–0.60, p = 0.002), and transplantation with KIR2DS1 positive donors was associated with a decreased RI (HR = 0.30, CI = 0.13–0.69, p = 0.005). TRM was increased when the donor was positive for KIR2DS1 (HR = 2.61, CI = 1.26–5.41, p = 0.001). Our findings suggest that inclusion of KIR2DS1/2/5 and KIR3DS1-genotyping in the unrelated donor search algorithm of C1-ligand negative patients with myeloid malignancies may prove to be of clinical relevance. KW - Hematopoietic stem cell transplantation KW - Cancer risk factors KW - Multivariate analysis KW - Stem cell transplantation KW - T-cells KW - Bone marrow transplantation KW - NK-cells KW - Immune receptor signaling KW - Killer cell immunoglobulin-like receptors KW - Acute myeloid leukemia KW - Acute lymphoblastic leukemia KW - Chronic lymphoblastic leukemia KW - Chronic myeloid leukemia Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180995 VL - 12 IS - 1 ER - TY - JOUR A1 - Beilhack, Andreas A1 - Chopra, Martin A1 - Kraus, Sabrina A1 - Schwinn, Stefanie A1 - Ritz, Miriam A1 - Mattenheimer, Katharina A1 - Mottok, Anja A1 - Rosenwald, Andreas A1 - Einsele, Hermann T1 - Non-Invasive Bioluminescence Imaging to Monitor the Immunological Control of a Plasmablastic Lymphoma-Like B Cell Neoplasia after Hematopoietic Cell Transplantation N2 - To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies. KW - B cells KW - T cells KW - Bioluminescence imaging KW - Bone marrow cells KW - Bone marrow transplantation KW - Cancer treatment KW - Spleen KW - Lymphomas Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111341 ER -