TY - JOUR A1 - Barlinn, J. A1 - Winzer, S. A1 - Worthmann, H. A1 - Urbanek, C. A1 - Häusler, K. G. A1 - Günther, A. A1 - Erdur, H. A1 - Görtler, M. A1 - Busetto, L. A1 - Wojciechowski, C. A1 - Schmitt, J. A1 - Shah, Y. A1 - Büchele, B. A1 - Sokolowski, P. A1 - Kraya, T. A1 - Merkelbach, S. A1 - Rosengarten, B. A1 - Stangenberg-Gliss, K. A1 - Weber, J. A1 - Schlachetzki, F. A1 - Abu-Mugheisib, M. A1 - Petersen, M. A1 - Schwartz, A. A1 - Palm, F. A1 - Jowaed, A. A1 - Volbers, B. A1 - Zickler, P. A1 - Remi, J. A1 - Bardutzky, J. A1 - Bösel, J. A1 - Audebert, H. J. A1 - Hubert, G. J. A1 - Gumbinger, C. T1 - Telemedizin in der Schlaganfallversorgung – versorgungsrelevant für Deutschland T1 - Telemedicine in stroke—pertinent to stroke care in Germany JF - Der Nervenarzt N2 - Hintergrund und Ziel Telemedizinische Schlaganfall-Netzwerke tragen dazu bei, die Schlaganfallversorgung und insbesondere den Zugang zu zeitkritischen Schlaganfalltherapien in vorrangig strukturschwachen, ländlichen Regionen zu gewährleisten. Ziel ist eine Darstellung der Nutzungsfrequenz und regionalen Verteilung dieser Versorgungsstruktur. Methoden Die Kommission „Telemedizinische Schlaganfallversorgung“ der Deutschen Schlaganfall-Gesellschaft führte eine Umfragestudie in allen Schlaganfall-Netzwerken durch. Ergebnisse In Deutschland sind 22 telemedizinische Schlaganfall-Netzwerke aktiv, welche insgesamt 43 Zentren (pro Netzwerk: Median 1,5, Interquartilsabstand [IQA] 1–3) sowie 225 Kooperationskliniken (pro Netzwerk: Median 9, IQA 4–17) umfassen und an einem unmittelbaren Zugang zur Schlaganfallversorgung für 48 Mio. Menschen teilhaben. Im Jahr 2018 wurden 38.211 Telekonsile (pro Netzwerk: Median 1340, IQA 319–2758) durchgeführt. Die Thrombolyserate betrug 14,1 % (95 %-Konfidenzintervall 13,6–14,7 %), eine Verlegung zur Thrombektomie wurde bei 7,9 % (95 %-Konfidenzintervall 7,5–8,4 %) der ischämischen Schlaganfallpatienten initiiert. Das Finanzierungssystem ist uneinheitlich mit einem Vergütungssystem für die Zentrumsleistungen in nur drei Bundesländern. Diskussion Etwa jeder 10. Schlaganfallpatient wird telemedizinisch behandelt. Die telemedizinischen Schlaganfall-Netzwerke erreichen vergleichbar hohe Lyseraten und Verlegungen zur Thrombektomie wie neurologische Stroke-Units und tragen zur Sicherstellung einer flächendeckenden Schlaganfallversorgung bei. Eine netzwerkübergreifende Sicherstellung der Finanzierung und einheitliche Erhebung von Qualitätssicherungsdaten haben das Potenzial diese Versorgungsstruktur zukünftig weiter zu stärken. N2 - Background and objective Telemedical stroke networks improve stroke care and provide access to time-dependent acute stroke treatment in predominantly rural regions. The aim is a presentation of data on its utility and regional distribution. Methods The working group on telemedical stroke care of the German Stroke Society performed a survey study among all telestroke networks. Results Currently, 22 telemedical stroke networks including 43 centers (per network: median 1.5, interquartile range, IQR, 1–3) as well as 225 cooperating hospitals (per network: median 9, IQR 4–17) operate in Germany and contribute to acute stroke care delivery to 48 million people. In 2018, 38,211 teleconsultations (per network: median 1340, IQR 319–2758) were performed. The thrombolysis rate was 14.1% (95% confidence interval 13.6–14.7%) and transfer for thrombectomy was initiated in 7.9% (95% confidence interval 7.5–8.4%) of ischemic stroke patients. Financial reimbursement differs regionally with compensation for telemedical stroke care in only three federal states. Conclusion Telemedical stroke care is utilized in about 1 out of 10 stroke patients in Germany. Telemedical stroke networks achieve similar rates of thrombolysis and transfer for thrombectomy compared with neurological stroke units and contribute to stroke care in rural regions. Standardization of network structures, financial assurance and uniform quality measurements may further strengthen the importance of telestroke networks in the future. KW - Schlaganfall KW - Stroke-Unit KW - Telemedizin KW - Schlaganfall-Netzwerk KW - Umfragestudie KW - stroke KW - stroke unit KW - telemedicine KW - stroke networks KW - survey Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-307752 SN - 0028-2804 SN - 1433-0407 VL - 92 IS - 6 ER - TY - JOUR A1 - Kraft, P. A1 - Schwarz, T. A1 - Pochet, L. A1 - Stoll, G. A1 - Kleinschnitz, Christoph T1 - COU254, a specific 3-carboxamide-coumarin inhibitor of coagulation factor XII, does not protect mice from acute ischemic stroke N2 - Background: Anticoagulation is an important means to prevent from acute ischemic stroke but is associated with a significant risk of severe hemorrhages. Previous studies have shown that blood coagulation factor XII (FXII)- deficient mice are protected from pathological thrombus formation during cerebral ischemia without bearing an increased bleeding tendency. Hence, pharmacological blockade of FXII might be a promising and safe approach to prevent acute ischemic stroke and possibly other thromboembolic disorders but pharmacological inhibitors selective over FXII are still lacking. In the present study we investigated the efficacy of COU254, a novel nonpeptidic 3-carboxamide-coumarin that selectively blocks FXII activity, on stroke development and post stroke functional outcome in mice. Methods: C57Bl/6 mice were treated with COU254 (40 mg/kg i.p.) or vehicle and subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 h infarct volumes were determined from 2,3,5-Triphenyltetrazoliumchloride(TTC)-stained brain sections and functional scores were assessed. Hematoxylin and eosin (H&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Results: Infarct volumes and functional outcomes on day 1 after tMCAO did not significantly differ between COU254 pre-treated mice or untreated controls (p > 0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. COU254 treatment did not prevent intracerebral fibrin(ogen) formation. Conclusions: COU254 at the given concentration of 40 mg/kg failed to demonstrate efficacy in acute ischemic stroke in this preliminary study. Further preclinical evaluation of 3-carboxamide-coumarins is needed before the antithrombotic potential of this novel class of FXII inhibitors can be finally judged. KW - Schlaganfall KW - Maus KW - COU254 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68103 ER - TY - JOUR A1 - Kleinschnitz, Christoph A1 - Grund, Henrike A1 - Wingler, Kirstin A1 - Armitage, Melanie E. A1 - Jones, Emma A1 - Mittal, Manish A1 - Barit, David A1 - Schwarz, Tobias A1 - Geis, Christian A1 - Kraft, Peter A1 - Barthel, Konstanze A1 - Schuhmann, Michael K. A1 - Herrmann, Alexander M. A1 - Meuth, Sven G. A1 - Stoll, Guido A1 - Meurer, Sabine A1 - Schrewe, Anja A1 - Becker, Lore A1 - Gailus-Durner, Valerie A1 - Fuchs, Helmut A1 - Klopstock, Thomas A1 - de Angelis, Martin Hrabe A1 - Jandeleit-Dahm, Karin A1 - Shah, Ajay M. A1 - Weissmann, Norbert A1 - Schmidt, Harald H. H. W. T1 - Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration N2 - Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. KW - Schlaganfall Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68416 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Burek, Malgorzata A1 - Djuzenova, Cholpon C A1 - Thal, Serge C A1 - Koepsell, Hermann A1 - Roewer, Norbert A1 - Förster, Carola Y T1 - Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells N2 - During stroke the blood–brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6 h OGD and was still higher (210%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells. KW - Blut-Hirn-Schranke KW - Schlaganfall KW - Glucosetransportproteine KW - NMDA-Antagonist KW - NMDA-Rezeptor KW - blood-brain barrier KW - MK801 KW - NMDAR KW - stroke KW - glut1 KW - sglt1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67241 ER -