TY - JOUR A1 - Brodehl, Andreas A1 - Meshkov, Alexey A1 - Myasnikov, Roman A1 - Kiseleva, Anna A1 - Kulikova, Olga A1 - Klauke, Bärbel A1 - Sotnikova, Evgeniia A1 - Stanasiuk, Caroline A1 - Divashuk, Mikhail A1 - Pohl, Greta Marie A1 - Kudryavtseva, Maria A1 - Klingel, Karin A1 - Gerull, Brenda A1 - Zharikova, Anastasia A1 - Gummert, Jan A1 - Koretskiy, Sergey A1 - Schubert, Stephan A1 - Mershina, Elena A1 - Gärtner, Anna A1 - Pilus, Polina A1 - Laser, Kai Thorsten A1 - Sinitsyn, Valentin A1 - Boytsov, Sergey A1 - Drapkina, Oxana A1 - Milting, Hendrik T1 - Hemi- and homozygous loss-of-function mutations in DSG2 (desmoglein-2) cause recessive arrhythmogenic cardiomyopathy with an early onset JF - International Journal of Molecular Sciences N2 - About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2–c.378+1G>T) in the first patient and a nonsense mutation (DSG2–p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases. KW - desmoglein-2 KW - desmocollin-2 KW - DSG2 KW - DSC2 KW - ARVC KW - ACM KW - LVNC KW - cardiomyopathy KW - desmosomes KW - desmin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285279 SN - 1422-0067 VL - 22 IS - 7 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy JF - Current Heart Failure Reports N2 - Purpose of Review Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. Recent Findings This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Summary Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine. KW - dilated cardiomyopathy KW - arrhythmogenic cardiomyopathy KW - junctions KW - sudden cardiac death KW - cardiovascular genetics KW - desmosomes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269916 SN - 1546-9549 VL - 18 IS - 6 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Genetic Animal Models for Arrhythmogenic Cardiomyopathy JF - Frontiers in Physiology N2 - Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell–cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy. KW - arrhythmogenic cardiomyopathy KW - desmosomes KW - animal models of human disease KW - sudden death KW - genetics KW - mouse KW - zebrafish Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206903 SN - 1664-042X VL - 11 IS - 264 ER -