TY - JOUR A1 - Galimberti, Daniela A1 - Dell'Osso, Bernardo A1 - Fenoglio, Chiara A1 - Villa, Chiara A1 - Cortini, Francesca A1 - Serpente, Maria A1 - Kittel-Schneider, Sarah A1 - Weigl, Johannes A1 - Neuner, Maria A1 - Volkert, Juliane A1 - Leonhard, C. A1 - Olmes, David G. A1 - Kopf, Juliane A1 - Cantoni, Claudia A1 - Ridolfi, Elisa A1 - Palazzo, Carlotta A1 - Ghezzi, Laura A1 - Bresolin, Nereo A1 - Altamura, A.C. A1 - Scarpini, Elio A1 - Reif, Andreas T1 - Progranulin Gene Variability and Plasma Levels in Bipolar Disorder and Schizophrenia JF - PLoS One N2 - Basing on the assumption that frontotemporal lobar degeneration (FTLD), schizophrenia and bipolar disorder (BPD) might share common aetiological mechanisms, we analyzed genetic variation in the FTLD risk gene progranulin (GRN) in a German population of patients with schizophrenia (n=271) or BPD (n=237) as compared with 574 age-, gender-and ethnicity-matched controls. Furthermore, we measured plasma progranulin levels in 26 German BPD patients as well as in 61 Italian BPD patients and 29 matched controls. A significantly decreased allelic frequency of the minor versus the wild-type allele was observed for rs2879096 (23.2 versus 34.2%, P<0.001, OR: 0.63, 95% CI: 0.49-0.80), rs4792938 (30.7 versus 39.7%, P=0.005, OR: 0.70, 95% CI: 0.55-0.89) and rs5848 (30.3 versus 36.8, P=0.007, OR: 0.71, 95% CI: 0.56-0.91). Mean +/- SEM progranulin plasma levels were significantly decreased in BPD patients, either Germans or Italians, as compared with controls (89.69 +/- 3.97 and 116.14 +/- 5.80 ng/ml, respectively, versus 180.81 +/- 18.39 ng/ml P<0.001) and were not correlated with age. In conclusion, GRN variability decreases the risk to develop BPD and schizophrenia, and progranulin plasma levels are significantly lower in BPD patients than in controls. Nevertheless, a larger replication analysis would be needed to confirm these preliminary results. KW - people KW - frontotemporal lobar degeneration KW - genome-wide association KW - Alzheimers disease KW - risk genes KW - dementia KW - GRN KW - mutation KW - families KW - linkage Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131910 VL - 7 IS - 4 ER - TY - JOUR A1 - Farag, Heba Gamal A1 - Froehler, Sebastian A1 - Oexle, Konrad A1 - Ravindran, Ethiraj A1 - Schindler, Detlev A1 - Staab, Timo A1 - Huebner, Angela A1 - Kraemer, Nadine A1 - Chen, Wei A1 - Kaindl, Angela M. T1 - Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation JF - Orphanet Journal of Rare Diseases N2 - Background: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disease with severe microcephaly at birth due to a pronounced reduction in brain volume and intellectual disability. Biallelic mutations in the WD repeat-containing protein 62 gene WDR62 are the genetic cause of MCPH2. However, the exact underlying pathomechanism of MCPH2 remains to be clarified. Methods/results: We characterized the clinical, radiological, and cellular features that add to the human MCPH2 phenotype. Exome sequencing followed by Sanger sequencing in a German family with two affected daughters with primary microcephaly revealed in the index patient the compound heterozygous mutations c. 1313G>A (p.R438H) / c.2864-2867delACAG (p.D955Afs*112) of WDR62, the second of which is novel. Radiological examination displayed small frontal lobes, corpus callosum hypoplasia, simplified hippocampal gyration, and cerebellar hypoplasia. We investigated the cellular phenotype in patient-derived lymphoblastoid cells and compared it with that of healthy female controls. WDR62 expression in the patient's immortalized lymphocytes was deranged, and mitotic spindle defects as well as abnormal centrosomal protein localization were apparent. Conclusion: We propose that a disruption of centrosome integrity and/or spindle organization may play an important role in the development of microcephaly in MCPH2. KW - cell division KW - intellectual disability KW - missense mutations KW - protein KW - malformations KW - establishment KW - cytokinesis KW - genome KW - midbody KW - database KW - maintenance KW - families KW - microcephaly KW - WDR62 mutation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123505 SN - 1750-1172 VL - 8 IS - 178 ER -