TY - THES A1 - Schwedhelm, Kai Florian T1 - Optimierte Methoden der Magnetresonanz-Spektroskopie zur molekularen Charakterisierung neuartiger Wirkstoffe gegen Infektionskrankheiten T1 - Optimized methods in nuclear magnetic resonance spectroscopy for charakterization of novell agents against infectious diseases N2 - In diesem Projekt wurde die Wechselwirkung des PPIase-Enzyms MIP mit Kollagen IV unter- sucht. MIP ist maßgeblich für die Infektiösität von Legionella pneumophila verantwortlich, einem Bakterium, welches im Menschen schwere Lungenentzündungen auslösen kann. Das Enzym zeigt eine hohe Affinität gegenüber einem kurzen Peptidsequenzabschnitt in Kolla- gen IV (genannt „P290”), welches unter anderem im Epithel der Lunge zu finden ist. Die Interaktionsoberfläche der Moleküle wurde durch den Einsatz eines paramagnetischen Spin-Labels in NMR-Experimenten charakterisiert. Mit Hilfe von Docking und Moleküldy- namiksimulationen konnte aus diesen Daten ein Modell des MIP-Kollagen-Komplexes be- rechnet werden. Es wurde gezeigt, dass MIP als Dimer in der Lage ist, nach Kollagen IV zu „greifen” und sich dann an das Molekül heranzuziehen. Wahrscheinlich dient dieser Mechanismus der Adhä- sion von L. pneumophila an die Wirtszelle. Neben der zuvor postulierten Destabilisierung von Kollagen IV durch MIP, welche hier nicht beobachtet wurde, könnte die Adhäsion ein wichtiger Faktor für die Virulenz von L. pneumophila sein. Weiterhin wurde die inhibitorische Wirkung des isolierten Peptids P290 auf die biologische PPIase-Aktivität von MIP untersucht. Durch NMR-Messungen und anschließenden Mole- küldynamiksimulationen konnte gezeigt werden, dass P290 sich stabil in die Bindungsta- sche von MIP einlagert und durch den Sequenzabschnitt -CYS130-PRO131---TRP134- das Enzym blockiert. Die übrigen Aminosäuren in P290 dienen der Stabilisierung des Kom- plexes und sorgen für die Selektivität von P290, welches, im Unterschied zu bekannten Wirkstoffen, das humane Homolog zu MIP nicht inhibiert. Die Vorhersagen der Simulatio- nen konnten durch ein Peptid Microarray und Messungen der enzymatischen Aktivität von MIP in PPIase-Assays bestätigt werden. Die Ergebnisse wurden zur Optimierung von P290 eingesetzt, indem die Peptidsequenz durch den Austausch zweier Aminosäuren verändert und das Molekül zu einem Ring geschlossen wurde. Die entstandene Struktur besitzt deut- lich verbesserte Bindungseigenschaften und könnte künftig als Basis für eine neue Klasse von Wirkstoffen gegen L. pneumophila dienen. In diesem Projekt wurde eine Methode zur Aufklärung der Molekülstruktur neuartiger Wirkstoffe gegen Malaria im Komplex mit ihrem paramagnetischen Zielmolekül etabliert und weiterentwickelt. Die Vorgehensweise leitet intermolekulare Distanzinformationen aus der sog. paramagnetischen Relaxation ab, einem Effekt, der den Einsatz klassischer Me- thoden zur Molekülstrukturaufklärung mittels NMR verhindert. Es werden drei Parameter durch NMR-Spektroskopie bestimmt: 1. die longitudinale Relaxationszeit der Wasserstoff- atome in Wirkstoffmolekül, 2. die effektive Korrelationszeit des Komplexes und 3. der Spin- Zustand des Eisenions im Zielmolekül. Mit Hilfe dieser Messmethode konnte die Komplexstruktur mehrerer bekannter Medika- mente gegen Malaria aufgeklärt werden. Weiterhin wurden zwei neue Klassen von Wirkstof- fen untersucht, die C,C-gekoppelten Naphthylisoquinolin-Alkaloide und die N,C-gekoppelte Naphthylisoquinolin-Alkaloide. In Übereinstimmung mit theoretischen Vorhersagen aus der Literatur lagern sich die Wirkstoffe stets um einen Winkel geneigt und in Richtung des Randes des Zielmoleküls verschoben an. Diese Konfiguration maximiert die attraktiven π- π-Wechselwirkungen zwischen den Molekülen. Aufgrund der gewonnenen Ergebnisse aus NMR, UV-Spektroskopie und Massenspektrome- trie konnte die Existenz eines bisher nicht bekannten Tetramer-Komplexes nachgewiesen werden, welcher eine wichtige Zwischenstufe in der Biokristallisation von Hämozoin durch die Malariaparasiten darstellen könnte, und Ansatzpunkte für den weiterhin nicht vollstän- dig bekannten Wirkmechanismus der meisten Antimalaria-Wirkstoffe liefert. Für die Naphthylisoquinolin-Alkaloide zeigte sich weiterhin, dass Wasser eine essenzielle Rolle in der Komplexbildung spielt. In Moleküldynamiksimulationen der N,C-gekoppelten Naphthylisoquinolin-Alkaloide konnte die Entstehung einer Wasserstoffbrücke zwischen Wirkstoff und Zielmolekül gezeigt werden, welche einen zusätzlichen Weg der Komplex- stabilisierung neben den bereits bekannten π-π-Wechselwirkungen aufzeigt. Die N,C-NIQs konnten erstmals auch bei einem pH-Wert von 5,6 beobachtet werden, einer chemischen Umgebung wie sie auch in-vivo in der Verdauungsvakuole des Malariaparasiten herrscht. N2 - Summary Even in the 21st century, infectious diseases remain the predominant cause of death world- wide. According to reports of the World Health Organisation, 2 million people die of Malaria every year, most of which are children under the age of five years. Respiratory infections claim an additional 3.9 million lives. Other infections are held responsible for a total of more than 10 million deaths. Global climate change leads to the occurrence of tropical in- fections well beyond their former endemic regions. Additional challenges arise due to the growing number of resistant organisms, rendering most known treatments ineffective. To achieve sustained success in the fight against infectious diseases, a detailed understan- ding on the mode of action of newly developed substances on a molecular level is essential. In this thesis, magnetic resonance spectroscopy is used as a tool for molecular structure determination. My results may offer incentives for the development of new agents against infectious diseases and their continuous optimization. 4.1 The MIP-collagen IV complex The scope of this project was to investigate the interaction between the PPIase enzyme MIP and the NC1 (non-collagenous 1) domain of collagen IV. The MIP (macrophage infectivity potentiator) protein is the major virulence factor of Legionella pneumophila, a bacterium causing severe lung infections in humans. MIP exhibits high affinity towards a short peptide sequence in collagen IV (“P290”). Amongst others, this type of collagen is found in the epithelial cells of the lung. In this work, the interface of interaction between P290 and MIP was mapped using a pa- ramagnetic spin label in combination with nuclear magnetic resonance spectroscopy expe- riments. Labeled P290 strongly enhances the relaxation rates of individual amino acids in MIP, which are in the immediate vicinity (within 1 nm) of the spin label. The enhancedrelaxation rates were detected through T2-sensitive HSQC experiments. Subsequently, re- sults were incorporated in docking and molecular dynamic (MD) simulations to compute a model of the MIP-collagen IV complex. Results show the MIP dimer “grabbing” collagen IV with both enzymatic domains and pul- ling the molecules closer together. We suggest that this molecular adhesion mechanism may play a key role in the invasion of host tissue by L. pneumophila. A possible destabilization of collagen IV through the enzymatic activity of MIP, as suggested previously by other groups, was not observed. Additionally, our co-operation partners were able to demonstrate that P290, as an indi- vidual peptide, inhibits the biological PPIase activity of MIP, while leaving human homo- logue enzymes untouched. My findings from NMR measurements and subsequent MD si- mulations showed that P290 occupies the MIP binding pocket via the amino acid sequence -CYS130-PRO131---TRP134-. This sequence element is stabilized via the attachment of the terminal residues of P290 to the surface of MIP, thereby enabling P290 to distinguish between MIP and human enzymes. Based on these results, we constructed optimized versions of P290 by ring closure and repla- cement of two amino acids. Our co-operation partners showed that the resulting structures exhibit improved binding properties on a peptide microarray and may provide the basis for a new class of inhibitors targeting Legionella pneumophila. 4.2 Structure elucidation of paramagnetic complexes for- med by novel antimalarial agents We used paramagnetic NMR spectroscopy to characterize the formation of complexes of several antimalarial compounds with their presumed target “heme”. A paramagnetic Fe(III) ion is located at the center of heme, which influences the longitudinal relaxation rates of nearby proton spins. This effect interferes with common strategies for NMR structure elucidation, but in this study was taken advantage of in a newly developed method to map intermolecular distances with high precision using NMR inversion recovery experiments at 9.4 T, 14.1 T, 17.6 T, and 18.8 T. This method was utilized to solve the molecular structure of known drugs against Mala- ria as well as two new classes of antimalarial agents (the C,C-coupled naphthylisoquinoline alkaloids and the N,C-coupled naphthylisoquinoline alkaloids) in complex with their target molecule: heme. In accordance with theoretical predictions from the literature, we sho- wed that the drug molecules align in a configuration maximizing attractive π-π stacking interactions between the molecules. In combination with findings from NMR, UV spectroscopy and mass spectrometry, we de- monstrated the formation of a previously unknown tetrameric complex. This complex may represent an important step in the mode of action of antimalarial drugs. Additionally, results from NMR measurements and molecular dynamics simulations provided insight into the important role of H2O for complex stabilization. We were able to demonstrate the formation of a so far undescribed hydrogen bond between drug and target. Furthermore, it was possible to investigate the N,C-coupled naphthylisoquinoline alkaloids at pH 5.6, which exactly matches the chemical environment in the food vacuole of the ma- larial parasite in-vivo. All these findings may contribute to a deeper understanding of the mode of action of new antimalarial agents. KW - NMR-Spektroskopie KW - Legionella pneumophila KW - Legionellen KW - Legionärskrankheit KW - Würzburg / Sonderforschungsbereich Erkennung KW - NMR KW - Malaria KW - Legionella KW - paramagnetic resonance KW - spin label Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38535 ER - TY - THES A1 - Balla, Dávid Zsolt T1 - Intermolecular zero-quantum coherence detection for in vivo MR spectroscopy T1 - In vivo MR Spektroskopie mittels intermolekularen Nullquantenkohärenzen N2 - Nuclear magnetic resonance has numerous applications for in vivo diagnostics. However, methods requiring homogeneous magnetic fields, particularly magnetic resonance spectroscopy (MRS) techniques, have limited applicability in regions near or on anatomical boundaries that cause strong inhomogeneities. In cases where the shim system can not or just partly correct for these inhomogeneities, methods based on intermolecular multiple quantum coherence (iMQC) detection can provide an alternative solution for in vivo MRS. This dissertation presented the development, validation and application potential of a novel MRS pulse sequence detecting intermolecular zero-quantum coherences (iZQC) with special emphasis on in vivo experiments. In addition, the detection limit and spectral behaviour of iZQC-MRS under modelled realistic conditions were systematically approached for the first time. Based on the original sequence used to detect two dimensional (2D) iZQC-spectra, dubbed HOMOGENIZED, methodological development led to increased sensitivity and water suppression, and decreased T2-relaxation effects through the application of a frequency selective 90° RF-pulse in place of a non selective beta-pulse. Best water suppression was achieved by placing a pair of selective refocusing units immediately prior to the acquisition window. The same placement was found to be optimal also for single voxel localization units based on slice selective spin echo refocusing. By voxel selection before the iZQC-MRS sequence, the chemical shift artefact could be avoided. However, this led to significant residual signal from outside the voxel. Analytical derivations of signal evolution for several sequences presented in this dissertation provide useful additions to the iZQC MRS theory. In vivo applications of the developed sequence provided high quality spectra in the central nervous system of the rat, the mouse brain and in subcutaneous xenograft tumor grown on the thigh of the mouse. In all these 2D spectra, the limiting factor of the resolution in the indirect dimension was the digital sampling rate, rather than inhomogeneous line broadening. Nevertheless, linewidths of the cross-peaks were similar or narrower than along the direct axis, where the sampling rate was about ten times higher. The first MR spectroscopic investigation of the rat spinal cord at 17.6 T was performed. Through its insensitivity to macroscopic field inhomogeneities, the localized iZQC method allowed for the selection of larger voxels than conventional methods and still provided the same spectral resolution. This property was used also in tumor tissue to propel the relative signal to noise (SNR) efficiency of the iZQC spectroscopy for the first time above the SNR efficiency of a conventional sequence. Future applications for fast metabolite count in large inhomogeneous organs, like a tumor, are thinkable. Extensive simulations and phantom experiments assessed the limit of iZQC cross-peak detection in presence of local field distortions. The order of maximum volume ratio between dipole source and voxel was found to be between 0.1 % and 1 %. It is an essential conclusion of this study that the dominant effect of microscopic to mesoscopic inhomogeneities on iZQC spectra under general in vivo conditions, like for voxels greater than (1 mm)³ and metabolite concentrations in the millimolar range, is a cross-peak intensity reduction and not line broadening. The iZQC method provided resolution enhancement in comparison to conventional MRS even in the presence of clustered paramagnetic microparticles. However, the vision of iZQC spectroscopy in green leafs or the lung epithelium has to be, unfortunately, abandoned, because cross-peaks can be observed until the volume of the separating medium is much larger than the volume of local dipole sources. Intermolecular zero-quantum coherence spectroscopy remains an exciting field in NMR research on living organisms. It provides access to the monitoring of relative metabolite concentration changes in the presence of microscopic iron particles, which raises realistic hopes for new applications in studies using stained stem cells. N2 - Magnetische Kernresonanz (NMR) hat viele diagnostische in vivo Anwendungen. Trotzdem können einige Methoden, wie die NMR-Spektroskopie (MRS), nur in Magnetfeldern mit hervorragender Homogenität angewendet werden. Das ist eine Voraussetzung, die in der Nähe von anatomischen Grenzregionen aufgrund der starken Suszeptibilitätsgradienten nicht erfüllt ist. NMR Forschungstomographen sind in der Regel mit zusätzlichen Shim-Spulen aufgerüstet, die Feldschwankungen kompensieren sollen. Wenn die durch ein Shim-System erreichte Homogenität immer noch nicht genügt, können alternative NMR-Methoden, wie etwa die Messung intermolekularer Mehrquantenkohärenzen (iMQC) die Lösung bereitstellen. Die hier vorgelegte Dissertation zeigt die Entwicklung und Validierung, sowie das Anwendungspotenzial einer neuen MRS-Pulssequenz, die intermolekulare Nullquantenkohärenzen (iZQC) detektiert und für in vivo Experimente besonders geeignet ist. Des Weiteren wurden Detektionsgrenze und spektrale Änderungen in iZQC-MRS unter simulierten realistischen Bedingungen zum ersten Mal analysiert. Ausgangspunkt der methodischen Entwicklung war die Originalsequenz für die Aufnahme zweidimensionaler iZQC-Spektren, genannt HOMOGENIZED. Die Verwendung eines frequenzselektiven 90° Pulses anstelle des beta–Pulses in HOMOGENIZED bewirkt eine Verbesserung in Sensitivität und in der Effizienz der Wasserunterdrückung, sowie eine Verminderung der T2-Relaxationseffekte. Die Wasserunterdrückung wurde durch Einfügung zweier wasserfrequenzselektiver Refokusierungspulse unmittelbar vor der Akquisition weiter optimiert. Dieselbe Position erwies sich als optimal für die „single voxel“ Lokalisierungseinheiten. Andererseits vermeidet die Durchführung der Lokalisation vor der iZQC-MRS Sequenz „chemical shift“ Artefakte auf Kosten der Lokalisierungseffizienz. Die zahlreichen analytischen Berechnungen im methodischen Teil dieser Doktorarbeit stellen wichtige Erweiterungen der iZQC MRS Theorie dar. In vivo Anwendungen der entwickelten Sequenz im zentralen Nervensystem der Ratte, im Gehirn der Maus, sowie im subkutanen Tumor am Oberschenkel der Maus, resultierten in hochwertigen Spektren. Limitierender Faktor für die spektrale Auflösung in der indirekten Dimension in diesen 2D Spektren war die digitale Akquisitionsrate und nicht der, für konventionelle MRS typische, inhomogene Linienverbreiterungseffekt. Trotz der zehnfachen Akquisitionsrate in der direkten Dimension waren die Cross-peaks in der indirekten Dimension immer schmaler. Im Rahmen dieser Doktorarbeit wurde die erste MR spektroskopische Studie im Rückenmark der Ratte bei 17.6 Tesla durchgeführt. Durch die Unempfindlichkeit gegenüber makroskopischen Feldinhomogenitäten war die Selektion größerer Voxel als mit konventionellen Techniken, ohne Verlust an spektraler Auflösung, möglich. Dies wurde auch im Tumorgewebe verwendet, um die relative Signal-zu-Rausch (SNR) Effizienz der neuen iZQC-Methode zum ersten Mal über die SNR-Effizienz einer konventionellen Technik zu treiben. Es besteht die Aussicht auf zukünftige Anwendungen für schnelle Metabolitendetektion in großen Organen und Tumoren. Die Detektionsgrenze der iZQC-Methoden in der Nähe von lokalen Dipolfeldern wurde mit aufwendigen Simulationen und Experimenten am Phantom abgeschätzt. Um einen Cross-peak zu detektieren darf der eigentliche Dipol nicht mehr als 0.1 % bis 1 % des Voxelvolums belegen. Eine wichtige Folgerung dieser Studie ist, dass unter üblichen in vivo Bedingungen, wie Voxel mit einer Größe von (1 mm)³ oder mehr und Metabolitenkonzentrationen im Millimolarbereich, mikroskopische und mesoskopische Inhomogenitäten vielmehr eine Abnahme der Cross-peak Intensität als eine Linienverbreiterung verursachen. Diese Folgerung wurde auch dadurch bestätigt, dass die iZQC-Sequenz sogar in der Gegenwart von gebündelten paramagnetischen Mikropartikeln hochwertige Spektren lieferte. Leider folgt daraus aber auch, dass die Vorstellung von iZQC-MRS in grünen Blättern oder im Epithel der Lunge verworfen werden muss. Intermolekulare Nullquantenkohärenzspektroskopie bleibt für zukünftige Entwicklungen und Anwendungen ein sehr interessanter Bereich der NMR-Forschung an lebenden Organismen. Sie ermöglicht die Beobachtung von relativen Metabolitkonzentrationen auch etwa in Proben die Eisenpartikeln enthalten. Dies weckt realistische Hoffnungen für neue MRS Studien auch bei Untersuchungen mit markierten Stammzellen. KW - NMR-Spektroskopie KW - in vivo MR-Spektroscopy KW - intermolecular zero-quantum coherence KW - distant dipolar field KW - resolution enhancement KW - HOMOGENIZED Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40282 ER -