TY - THES A1 - Zhou, Yang T1 - The Exploitation of Opsin-based Optogenetic Tools for Application in Higher Plants T1 - Die Nutzung von optogenetischen Werkzeugen auf Opsin-Basis für die Anwendung in höheren Pflanzen N2 - The discovery, heterologous expression, and characterization of channelrhodopsin-2 (ChR2) – a light-sensitive cation channel found in the green alga Chlamydomonas reinhardtii – led to the success of optogenetics as a powerful technology, first in neuroscience. ChR2 was employed to induce action potentials by blue light in genetically modified nerve cells. In optogenetics, exogenous photoreceptors are expressed in cells to manipulate cellular activity. These photoreceptors were in the beginning mainly microbial opsins. During nearly two decades, many microbial opsins and their mutants were explored for their application in neuroscience. Until now, however, the application of optogenetics to plant studies is limited to very few reports. Several optogenetic strategies for plant research were demonstrated, in which most attempts are based on non-opsin optogenetic tools. Opsins need retinal (vitamin A) as a cofactor to generate the functional protein, the rhodopsin. As most animals have eyes that contain animal rhodopsins, they also have the enzyme - a 15, 15'-Dioxygenase - for retinal production from food-supplied provitamin A (beta-carotene). However, higher plants lack a similar enzyme, making it difficult to express functional rhodopsins successfully in plants. But plant chloroplasts contain plenty of beta-carotene. I introduced a gene, coding for a 15, 15'-Dioxygenase with a chloroplast target peptide, to tobacco plants. This enzyme converts a molecule of β-carotene into two of all-trans-retinal. After expressing this enzyme in plants, the concentration of all-trans-retinal was increased greatly. The increased retinal concentration led to increased expression of several microbial opsins, tested in model higher plants. Unfortunately, most opsins were observed intracellularly and not in the plasma membrane. To improve their localization in the plasma membrane, some reported signal peptides were fused to the N- or C-terminal end of opsins. Finally, I helped to identify three microbial opsins -- GtACR1 (a light-gated anion channel), ChR2 (a light-gated cation channel), PPR (a light-gated proton pump) which express and work well in the plasma membrane of plants. The transgene plants were grown under red light to prevent activation of the expressed opsins. Upon illumination with blue or green light, the activation of these opsins then induced the expected change of the membrane potential, dramatically changing the phenotype of plants with activated rhodopsins. This study is the first which shows the potential of microbial opsins for optogenetic research in higher plants, using the ubq10 promoter for ubiquitous expression. I expect this to be just the beginning, as many different opsins and tissue-specific promoters for selective expression now can be tested for their usefulness. It is further to be expected that the here established method will help investigators to exploit more optogenetic tools and explore the secrets, kept in the plant kingdom. N2 - Die Entdeckung, heterologe Expression und Charakterisierung von Channelrhodopsin-2 (ChR2) - einem lichtempfindlichen Kationenkanal, der in der Grünalge Chlamydomonas reinhardtii vorkommt - führte zum Erfolg der Optogenetik als leistungsfähige Technologie, zunächst in den Neurowissenschaften. ChR2 wurde eingesetzt, um in genetisch veränderten Nervenzellen durch blaues Licht Aktionspotentiale zu induzieren. Bei der Optogenetik werden exogene Photorezeptoren in Zellen exprimiert, um die zelluläre Aktivität zu manipulieren. Diese Photorezeptoren waren anfangs hauptsächlich mikrobielle Opsine. Im Laufe von fast zwei Jahrzehnten wurden viele mikrobielle Opsine und ihre Mutanten für ihre Anwendung in den Neurowissenschaften erforscht. Bis jetzt ist die Anwendung der Optogenetik in der Pflanzenforschung jedoch auf sehr wenige Arbeiten beschränkt. Es wurden mehrere optogenetische Strategien für die Pflanzenforschung aufgezeigt, wobei die meisten Versuche auf optogenetischen Werkzeugen, die nicht Opsine sind, beruhen. Opsine benötigen Retinal (Vitamin A) als Kofaktor, um das funktionelle Protein, das Rhodopsin, zu generieren. Da die meisten Tiere Augen haben, die tierische Rhodopsine enthalten, verfügen sie auch über das Enzym - eine 15, 15'-Dioxygenase - zur Retinalproduktion aus mit der Nahrung zugeführtem Provitamin A (Beta-Carotin). Höheren Pflanzen fehlt jedoch ein ähnliches Enzym, was es schwierig macht, funktionale Rhodopsine erfolgreich in Pflanzen zu exprimieren. Aber die Chloroplasten der Pflanzen enthalten reichlich Beta-Carotin. Ich führte ein Gen, das für eine 15, 15'-Dioxygenase mit einem Chloroplasten-Zielpeptid kodiert, in Tabakpflanzen ein. Dieses Enzym wandelt ein Molekül β-Carotin in zwei Moleküle all-trans-Retinal um. Nach Expression dieses Enzyms in Pflanzen wurde die Konzentration von all-trans-Retinal stark erhöht. ... KW - optogenetics KW - opsins KW - higher plants Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236960 ER - TY - THES A1 - Yu-Strzelczyk, Jing T1 - Generation and Characterization of novel proteins for light-activated hyperpolarization of cell membranes T1 - Generierung und Charakterisierung neuartiger Proteine für Licht-aktivierte Hyperpolarisation von Zellmembranen N2 - The light-gated cation channel Channelrhodopsin-2 was discovered and characterized in 2003. Already in 2005/2006 five independent groups demonstrated that heterologous expression of Channelrhodopsin-2 is a highly useful and simply applicable method for depolarizing and thereby activating nerve cells. The application of Channelrhodopsin-2 revolutionized neuroscience research and the method was then called optogenetics. In recent years more and more light-sensitive proteins were successfully introduced as “optogenetic tools”, not only in neuroscience. Optogenetic tools for neuronal excitation are well developed with many different cation-conducting wildtype and mutated channelrhodopsins, whereas for inhibition of neurons in the beginning (2007) only hyperpolarizing ion pumps were available. The later discovered light-activated anion channels (anion channelrhodopsins) can be useful hyperpolarizers, but only at low cytoplasmic anion concentration. For this thesis, I optimized CsR, a proton-pumping rhodopsin from Coccomyxa subellipsoidea, which naturally shows a robust expression in Xenopus laevis oocytes and plant leaves. I improved the expression and therefore the photocurrent of CsR about two-fold by N-terminal modification to the improved version CsR2.0, without altering the proton pump function and the action spectrum. A light pulse hyperpolarised the mesophyll cells of CsR2.0-expressing transgenic tobacco plants (N. tabacum) by up to 20 mV from the resting membrane potential of -150 to -200 mV. The robust heterologous expression makes CsR2.0 a promising optogenetic tool for hyperpolarization in other organisms as well. A single R83H point-mutation converted CsR2.0 into a light-activated (passive) proton channel with a reversal potential close to the Nernst potential for intra-/extra-cellular H+ concentration. This light-gated proton channel is expected to become a further useful optogenetic tool, e.g. for analysis of pH-regulation in cells or the intercellular space. Ion pumps as optogenetic tools require high expression levels and high light intensity for efficient pump currents, whereas long-term illumination may cause unwanted heating effects. Although anion channelrhodopsins are effective hyperpolarizing tools in some cases, their effect on neuronal activity is dependent on the cytoplasmic chloride concentration which can vary among neurons. In nerve cells, increased conductance for potassium terminates the action potential and K+ conductance underlies the resting membrane potential in excitable cells. Therefore, several groups attempted to synthesize artificial light-gated potassium channels but 2 all of these published innovations showed serious drawbacks, ranging from poor expression over lacking reversibility to poor temporal precision. A highly potassium selective light-sensitive silencer of action potentials is needed. To achieve this, I engineered a light-activated potassium channel by the genetic fusion of a photoactivated adenylyl cyclase, bPAC, and a cAMP-gated potassium channel, SthK. Illumination activates bPAC to produce cAMP and the elevated cAMP level opens SthK. The slow diffusion and degradation of cAMP makes this construct a very light-sensitive, long-lasting inhibitor. I have successfully developed four variants with EC50 to cAMP ranging from 7 over 10, 21, to 29 μM. Together with the original fusion construct (EC50 to cAMP is 3 μm), there are five different light- (or cAMP-) sensitive potassium channels for researchersto choose, depending on their cell type and light intensity needs. N2 - Der lichtgesteuerte Kationenkanal Channelrhodopsin-2 wurde 2003 entdeckt und charakterisiert. Bereits 2005/2006 zeigten fünf unabhängige Gruppen, dass die heterologe Expression von Channelrhodopsin-2 eine sehr nützliche und einfach anwendbare Methode zur Depolarisation und damit Aktivierung von Nervenzellen ist. Die Anwendung von Channelrhodopsin-2 revolutionierte die neurowissenschaftliche Forschung und die Methode wurde dann Optogenetik genannt. In den letzten Jahren wurden immer mehr lichtempfindliche Proteine als „optogenetische Werkzeuge“ eingeführt, und nicht nur in den Neurowissenschaften erfolgreich angewandt. Optogenetische Werkzeuge zur neuronalen Anregung sind mit vielen verschiedenen Kationen-leitenden Wildtyp- und mutierten Channelrhodopsinen gut entwickelt, während für die Hemmung von Neuronen zu Beginn (2007) nur hyperpolarisierende Ionenpumpen zur Verfügung standen. Die später entdeckten lichtaktivierten Anionenkanäle (Anionenkanalrhodopsine) können nützliche Hyperpolarisatoren sein, jedoch nur bei niedriger zytoplasmatischer Anionenkonzentration. Für diese Arbeit habe ich CsR optimiert, ein Protonen pumpendes Rhodopsin aus Coccomyxa subellipsoidea, das von Natur aus eine robuste Expression in Oozyten von Xenopus laevis und in Pflanzenblättern zeigt. Ich habe die Expression und damit den Photostrom von CsR etwa um das Zweifache durch N-terminale Modifikation verbessert, ohne die Protonenpump-Funktion und das Aktionsspektrum bei der verbesserten Version von CsR2.0 zu verändern. Ein Lichtpuls hyperpolarisierte die Mesophyllzellen von CsR2.0-exprimierenden transgenen Tabakpflanzen (N. tabacum) um bis zu 20 mV gegenüber dem Ruhe-Membranpotential von -150 bis -200 mV. Die robuste heterologe Expression macht CsR2.0 zu einem vielversprechenden optogenetischen Werkzeug für die Hyperpolarisation auch in anderen Organismen. Eine einzelne R83H-Punktmutation wandelte CsR2.0 um in einen Licht-aktivierten (passiven) Protonenkanal mit einem Umkehrpotential nahe dem Nernst-Potential für intra-/extrazelluläre H+-Konzentration. Es wird erwartet, dass dieser Licht-gesteuerte Protonenkanal ein weiteres nützliches optogenetisches Werkzeug wird, z. zur Analyse der pH-Regulation in Zellen oder dem Interzellularraum. Ionenpumpen als optogenetische Werkzeuge erfordern hohe Expressionsraten und eine hohe Lichtintensität für effiziente Pumpströme, wobei eine Langzeitbeleuchtung unerwünschte Erwärmungseffekte verursachen kann. Obwohl Anionen-Channelrhodopsine in einigen Fällen wirksame hyperpolarisierende Werkzeuge sind, hängt ihre Wirkung auf die neuronale Aktivität von der zytoplasmatischen Chloridkonzentration ab, die zwischen den Neuronen variieren kann. In Nervenzellen beendet eine erhöhte Leitfähigkeit für Kalium das Aktionspotential und die K+-Leitfähigkeit liegt dem Ruhe-Membranpotential in erregbaren Zellen zugrunde. Daher versuchten mehrere Gruppen, künstliche lichtgesteuerte Kaliumkanäle zu synthetisieren, aber alle diese veröffentlichten Innovationen zeigten schwerwiegende Nachteile, die von schlechter Expression über fehlende Reversibilität bis hin zu geringer zeitlicher Präzision reichten. Ein hoch Kalium-selektiver Licht-empfindlicher Inhibitor der Aktionspotentiale ist von hohem Wert für die Neurowissenschaft. Um dies zu erreichen, habe ich einen Licht-aktivierten Kaliumkanal durch genetische Fusion einer photoaktivierten Adenylylcyclase, bPAC, und eines cAMP-gesteuerten Kaliumkanals, SthK, konstruiert. Beleuchtung aktiviert bPAC zur Produktion von cAMP und der erhöhte cAMP-Spiegel öffnet SthK. Die langsame Diffusion und Degradation von cAMP macht dieses Konstrukt zu einem sehr Licht-empfindlichen, lang anhaltenden Inhibitor. Ich habe darüber hinaus erfolgreich vier Varianten mit EC50 für cAMP im Bereich von 7 über 10, 21 bis 29 µM entwickelt. Zusammen mit dem ursprünglichen Fusionskonstrukt (EC50 zu cAMP beträgt 3 μM) gibt es damit nun fünf verschiedene lichtempfindliche Kaliumkanäle, die je nach Zelltyp und Lichtintensitätsbedarf für optogenetische Experimente ausgewählt werden können. KW - neuronal silencing KW - optogenetics KW - hyperpolarization KW - Proteine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266752 ER - TY - JOUR A1 - Tian, Yuehui A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - An engineered membrane-bound guanylyl cyclase with light-switchable activity JF - BMC Biology N2 - Background Microbial rhodopsins vary in their chemical properties, from light sensitive ion transport to different enzymatic activities. Recently, a novel family of two-component Cyclase (rhod)opsins (2c-Cyclop) from the green algae Chlamydomonas reinhardtii and Volvox carteri was characterized, revealing a light-inhibited guanylyl cyclase (GC) activity. More genes similar to 2c-Cyclop exist in algal genomes, but their molecular and physiological functions remained uncharacterized. Results Chlamyopsin-5 (Cop5) from C. reinhardtii is related to Cr2c-Cyclop1 (Cop6) and can be expressed in Xenopus laevis oocytes, but shows no GC activity. Here, we exchanged parts of Cop5 with the corresponding ones of Cr2c-Cyclop1. When exchanging the opsin part of Cr2c-Cyclop1 with that of Cop5, we obtained a bi-stable guanylyl cyclase (switch-Cyclop1) whose activity can be switched by short light flashes. The GC activity of switch-Cyclop1 is increased for hours by a short 380 nm illumination and switched off (20-fold decreased) by blue or green light. switch-Cyclop1 is very light-sensitive and can half-maximally be activated by ~ 150 photons/nm2 of 380 nm (~ 73 J/m2) or inhibited by ~ 40 photons/nm\(^2\) of 473 nm (~ 18 J/m\(^2\)). Conclusions This engineered guanylyl cyclase is the first light-switchable enzyme for cGMP level regulation. Light-regulated cGMP production with high light-sensitivity is a promising technique for the non-invasive investigation of the effects of cGMP signaling in many different tissues. KW - Chlamydomonas reinhardtii KW - cyclic GMP KW - guanylyl cyclase KW - optogenetics KW - rhodopsin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259181 VL - 19 IS - 1 ER - TY - JOUR A1 - Zhou, Yang A1 - Ding, Meiqi A1 - Duan, Xiaodong A1 - Konrad, Kai R. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics JF - Membranes N2 - Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light. KW - optogenetics KW - rhodopsin KW - light-sensitive anion channel KW - surface potential recording KW - pollen tube Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236617 SN - 2077-0375 VL - 11 IS - 4 ER - TY - JOUR A1 - Duan, Xiaodong A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Mutated channelrhodopsins with increased sodium and calcium permeability JF - Applied Sciences N2 - (1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation. KW - optogenetics KW - channelrhodopsins KW - sodium KW - calcium KW - DC gate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197435 SN - 2076-3417 VL - 9 IS - 4 ER - TY - JOUR A1 - Beck, Sebastian A1 - Yu-Strzelczyk, Jing A1 - Pauls, Dennis A1 - Constantin, Oana M. A1 - Gee, Christine E. A1 - Ehmann, Nadine A1 - Kittel, Robert J. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Synthetic light-activated ion channels for optogenetic activation and inhibition JF - Frontiers in Neuroscience N2 - Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. KW - optogenetics KW - calcium KW - potassium KW - bPAC KW - CNG channel KW - cAMP KW - Drosophila melanogaster motoneuron KW - rat hippocampal neurons Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177520 VL - 12 IS - 643 ER - TY - JOUR A1 - Tian, Yuehui A1 - Gao, Shiqiang A1 - von der Heyde, Eva Laura A1 - Hallmann, Armin A1 - Nagel, Georg T1 - Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases JF - BMC Biology N2 - Background: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called “two-component cyclase opsins” (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery. KW - chlamydomonas reinhardtii KW - volvox carteri KW - two-component system KW - chlamyopsin KW - optogenetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177516 VL - 16 IS - 144 ER -