TY - JOUR A1 - Spielman, William S. A1 - Klotz, Karl-Norbert A1 - Arend, Lois J. A1 - Olson, Barbara A. A1 - LeVier, David G. A1 - Schwabe, Ulrich T1 - Characterization of adenosine A1 receptor in a cell line (28A) derived from the rabbit collecting tubule N2 - We have previously reported that in several renal cell types, adenosine receptor agonists inhibit adenylyl cyclase and activate phospholipase C via a pertussis toxin-sensitive G protein. In the present study, in 28A cells, both uf these adenosine receptor-mediated responses were inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). a highly selective A1 adenosine receptor antagonist. The binding characteristics of the adenosine A 1 receptor in the 28A renal cell line were studied using the radiolabeled antagonist f:1H]DPCPX to determine whether two separate binding sites could account for these responses. Saturation binding of [: 1H]DPCPX to 28A cell membranes revealed a single class of A1 binding sites with an apparent Kd value of 1.4 nM and maximal binding capacity of 64 fmol/mg protein. Competition experiments with a variety of adenosine agonists gave biphasic displacement curves with a pharmacological profile characteristic of A1 receptors. Comparison of [: 1H]DPCPX competition binding data from 28A cell membranes with rabbit brain membranes, a tissue with well-characterized A1 receptors, reveals that the A 1 receptor population in 28A cells has similar agonist binding affinities to the receptor population in brain but has a considerably lower density. Addition of guanosine ;)' -triphosphate ( 100 ,uM) to 28A cell membranes caused the competition curves to shift from biphasic to monophasic. indicating that the A1 receptors exist in two interconvertible affinity states because of their coupling to G proteins. In the absence of evidence for subpopulations of the A1 receptor, it appears that in 28A cells. A single A1 receptor population. As defined by ligand binding characteristics, couples via one or more pertussis toxin-sensitive guanine nucleotide binding proteins to two different biological signaling mechanisms. KW - calcium KW - phosphoinositides KW - adenosine 3',5'-cyclic monophosphate KW - receptor binding KW - signal transduction KW - G proteins Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86083 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - The interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton is energy-dependent N2 - Desensitization of N-fonnyl peptide chemoattractant receptors (FPR) in human neutrophils is thought to be achieved by lateral segregation of receptors and G proteins within the plane of the plasma membrane resulting in an interruption of the signalling cascade. Direct coupling of FPR to membrane skeletal actin appears to be the basis of this process~ however, the molecular mechanism is unknown. In this study we investigated the effect of energy depletion on formation of FPR-membrane skeleton complexes. In addition the effect of the protein kinase C inhibitor stauroporine and the phosphatase inhibitor okadaic acid on coupling of FPR to the membrane skeletonwas studied. Human neutrophils were desensitized using the photoreactive agonist N-formy1-met-leu-phe-1ys-N'[\(^{125}\)I]2(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (fMLFK-[\(^{125}\)I]ASD) after ATP depletion with NaF or after incubation with the respective inhibitors. The interaction of FPR with the membrane skeleton was studied by Sedimentation of the membrane skeleton-associated receptors in sucrose density gradients. Energy depletion of the cells markedly inhibited the formation of FPR-membrane skeleton complexes. This does not appear tobe related to inhibition of protein phosphorylation due to ATP depletion because inhibition of protein kinases and phosphatases bad no significant effect on coupling of FPR to the membrane skeleton. We conclude, therefore, that coupling of FPR to the membrane skeleton is an energy,dependent process which does not appear to require modification of the receptor protein by phosphorylation. KW - Toxikologie KW - Chemotactic receptors KW - G proteins KW - N-formyl peptides KW - signal transduction KW - desensitization KW - membrane skeleton KW - receptor-G protein coupling. Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60499 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - Physical coupling of N-formyl peptide chemoattractant receptors to G protein is not affected by desensitization N2 - Desensitization of N-formyl peptide chemoattractant receptors (FPR) in human neutrophils results in association of these receptors to the membrane skeleton. This is thought to be the critical event in the lateral segregation of receptors and guanyl nucleotide-binding proteins (G proteins) within the plane of the plasma membrane resulting in an interruption of the signaling cascade. In this study we probed the interaction of FPR with G protein in human neutrophils that were desensitized to various degrees. Human neutrophils were desensitized using the photoreactive agonist N-formyl-met-leu-phelys- N\(^\epsilon\)-[\(^{125}\)I]2(p-azidosalicylamido )ethyl-1 ,3 '-dithiopropionate (/MLFK-[\(^{125}\)I]ASD). The interaction if FPR with G protein was studied via a reconstitution assay and subsequent analysis of FPR-G protein complexes in sucrose density gradients. FPR-G protein complexes were reconstituted with solubilized FPR from partially and fully desensitized neutrophils with increasing concentrations of Gi purified from bovine brain. The respective EC\(_{50}\) values for reconstitution were similar to that determined for FPR from unstimulated neutrophils (Bommakanti RK et al., J Bio[ Chem 267: 757~7581, 1992). We conclude, therefore, that the affinity of the interaction of FPR with G protein is not affected by desensitization, consistent with the model of lateral segregation of FPR and G protein as a mechanism of desensitization. KW - Toxikologie KW - chemotactic receptors KW - G proteins KW - N-formyl peptides KW - signal transduction KW - receptor-G protein coupling Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60483 ER - TY - THES A1 - Klenk, Johann Christoph T1 - Effekte von Parathormon auf die Struktur und Komplexierung des Parathormonrezeptors 1 T1 - Effects of parathyroid hormone on the structure and complexation of parathyroid hormone receptor 1 N2 - Der Parathormonrezeptor Typ 1 (PTHR) ist ein G-Protein-gekoppelter Rezeptor der Gruppe 2 und wichtigster Regulator des Kalziumstoffwechsels. Im ersten Teil der Arbeit wurde eine neuartige posttranslationale Modifikation des PTHR in Form einer proteolytischen Spaltung der Ektodomäne identifiziert, charakterisiert und deren Regulation beschrieben. Nach langanhaltender Stimulation des Rezeptors mit Agonisten – aber nicht mit Antagonisten – wurde eine Massen- und Mengenzunahme des Rezeptorproteins beobachtet. Es konnte gezeigt werden, dass der Rezeptor unter basalen Bedingungen einer Spaltung unterliegt. Der Massenunterschied entsteht durch die proteolytische Spaltung der Ektodomäne des PTHR, was nachfolgend die Stabilität des Rezeptors beeinträchtigt. Die Spaltung erfolgte innerhalb einer unstrukturierten Schleife der Ektodomäne, welche die Bereiche für die Ligandenbindung miteinander verbindet. Hierbei handelt es sich um eine Region, die im Vergleich zu anderen Gruppe 2-Rezeptoren spezifisch für den PTHR ist. Das durch die Spaltung entstandene N-terminale Fragment bleibt durch eine Disulfidbrücke mit dem Transmembranteil des Rezeptors verbunden. Durch Versuche mit verschiedenen Proteaseinhibitoren konnte die verantwortliche Protease der Familie der zinkabhängigen extrazellulären Proteasen zugeordnet werden. Diese Ergebnisse beschreiben einen Mechanismus wie die Homoöstase des PTHR reguliert sein könnte. In einem zweiten Abschnitt wurde die Interaktion der Adapterproteine NHERF1 und beta-Arrestin2 mit dem PTHR untersucht. Beide Proteine interagierten unabhängig mit dem Rezeptor, wobei NHERF1 über eine PDZ-Domäne konstitutiv an den C-Terminus des Rezeptors bindet. beta-Arrestin2 hingegen bindet nach Aktivierung des Rezeptors und führt zur Desensitisierung des Rezeptors. Mittels biochemischer und mikroskopischer Methoden konnte gezeigt werden, dass beide Proteine gemeinsam einen ternären Komplex mit dem PTHR bilden, welcher durch die direkte Interaktion zwischen NHERF1 und beta-Arrestin2 vermittelt wird. Dies hat zur Folge, dass beta-Arrestin im basalen Zustand durch NHERF1 an den Rezeptor gekoppelt wird. Durch Analyse der Assoziationskinetik mittels Fluoreszenz-Resonanz-Energietransfer-Messungen zeigte sich, dass diese Kopplung zu einer zweifach erhöhten Rekrutierungsgeschwindigkeit von beta-Arrestin2 an den PTHR führt. Somit stellt unterstützt NHERF1 die beta-Arrestin2-vermittelte Desensitisierung des PTHR. N2 - The Parathyroid hormone receptor type 1 (PTHR) belongs to the class 2 of G-protein coupled receptors (GPCRs) and is the main regulator of calcium homeostasis of the body. The first part of the dissertation describes a novel mechanism of receptor regulation based on a proteolytic cleavage of the receptor’s extracellular domain. Prolonged stimulation with PTH led to an apparent increase in molecular mass and in stability of the PTHR. Biochemical analysis of the receptor protein revealed that the PTHR undergoes posttranslational cleavage. Agonistic but not antagonistic PTH-peptides prevented this cleavage, thereby stabilizing the molecular mass and also increasing the half life of the receptor. The cleavage was shown to occur within an unstructured stretch of the extracellular domain of the receptor, which connects two parts required for ligand binding and which is unique in the PTHR amongst all class 2 GPCRs. The cleaved N-terminal fragment was further connected by a disulfide bridge and could only be released by reducing agents. By testing a panel of different protease inhibitors, a protease belonging to the family of zinc-dependent metalloproteases could be identified to be responsible for the PTHR cleavage. Thus, these findings describe a new mechanism how PTHR homeostasis may be regulated. In the second part, the interaction between the adaptor proteins NHERF1 and beta-arrestin2 with the PTHR was assessed. Both proteins interacted independently with the receptor. While NHERF1 formed a constitutive interaction with the PTHR C-terminus, beta-arrestin2-binding required activation of the receptor. Using biochemical and microscopic methods it was shown that both proteins formed a ternary complex with the receptor. This complex was mediated by a direct interaction between NHERF1 and beta-arrestin2 which has been identified in this work. As a consequence, NHERF1 leads to a coupling of beta-arrestin2 close to the PTHR. Association kinetics of beta-arrestin2 with the PTHR measured by fluorescent resonance energy transfer were two-fold increased in the presence of NHERF, suggesting that the ternary complex facilitates the desensitization of the PTHR by beta-arrestin2. KW - Parathormon KW - Proteolyse KW - Endokrinologie KW - Calcium KW - Rezeptor KW - Retinales S-Antigen KW - GPCR KW - Matrix-Metalloprotease KW - NHERF KW - Signaltransduktion KW - G-Protein KW - GPCR KW - Matrix-Metalloproteinase KW - NHERF KW - signal transduction KW - G-protein Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47288 ER -