TY - THES A1 - Yang, Shang T1 - Characterization and engineering of photoreceptors with improved properties for optogenetic application T1 - Charakterisierung und Entwicklung von Photorezeptoren mit verbesserten Eigenschaften für die optogenetische Anwendung N2 - Optogenetics became successful in neuroscience with Channelrhodopsin-2 (ChR2), a light-gated cation channel from the green alga Chlamydomonas reinhardtii, as an easy applicable tool. The success of ChR2 inspired the development of various photosensory proteins as powerful actuators for optogenetic manipulation of biological activity. However, the current optogenetic toolbox is still not perfect and further improvements are desirable. In my thesis, I engineered and characterized several different optogenetic tools with new features. (i) Although ChR2 is the most often used optogenetic actuator, its single-channel conductance and its Ca2+ permeability are relatively low. ChR2 variants with increased Ca2+ conductance were described recently but a further increase seemed possible. In addition, the H+ conductance of ChR2 may lead to cellular acidification and unintended pH-related side effects upon prolonged illumination. Through rational design, I developed several improved ChR2 variants with larger photocurrent, higher cation selectivity, and lower H+ conductance. (ii) The light-activated inward chloride pump NpHR is a widely used optogenetic tool for neural silencing. However, pronounced inactivation upon long time illumination constrains its application for long-lasting neural inhibition. I found that the deprotonation of the Schiff base underlies the inactivation of NpHR. Through systematically exploring optimized illumination schemes, I found illumination with blue light alone could profoundly increase the temporal stability of the NpHR-mediated photocurrent. A combination of green and violet light eliminates the inactivation effect, similar to blue light, but leading to a higher photocurrent and therefore better light-induced inhibition. (iii) Photoactivated adenylyl cyclases (PACs) were shown to be useful for light-manipulation of cellular cAMP levels. I developed a convenient in-vitro assay for soluble PACs that allows their reliable characterization. Comparison of different PACs revealed that bPAC from Beggiatoa is the best optogenetic tool for cAMP manipulation, due to its high efficiency and small size. However, a residual activity of bPAC in the dark is unwanted and the cytosolic localization prevents subcellular precise cAMP manipulation. I therefore introduced point mutations into bPAC to reduce its dark activity. Interestingly, I found that membrane targeting of bPAC with different linkers can remarkably alter its activity, in addition to its localization. Taken together, a set of PACs with different activity and subcellular localization were engineered for selection based on the intended usage. The membrane-bound PM-bPAC 2.0 with reduced dark activity is well-tolerated by hippocampal neurons and reliably evokes a transient photocurrent, when co-expression with a CNG channel. (iv) Bidirectional manipulation of cell activity with light of different wavelengths is of great importance in dissecting neural networks in the brain. Selection of optimal tool pairs is the first and most important step for dual-color optogenetics. Through N- and C-terminal modifications, an improved ChR variant (i.e. vf-Chrimson 2.0) was engineered and selected as the red light-controlled actuator for excitation. Detailed comparison of three two-component potassium channels, composed of bPAC and the cAMP-activated potassium channel SthK, revealed the superior properties of SthK-bP. Combining vf-Chrimson 2.0 and improved SthK-bP “SthK(TV418)-bP” could reliably induce depolarization by red light and hyperpolarization by blue light. A residual tiny crosstalk between vf-Chrimson 2.0 and SthK(TV418)-bP, when applying blue light, can be minimized to a negligible level by applying light pulses or simply lowering the blue light intensity. N2 - Die Optogenetik wurde in den Neurowissenschaften mit Channelrhodopsin-2 (ChR2), einem lichtgesteuerten Kationenkanal aus der Grünalge Chlamydomonas reinhardtii, als leicht anwendbares Werkzeug erfolgreich. Der Erfolg von ChR2 inspirierte die Entwicklung verschiedener photosensorischer Proteine als leistungsstarke Aktuatoren für die optogenetische Manipulation der biologischen Aktivität. Die derzeitige optogenetische Toolbox ist jedoch immer noch nicht perfekt und weitere Verbesserungen sind wünschenswert. In meiner Arbeit habe ich verschiedene optogenetische Werkzeuge mit neuen Funktionen entwickelt und charakterisiert. (i) Obwohl ChR2 der am häufigsten verwendete optogenetische Aktuator ist, sind seine Einzelkanal-Leitfähigkeit und seine Ca2 + -Permeabilität relativ gering. Kürzlich wurden ChR2-Varianten mit erhöhter Ca2 + -Leitfähigkeit beschrieben, eine weitere Verbesserung schien jedoch möglich. Darüber hinaus kann die H+-Leitfähigkeit von ChR2 bei längerer Beleuchtung zu einer Ansäuerung der Zellen und zu unbeabsichtigten Nebenwirkungen im Zusammenhang mit dem pH-Wert führen. Durch rationales Design entwickelte ich mehrere verbesserte ChR2-Varianten mit größerem Photostrom, höherer Kationenselektivität und geringerer H+-Leitfähigkeit. (ii) Die lichtaktivierte Chloridpumpe NpHR ist ein weit verbreitetes optogenetisches Werkzeug für die neuronale Inhibierung. Eine ausgeprägte Inaktivierung bei längerer Beleuchtung schränkt jedoch die Anwendung für eine lang anhaltende neuronale Hemmung ein. Ich konnte zeigen, dass die Deprotonierung der Schiffschen Base der Inaktivierung von NpHR zugrunde liegt. Durch die systematische Untersuchung optimierter Beleuchtungsschemata fand ich heraus, dass die Beleuchtung mit blauem Licht allein die zeitliche Stabilität des NpHR-vermittelten Photostroms erheblich verbessern kann. Eine Kombination aus grünem und violettem Licht eliminiert den Inaktivierungseffekt, ähnlich wie blaues Licht, führt jedoch zu einem höheren Photostrom und deswegen effektiverer Licht-induzierter Inhibierung. (iii) Photoaktivierte Adenylylcyclasen (PACs) erwiesen sich als nützlich für die Lichtmanipulation der zellulären cAMP-Spiegel. Ich habe einen praktischen in-vitro-Test für lösliche PACs entwickelt, der deren zuverlässige Charakterisierung ermöglicht. Ein Vergleich verschiedener PACs ergab, dass bPAC von Beggiatoa aufgrund seiner hohen Effizienz und geringen Größe das beste optogenetische Werkzeug für die cAMP-Manipulation ist. Eine Restaktivität von bPAC im Dunkeln ist jedoch unerwünscht und die cytosolische Lokalisierung verhindert eine subzellulär präzise cAMP-Manipulation. Ich habe daher Punktmutationen in bPAC eingeführt, um dessen Dunkelaktivität zu reduzieren. Interessanterweise fanden Ich heraus, dass das Membrantargeting von bPAC mit verschiedenen „Linkern“ zusätzlich zu seiner Lokalisierung seine Aktivität erheblich verändern kann. Zusammengenommen wurde eine Reihe von PACs mit unterschiedlicher Aktivität und subzellulärer Lokalisation für unterschiedliche Anwendungen konstruiert. Das membrangebundene PM-bPAC 2.0 mit reduzierter Dunkelaktivität wird von Hippocampus-Neuronen gut vertragen und erlaubt, bei gleichzeitiger Expression mit einem CNG-Kanal, zuverlässig einen Licht-induzierten Strom auszulösen. (iv) Die bidirektionale Manipulation der Zellaktivität mit Licht unterschiedlicher Wellenlänge ist für die Dissektion neuronaler Netze im Gehirn von großer Bedeutung. Die Auswahl der optimalen Werkzeugpaare ist der erste und wichtigste Schritt für die zweifarbige Optogenetik. Durch N- und C-terminale Modifikationen wurde eine verbesserte ChR-Variante (d. h. Vf-Chrimson 2.0) entwickelt und als Rotlicht-gesteuerter Aktuator zur Anregung ausgewählt. Ein detaillierter Vergleich von drei Zweikomponenten-Kaliumkanälen, bestehend aus bPAC und dem cAMP-aktivierten Kaliumkanal SthK, ergab die überlegenen Eigenschaften von SthK-bP. Die Kombination von vf-Chrimson 2.0 und verbessertem SthK-bP „SthK(TV418)-bP“ konnte zuverlässig eine Depolarisation durch rotes Licht und eine Hyperpolarisation durch blaues Licht induzieren. Ein restliches, kleines Übersprechen zwischen vf-Chrimson 2.0 und SthK(TV418)-bP kann beim Anlegen von blauem Licht durch Anlegen von Lichtimpulsen oder durch einfaches Verringern der Intensität von blauem Licht auf ein vernachlässigbares Maß minimiert werden. KW - Optogenetics KW - ChR2 KW - NpHR KW - PAC KW - Bidirectional manipulation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205273 ER - TY - THES A1 - Looser, Jens T1 - Funktionelle Analyse der Photoaktivierten Adenylatzyklase (PAC) aus Euglena gracilis T1 - Functional analysis of Euglena gracilis photoactivated adenylyl cyclase (PAC) N2 - Die Photoaktivierte Adenylatzyklase PAC ist in E. gracilis an der Phototaxis beteiligt und besteht aus den zwei unterschiedlich großen Proteinen PACalpha und PACbeta. Beide besitzen jeweils zwei FAD bindende (BLUF) Domänen F1 und F2 sowie zwei Zyklasedomänen C1 und C2. An den Zyklasedomänen findet die Umsetzung von ATP in cAMP statt und die BLUF-Domänen werden für die Lichtaktivierung benötigt. Für diese Arbeit wurde PAC und Mutanten davon heterolog in Oocyten von Xenopus laevis exprimiert. PAC besitzt bereits im Dunkeln Adenylatzyklaseaktivität, die durch Belichtung erhöht werden kann. Die Zunahme der Aktivität erfolgt mit einer Zeitkonstante von unter 100 ms, die Abnahme nach der Belichtung hat eine Zeitkonstante im Bereich von 10ms. Das für die katalytische Umsetzung in allen Klasse III Nukleotidzyklasen benötigte Dimer zweier Zyklasedomänen ist in PAC das Dimer aus C1 und C2. Durch Messungen mit PAC-Mutanten, bei denen jeweils eine Zyklasedomäne defekt war, konnte gezeigt werden, dass diese Dimerisierung in PACalpha intermolekular auftritt. Ebenso wurde gezeigt, dass ein solches Dimer aus Zyklasedomänen von PACalpha und PACbeta bestehen kann. Der Austausch der Zyklasedomänen von PACalpha durch Zyklasedomänen der Guanylatzyklasen GCY35 und GCY36 aus C. elegans führte zu einem Verlust der Zyklaseaktivität. Die Proteine wurden aber zumindest teilweise korrekt gefaltet, was durch Dimerbildung mit Knockoutmutanten von PAC in Koexpressionsexperimenten gezeigt werden konnte. Die Fusionsproteine aus PACalpha und den CNG-Kanälen CNGA2 und OLF führten in Oocyten zu einer deutlich geringeren Leitwertänderung als eine Expression der Einzelproteine. Sowohl bei einer N-terminalen Fusion des Kanals an PAC als auch bei der C-terminalen Fusion war es jeweils der Kanal, der im Fusionsprotein stark gehemmt war. Eine Deletion des C-Terminus von PACalpha führte zu einem nicht funktionsfähigen Protein, das auch in Koexpression mit PAC-Knockoutmutanten keine messbare Adenylatzyklaseaktivität zeigte. Wurde die F2-Domäne deletiert, so verlor PAC ebenfalls seine Zyklaseaktivität vollständig. Die C1-Domäne war aber korrekt gefaltet, was durch eine Koexpression mit PAC-Mutanten gezeigt werden konnte, die in einer ihrer Zyklasedomänen defekt waren. Beide Chimären aus PACalpha und PACbeta besaßen Adenylatzyklaseaktivität. Diese war bei der Chimäre mit dem C-terminalen Teil von PACalpha deutlich höher als bei der Chimäre mit dem C-terminalen Teil von PACbeta, was darauf hindeutet, dass im C-terminalen Teil von PAC der Grund für den Aktivitätsunterschied zwischen PACalpha und PACbeta liegt. Für die Veränderung der Substratspezifität von einer Adenylat- zu einer Guanylatzyklase waren Mutationen an mindestens drei Aminosäuren erforderlich. Die ebenfalls hergestellten Einzel- und Doppelmutanten verhielten sich wie der Wildtyp oder hatten eine deutlich eingeschränkte Adenylatzyklaseaktivität. Bei der Tripelmutante PACalpha K250E T319G S329Y war Guanylatzyklaseaktivität nachweisbar, die aber geringer war als die noch vorhandene Adenylatzyklaseaktivität. Die Quadrupelmutante PACalpha K250E D317K T319G S329Y zeigte ebenfalls lichtinduzierbare Adenylatzyklaseaktivität, die ca. 0,3% der Aktivität der Wildtyp-PACalpha entsprach. Die Guanylatzyklaseaktivität dieser Mutante war ca. dreifach höher als deren Adenylatzyklaseaktivität. Somit konnte gezeigt werden, dass sich durch die Mutation weniger einzelner Aminosäuren die Substratspezifität von PAC von ATP nach GTP verschieben lässt. N2 - The photoactivated adenylyl cyclase PAC is involved in phototaxis in E. gracilis. It consists of two subunits of different size which are called PACalpha and PACbeta. Both of them harbour two FAD-binding domains (F1, F2) and two cyclase domains (C1, C2). PAC and mutants of PAC have been heterologously expressed in Oocytes of Xenopus laevis. Already in darkness PAC shows a basal level of adenylyl cyclase activity, which can be increased by illumination. The increase in cyclase activity occurs with a time constant lower than 100 ms, whereas the decrease after illumination has a time constant around 10 ms. The dimer of two cyclase domains, which is necessary for catalytic conversion in all class III cyclases, is formed of C1 and C2 in PAC. In electrophysiological experiments with PAC mutants which were defective in either of the cyclase domains it has been shown, that this dimer in PACalpha occurs intermolecularly. Furthermore it has been shown, that this dimer can occur between PACalpha and PACbeta. Mutants of PACalpha where the cyclase domains have been substituted by the cyclase domains of the guanylyl cyclases GCY35 and GCY36 from C. elegans lost their ability to produce cAMP. However coexpression experiments with PAC knockout mutants indicated correct translation of the substitution mutants. Expression of fusion proteins of PACalpha with the CNG channels CNGA2 and OLF showed less light-inducable conductance changes than the expression of the single protein. In both the N-terminal and C-terminal fusion of the channel to PACalpha it was the channel which was the most affected part of the fusion protein. Deletion of the C-terminus of PACalpha results in a non-functional protein, which in coexpression with PACalpha knockout mutants shows no measurable cyclase activity. When deleting the F2-domain, PACalpha also loses its cyclase activity completely. However, the C1-domain was transcribed correctly, which could be shown by coexpression with a C1-knockout mutant. Both PACalpha-PACbeta chimeras showed adenylyl cyclase activity. Whereas the activity in the chimera with the C-terminal part of PACbeta showed little cyclase activity, the chimera possessing the C-terminal part of PACalpha showed adenylyl cyclase acitvity, which was comparable to the wildtype of PACalpha. This indicates that the part of PAC which is responsible for the difference in cyclase activity between PACalpha and PACbeta must be present in the C-terminal half of PAC. For altering PAC’s substrate specificity it was necessary to mutate at least three amino acids. The single and double mutants of PACalpha which were generated resulted in wildtypelike behaviour or reduced adenylyl cyclase activity. The triple mutant PACalpha K250E T319G S329Y showed guanylyl cyclase activity which was lower than its remaining adenylyl cyclase activity. The quadruple mutant PACalpha K250E D317K T319G S329Y also showed adenylyl cyclase activity, which was about 0.3% of the activity in PACalpha wildtype. The guanylyl cyclase activity of this mutant was about threefold higher than its adenylyl cyclase activity. Thus, it could be shown, that by mutating few single amino acids the substrate specificity of PACalpha was shifted from ATP to GTP. KW - Euglena gracilis KW - Glatter Krallenfrosch KW - Adenylatcyclase KW - Guanylatcyclase KW - BLUF KW - PAC KW - photoaktiviert KW - BLUF KW - PAC Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48283 ER -