TY - THES A1 - Henninger, Markus T1 - Funktion der zentralen metabolischen Kinase SnRK1 und von ihr abhängiger Transkriptionsfaktoren bei der Mobilisierung von Speicherstoffen während der \(Arabidopsis\) Keimlingsentwicklung T1 - Function of the central metabolic kinase SnRK1 and on it dependent transcription factors in the mobilization of storage compunds during \(Arabidopsis\) seedling development N2 - Pflanzen müssen sich während der Samenkeimung und Keimlingsentwicklung über eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil führen können. Diese Arbeit geht von der Hypothese aus, dass der evolutionär konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen während der Keimlingsentwicklung zukommt. Während die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungeklärt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminosäuren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivitätsassays unterstützen eine mögliche Funktion von SnRK1 während der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschränkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem frühen Entwicklungsstadium untermauert. Durch Fütterungsexperimente mit Glukose konnte der Phänotyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der spä- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verfügbarkeit von freien Aminosäuren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass während der Keimlingsentwicklung zumindest in Arabidopsis, einer ölhaltigen Pflanze, zunächst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminosäuren beginnt. Diese Abbauprodukte können dann der Glukoneogenese zugeführt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abhängige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminosäuren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abhängigen Genregulation während der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminosäuren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schlüsselenzym beim Abbau bestimmter Aminosäuren und bei der Glukoneogenese, SnRK1-abhängig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abhängig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopräzipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminosäuren abgebaut und wird über die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell für die Übergangsphase zwischen heterotropher und autotropher Lebensweise, und trägt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zugänglich zu machen. Darüber hinaus werden Gene im Abbau von verzweigtkettigen Aminosäuren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verfügung gestellt. Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch während der Keimlingsentwicklung direkt von SnRK1 abhängig ist. Die umfangreichen Datensätze der RNA-Seq-Analysen bieten zudem die Möglichkeit, weitere SnRK1-abhängige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verständnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch für bessere Keimungsraten und somit bessere Erträge in der Landwirtschaft genutzt werden können. N2 - During seed germination and seedling establishment, seedlings must live heterotrophically on the resources stored in the seed. Only after establishing a fully functional photosynthetic apparatus, the young plant can change to an autotrophic lifestyle - one of the key features of plant life and metabolism. This work is based on the hypothesis that the evolutionarily conserved central metabolic kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) plays a crucial role in the mobilization of storage compounds during seedling establishment. Whereas the importance of SnRK1 as a central regulator of catabolic processes during energy deprication and stress situations has already been demonstrated, so far, the function of SnRK1 in connection with seed germination had remained largely unresolved. Here, we shown for the first time that SnRK1 in Arabidopsis controls the degradation of storage resources, especially triacylglycerides (TAG), seed storage proteins and amino acids. Studies on the localization of SnRK1:GFP fusion proteins and as well as kinase activity assays support a possible function of SnRK1 during seedling establishment. An inducible snrk1-knockdown mutant is strongly impaired in root and hypocotyl growth and the plant do not develop a photosynthetic apparatus. Feeding experiments with glucose rescued the snrk1-mutant phenotype, showing that the metabolic block can be bypassed by external administration of carbohydrates. Thus, the central function of SnRK1 is concluded to be the degradation of the storage resources and rather than a general deregulation of the plant metabolism. Mass spectrometric investigations have shown that TAG degradation and seed storage proteins breakdown are partially impaired in the mutant. Thus, the availability of free amino acids in snrk1 mutant seedlings is lower in comparison to wildtype. It could be shown that - despite the fact that Arabidopsis is an oil-seed plant - carbohydrates, especially sucrose, are the primary resource compound for the seedling before the degradation of TAGs and amino acids is initiated. These degradation products can then be used in gluconeogenesis to produce glucose. Transcriptome analyses have identified key SnRK1-dependent genes, that play a key role in the storage resource catabolism, for example ACYL-CoA-OXIDASE 4 (ACX4) and PMDH2 in TAG breakdown. As an example of an enzyme involved in amino acid catabolism, cyPPDK was further investigated in the course of this study. During the degradation of amino acids, cyPPDK, a key enzyme in the degradation of certain amino acids and gluconeogenesis, is transcriptionally regulated in a SnRK1-dependent manner. Furthermore, it was discoverd that the SnRK1-dependent transcription factor bZIP63 (BASIC LEUCINE ZIPPER 63) is involved in the regulation of amino acid breakdown: In qRT-PCR experiments, bzip63-mutants showed no induction of cyPPDK, and co-regulation studies showed that cyPPDK and bZIP63 are subject to the same SnRK1-dependet regulation pattern during early seedling development. Finally, by mutation mapping and chromatin immunoprecipitation (ChIP)PCR, a direct binding of bZIP63 to the promoter could be demonstrated. Based on these results, a mechanistic working model was established, proposing bZIP63 to be phosphorylated by SnRK1 to then activate transcription of the cyPPDK promoter via binding to regulatory G-box cis elements. As a consequence, amino acids are degraded and the metabolites are used to produce glucose via gluconeogenesis. This additional source of energy enables the seedling to make the transition from heterotrophy to autotrophy. Additionally, the degradation of branched-chain amino acids is also regulated by bZIP63. Thereby, ATP is generated to fuel the seedlings energy demands. In summary, this study shows that SnRK1 plays an essential role in the mobilization of storage compounds in seedlings during the transition from heterotrophic to autotrophic life by supplying the seedling with the much-needed additional energy gained from the breakdown of TAGs and amino acids. Mining the extensive RNA-Seq data sets provided by this study will allow the identification of further SnRK1-dependent genes to further unravel this crucial signaling network. Due to the crucial role that these proteins play in early seedling development, these findings will enable future research to increase seedling vigor and finally crop yield. KW - SnRK1 KW - seedling establishment KW - transcription factor KW - Arabidopsis KW - Keimlingsentwicklung KW - bZIP KW - Transkriptionsfaktor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214305 ER - TY - THES A1 - Walper [geb. Schwarz], Elisabeth T1 - Identifizierung und Charakterisierung von Transkriptionsfaktoren in der pflanzlichen Antwort auf das Oxylipin 9-Hydroxyoktadekatriensäure (9-HOT) T1 - Identification and characterization of transcription factors in the plant signaling Response to the oxylipin 9-hydroxyoctadekatrienoic acid (9-HOT) N2 - Oxylipine werden in der Pflanze unter Stressbedingungen gebildet. Die dafür notwendige Oxidation von Fettsäuren wird entweder nicht-enzymatisch über Radikale wie reaktive Sauerstoffspezies (ROS) oder enzymatisch über Lipoxygenasen katalysiert. Abhängig von der Position der Oxidation in der Fettsäure entstehen dabei C13- oder C9-Oxylipine. Sehr gut erforscht sind C13-Oxylipine wie Jasmonsäure (JA), die bei biotischem Stress und Verwundung gebildet werden und bei exogener Gabe das Wurzelwachstum von Arabidopsis thaliana hemmen. Die C9-Oxylipine wie 9-Hydroxyoktadekatriensäure (9-HOT) sind erst wenig erforscht. Ziel dieser Arbeit war die Charakterisierung von Transkriptionsfaktoren, mit dem Fokus auf 9-HOT-vermittelte Signalwegen in Arabidopsis thaliana. Da bekannt ist, dass auch sie zu einer Hemmung des Wurzelwachstums führen, wurde dazu die Untersuchung des Wurzelwachstums von 10 Tage alten Keimlingen etabliert. Funktionsgewinn-Mutanten des Transkriptionsfaktors TGA5 sowie des TGA5-Zielgens CYTOCHROM P450 MONOOXYGENASE CYP81D11 zeigten auf 9-HOT ein verglichen mit Col-0 deutlich besseres Wurzelwachstum. Die AtTORF-Ex-Kollektion, eine große Sammlung an Überexpressions-Linien verschiedener Transkriptionsfaktoren, wurde hinsichtlich Wurzelwachstums auf dem Oxylipin 9-HOT analysiert. Die Gesamtheit der untersuchten Pflanzen enthielt 263 unabhängige TF-Expressions-Konstrukte. Von 6087 untersuchten Pflanzen zeigten 201 Pflanzen keine Hemmung des Wurzelwachstums auf 9-HOT. Dabei konnten 80 verschiedene Transkriptionsfaktoren identifiziert werden, deren Überexpression die Wurzelwachstums-hemmende Wirkung von 9-HOT kompensiert. Es zeigte sich eine Häufung von Transkriptionsfaktoren der ERF- (ethylene responsive factor) Familie. Die verstärkte Expression der nahe verwandten Transkriptionsfaktoren ERF106 und ERF107 ermöglichte sowohl auf 9-HOT als auch auf 9-KOT ein längeres Wurzelwachstum im Vergleich zum Wildtyp. Die Genexpression von ERF106 und ERF107 wird durch Überflutung aktiviert. Durch Überflutung wird im Wildtyp die Expression von Hypoxia-Antwort-Genen wie HRE1, SUS4 oder PDC1 induziert. In den Funktionsverlust-Mutanten sind diese Gene in der Expression aber nicht beeinflusst. Auch ist nach Überflutung im normalen Tag / Nacht-Rhythmus kein signifikanter Unterschied im Überleben zwischen Col-0 und den Mutanten erf106, erf107 und erf106xerf107 nachweisbar. Zur Identifikation möglicher Ziel-Gene von ERF106 und ERF107 wurden Transkriptom-Analysen durchgeführt. Die Funktionsverlust-Mutanten erf106, erf107 und erf106xerf107 zeigten weder im Grundzustand noch nach 4 Stunden Überflutung Veränderungen in den bekannten Hypoxia-Antwort-Genen. Die Funktionsgewinn-Mutanten von ERF106 und ERF107 zeigten in der Transkriptom-Analyse eine deutliche Aktivierung von Genen, die wichtig für Entgiftung und Stressabwehr sind. Ebenso wurden wichtige Biosynthese-Gene aus der Camalexin- und Glukosinolat-Synthese in den Funktionsgewinn-Mutanten verstärkt exprimiert. Des Weiteren konnte eine verringerte Expression von Genen beobachtet werden, die wichtig für die Regulation der Eisen-Aufnahme sind, darunter bHLH-Transkriptionsfaktoren, der Eisen-Transporter IRON REGULATED TRANSPORTER 1 (IRT1) und die Eisen-Reduktase FERRIC REDUCTION OXIDASE 2 (FRO2). Zusammenfassend wurden in dieser Arbeit durch die Untersuchung der AtTORF-Ex-Kollektion mehrere TF identifiziert, die wichtige Abwehr-Gene gegen Stress- und Vergiftung sowie bedeutende Gene im Bereich der Biosynthese und Eisenaufnahme regulieren können, um so die Antwort auf C9-Oxylipine zu beeinflussen. N2 - Oxylipins are built under stress conditions. They are the results of fatty acids oxidation that occurs either non-enzymatically by the action of free radicals like reactive oxygen species (ROS) or enzymatically by lipoxygenases conversion. There are two kinds of oxylipins, C13- or C9-, according to the position of the oxidation on the fatty acid back bone. Whereas C13-oxlipins like jasmonic acid (JA) are well characterized, little is known about C9-oxylipins like 9-hydroxyoctadecatrienoic acid (9-HOT). Both of them are generated as consequence of biotic stress or wounding and a common phenotypical mark is their ability to inhibit root growth of Arabidopsis seedlings. Preliminary studies have demonstrated that overexpression of the transcription factor TGA5 or its target gene CYTOCHROM P450 MONOOXYGENASE CYP81D11 make the plants more resistant than wildtype Col-0 to oxylipins-driven root inhibition. The aim of the work presented in this thesis was to identify and characterize transcription factors involved in 9-HOT induced signaling. At the beginning, a screening aiming at the identification of transcription factors involved in the 9-HOT signaling was set up. The root growth of 10 day old seedlings from the AtTORF-Ex-collection grown on 9-HOT containing medium was analyzed. All analyzed plants harbor 263 independent TF expression constructs. Of 6087 analyzed plants 201 plants showed no inhibition of root growth on 9-HOT. Plant overexpressing 80 different transcription factors showed a long root-phenotype on 9-HOT containing medium, indicating that in this plants the 9-HOT activated signaling was impaired. Among them, ERF-transcription factor family was overrepresented. Overexpression of the closely related ERF106 and ERF107 enabled longer root growth compared to wild-type on 9-HOT as well as on 9-KOT. Analysis of the stimuli inducing the alteration of the expression of ERF106 and ERF107, identified submergence as one of the main one. Under hypoxic conditions in wildtype, the expression of hypoxia-response-genes like HRE1, SUS4 or PDC1 is induced. Expression levels of these genes are not affected in erf106, erf107 and erf106xerf107 loss-of-function mutants. Examination of the survival rate after submergence did not reveal significant differences between Col-0 and the loss-of-function-mutants erf106, erf107 und erf106xerf107, at least under normal day-night-rhythm. To identify target genes of ERF106 and ERF107, transcriptome analysis were performed. The loss-of-function-mutants erf106, erf107 and of their double mutant did not show any differences in the known hypoxia responses, neither in control nor 4 hours after submergence. The gain-of-function-mutants of ERF106 and ERF107 exhibit a distinct gene activation of genes important for detoxification and stress regulation and defense. Moreover, genes for camalexin and glucosinolate biosynthesis pathway were up-regulated in these gain-of-function mutants. Genes crucial for regulation of iron uptake like bHLH transcription factors, iron transporter IRON REGULATED TRANSPORTER 1 (IRT1) and iron reductase FERRIC REDUCTION OXIDASE 2 (FRO2), whereas, show a reduced expression in these mutants. The analysis of the AtTORF-Ex-collection revealed some interesting TFs that can regulate genes important for stress response and detoxification, and thereby influence the response to C9-oxylipins. KW - Oxylipine KW - 9-HOT KW - Transkriptionsfaktor KW - 9-Hydroxyoktadekatriensäure KW - AtTORF-Ex-Kollektion KW - Stress KW - Signalling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128047 ER - TY - THES A1 - Hartmann, Laura T1 - Die funktionelle Rolle der Transkriptionsfaktoren bZIP1 und bZIP53 in der Arabidopsis thaliana- Wurzel nach Salstress T1 - The functional role of bZIP1 and bZIP53 transcription factors in salt treated roots of Arabisopsis thaliana N2 - Die zunehmende Versalzung des Bodens führt weltweit zu starken Ernteeinbußen. Ob- wohl die Wurzeln der Pflanzen als erstes mit dem Salzstress in Berührung kommen, ist noch nicht viel über Signaltransduktionswege in Wurzeln zur Anpassung der Pflanze an Salzstress bekannt. Die bZIP-Transkriptionsfaktoren der Gruppe S1, bZIP1 und bZIP53, werden gewebespezifisch in der Wurzel nach Salzstress aktiviert. In dieser Arbeit werden diese bZIPs in ein Netzwerk eingeordnet, von der Aktivierung der Tran- skriptionsfaktoren bis zur Funktion in der Regulation des Stoffwechsels in der salzgest- ressten Pflanze. Die Aktivierung von bZIP1 kann über verschiedene sowohl ionische als auch osmotische Stimuli erfolgen und ist abhängig von Calcium, der HEXOKINASE 1 und SnRK1- Kinasen (Snf1 RELATED PROTEIN KINASE 1). Die dunkelinduzierte Expression von bZIP1 wird HXK1-abhängig durch Glucose inhibiert, bei Energiemangelbedingungen ist die Aktivierung von bZIP1 SnRK1-abhängig. Beide Enzyme spielen auch in der salzinduzierten Expression von bZIP1 eine Rolle. Über Transkriptom- und Me- tabolomanalysen kann gezeigt werden, dass bZIP1 und bZIP53 an der Umprogram- mierung des Kohlenhydrat- und Aminosäuremetabolismus teilhaben. Besonders Gene der Glukoneogenese (PYRUVAT ORTHOPHOSPHAT DIKINASE und FRUCTOSE- 1,6-BISPHOS- PHATASE) bzw. des Aminosäurekatabolismus (BRANCHED- CHAIN AMINO ACID TRANSAMINASE 2, METHYLCROTONYL- COA-CARBOXYLASE A und HOMOGENTISATE 1,2-DIOXYGENASE ) werden von den Transkriptionsfaktoren reguliert. Das spricht für eine Umprogrammierung des Metabolismus und der Mobilisierung von Energie aus Aminosäuren zur Anpassung an die Stressbedingungen. Die Transkriptionsfaktoren der Gruppe S1 bilden vorzugsweise Heterodimere mit der Gruppe C. Mit Mutantenanalysen, die zum einen die Transkriptionsfaktoren des C/S1-Netzwerks und zum anderen Komponenten der Abscisinsäure (ABA) abhängigen Signaltransduktion beinhalten, konnte ein Signaltransduktionsnetzwerk aufgestellt werden, das die Antwort auf abiotischen Stress mittels des Signalwegs über ABA, SnRK2 und AREB (ABA RESPONSIVE ELEMENTS-BINDING PROTEIN) mit der SnRK1-vermittelten Antwort auf Energiemangelbedingungen in der Pflanze verknüpft. Die gefundenen stress- bzw. energieresponsiven Gene konnten nach den Mutantenana- lysen auf Grund ihrer unterschiedlichen Regulation in vier Klassen eingeteilt werden, wovon nur eine, die Klasse 4, von dem C/S1 Netzwerk reguliert wird. Die Klassen 1- 3 sind unabhängig von den bZIP-Transkriptionsfaktoren der Gruppe C. Die Klasse 1 bilden typische ABA-responsive Gene, die von den Gruppe A-bZIPs reguliert werden. Faktoren der Gruppe A sind auch an der Expression der Gene der Klasse 2 beteiligt, diese werden aber auch durch bZIP1 und bZIP53 induziert. Dieser Klasse konnten Gene zugeordnet werden, die im Abbau verzweigtkettiger Aminosäuren eine Rolle spielen. Am Aminosäureabbau sind außerdem die Gene der Klasse 2 beteiligt. Für diese Gene konnte eine Expressionsregulation durch bZIP1 und bZIP53 gezeigt werden. Für die Bestimmung möglicher Heterodimerisierungspartner bedarf es noch weiterer Analysen. Dieses Model, das den abitoschen Stress abhängigen ABA-Signalweg mit dem ener- gieabhängigen SnRK1-Signaltransduktionsweg verknüpft, zeigt die präzise Regulation von mindestens 4 Gen-Klassen, deren Expression durch die Kombination verschiedener bZIP-Transkriptionsfaktoren aktiviert wird. N2 - Increasing salinization of soil has led to significant crop loss worldwide. Notwith- standing the fact that plant roots are the first to be affected by salt stress, signal transduction pathways in roots for salt stress adaptation are still mostly unknown In this work the group S1 bZIP transcription factors bZIP1 and bZIP53 that are spe- cifically induced by salt stress in roots, were functionally characterized with respect to their role in salt stress response in plants. Transcriptional activation of bZIP1 can be mediated by both ionic and osmotic stimuli and is dependent on Ca2+, HEXO- KINASE 1 (HXK1) and the SnRK1 kinases (Snf1 RELATED PROTEIN KINASE 1). Dark induced expression of bZIP1 is inhibited by glucose depending on HXK1 acti- vity. In starvation conditions the transcription of bZIP1 is mediated by SnRK1. Here both signaling enzymes are shown to be involved in salt induced bZIP1 transcripti- on. Transcriptome and metabolome analyses reveal an important function of bZIP1 and bZIP53 concerning the reprogramming of primary carbohydrate and amino acid metabolism during salt stress in the Arabidopsis root. Particularly genes involved in gluconeogenesis (PYRUVAT ORTHOPHOSPHAT DIKINASE and FRUCTOSE-1,6- BISPHOSPHATASE )or amino acid catabolism (BRANCHED- CHAIN AMINO ACID TRANSAMINASE 2, METHYLCROTONYL- COA-CARBOXYLASE A and HOMO- GENTISATE 1,2-DIOXYGENASE) are regulated by these transcription factors. This points to reprogramming of metabolism and remobilization of energy by amino acid degradation under stress. Group S1 bZIPs preferably form heterodimers with group C bZIP transcription factors. Mutant analyses of C/S1 bZIPs and ABA signaling com- ponents, respectively, revealed a complex network connecting abiotic stress responses via ABA-SnRK2-AREB (ABA RESPONSIVE ELEMENTS-BINDING PROTEIN) to SnRK1 mediated starvation responses. The detected genes were grouped in four classes according to their different regulation, of which only class 4 is regulated by the C/S1 network. Classes 1-3 are controlled independently of group C transcription factors. Class 1 contains typical ABA responsive genes, regulated by group A bZIPs. These are also involved in gene expression of class 2 genes, which are as well induced by bZIP1 and bZIP53. Genes of branched chain amino acid catabolism belong to this class. Al- so involved in amino acid catabolism are genes of class 2, these genes were shown to be transcriptionally regulated by bZIP1 and bZIP53. Further analyses are required to reveal possible heterodimerization partners. This model, that links the abiotic stress responding ABA pathway to the energy dependent SnRK1 signaling pathway, reveals at least four gene classes that are very precisely regulated by combining different bZIP transcription factors. KW - Salzstress KW - salt KW - Transkriptionsfaktor KW - Ackerschmalwand KW - transcription factors KW - root KW - Wurzel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99423 ER - TY - THES A1 - Rudolf, Ronald T1 - Transcriptional Regulation of and by NFATc1 in Lymphocytes T1 - Transkriptionelle Regulation von und durch NFATc1 in Lymphozyten N2 - The transcription factor NFATc1 has been shown to regulate the activation and differentiation of T-cells and B-cells, of DCs and megakaryocytes. Dysregulation of NFAT signaling was shown to be associated with the generation of autoimmune diseases, malignant transformation and the development of cancer [71]. The primary goal of this work was to gain insights on Nfatc1 induction and regulation in lymphocytes and to find new direct NFATc1 target genes. Three new BAC -transgenic reporter mouse strains (tgNfatc1/Egfp, tgNfatc1/DE1 and tgNfatc1/DE2) were applied to analyze Nfatc1 induction and regulation in primary murine B- and T-cells. As a result, we were able to show the persistent requirement of immunoreceptor-signaling for constant Nfatc1 induction, particularly, for NFATc1/αA expression. Furthermore, we showed that NF-κB inducing agents, such as LPS, CpG or CD40 receptor engagement, in combination with primary receptor-signals, positively contributed to Nfact1 induction in B-cells [137]. We sought to establish a new system which could help to identify direct NFATc1 target genes by means of ChIP and NGS in genom-wide approaches. We were able to successfully generate a new BAC-transgene encoding a biotinylatable short isoform of NFATc1, which is currently injected into mice oocyte at the TFM in Mainz. In addition, in vivo biotinylatable NFATc1–isoforms were cloned and stably expressed in the murine B-cell lymphoma line WEHI-231. The successful use of these cells stably overexpressing either the short NFATc1/αA or the long NFATc1/βC isoform along with the bacterial BirA biotin ligase was confirmed by intracellular stainings, FACS analysis, confocal microscopy and protein IP. By NGS, we detected 2185 genes which are specifically controlled by NFATc1/αA, and 1306 genes which are exclusively controlled by NFATc1/βC. This shows that the Nfatc1 locus encodes “two genes” which exhibit alternate, in part opposite functions. Studies on the induction of apoptosis and cell-death revealed opposed roles for the highly inducible short isoform NFATc1/αA and the constantly expressed long isoform NFATc1/βC. These findings were confirmed by whole transcriptome-sequencing performed with cells overexpressing NFATc1/αA and NFATc1/βC. Several thousand genes were found to be significantly altered in their expression profile, preferentially genes involved in apoptosis and PCD for NFATc1/βC or genes involved in transcriptional regulation and cell-cycle processes for NFATc1/αA. In addition we were able to perform ChIP-seq for NFATc1/αA and NFATc1/βC in an ab-independent approach. We found potential new target-sites, but further studies will have to address this ambitious goal in the future. In individual ChIP assays, we showed direct binding of NFATc1/αA and NFATc1/βC to the Prdm1 and Aicda promoter regions which are individually controlled by the NFATc1 isoforms. N2 - Der Transkriptionsfaktor NFATc1 wurde als Regulator der Aktivierung und Differenzierung für T-Zellen, B-Zellen, Dendritische-Zellen und Megakaryozyten beschrieben. Autoimmunerkrankungen und die Entstehung von Krebs wurden mit Fehlregulationen der NFAT-Signalwege in Verbindung gebracht [71]. Ziel dieser Arbeit war der Gewinn neuer Erkenntnisse über die Induktion und Regulation von NFATc1 in Lymphozyten. Darüber hinaus sollten Gene, welche direkt durch NFATc1 gebunden und reguliert werden, identifiziert werden. Um die Induktion und Regulation von NFATc1 in primären T- und B-Zellen untersuchen zu können, wurden drei BAC transgene Reporter Maus Linien (tgNfatc1/Egfp, tgNfatc1/DE1 and tgNfatc1/DE2) verwendet. Dadurch war es uns möglich zu zeigen, dass es einer ununterbrochenen Antigen-Rezeptor Stimulation bedarf, um NFATc1, im Besonderen die Transkription der kurzen Isoform NFATc1/αA, dauerhaft zu induzieren. Zusätzlich konnten wir zeigen, dass Induktoren wie LPS, CpG oder auch die Stimulation des CD40-Rezeptors, die die Expression des Transkriptionsfaktors NF-B zur Folge haben, einen positiven Einfluss auf die Nfatc1-Induktion haben [137]. Unser Interesse lag darin, ein System zu etablieren, dass es uns ermöglichen sollte, neue NFATc1-Zielgene durch ChIP assays und Genom-weite Sequenzierungen zu ermitteln. Es ist uns gelungen, ein neues BAC-Transgen, welches für eine in vivo biotinylierbare Variante des NFATc1/αA Proteins kodiert, zu erzeugen. Dieses Konstrukt wird zum gegenwärtigen Zeitpunkt - in Zusammenarbeit mit der Universität Mainz (TFM) - in die Vorkerne von Maus-Eizellen injiziert. Ferner wurden biotinylierbare NFATc1-Isoformen kloniert und mit Hilfe retroviraler Plasmide stabil in WEHI-231 B-Lymphom-Zellen integriert. Durch intrazellulare Färbungen, FACS-Analysen, Konfokalmikroskopie und Immunpräzipitationen konnten wir eine erfolgreiche in vivo Biotinylierung in NFATc1/αA- und NFATc1/βC-exprimierenden WEHI-231 Zellen nachweisen. Mittels Next-Generation-Sequencing, in Kollaboration mit TRON, Univ. Mainz, konnten wir 2185 Gene, die spezifisch durch NFATc1/αA kontrolliert wurden, und 1306 Gene, die ausschließlich durch die Überexpression von NFATc1/βC reguliert wurden, identifizieren. Diese Ergebnisse zeigen, dass im Nfatc1 Locus „zwei Gene“ mit alternativer, zum Teil gegensätzlicher Funktion, kodiert sind. Untersuchungen zu Apoptose und Zelltod haben entgegengesetzte Eigenschaften der stark induzierbaren, kurzen Isoform NFATc1/αA und der stetig exprimierten langen Isoform NFATc1/βC aufgezeigt. Daten von Sequenzierungen des gesamten Transkriptoms, die mit NFATc1/αA und -βC überexprimierenden WEHI-231 Zellen durchgeführt wurden (TRON, Mainz), bestätigten diese Befunde. Es zeigte sich, dass es wesentliche Veränderungen der Expressionsprofile Tausender von Genen gab. In WEHI-231-Zellen, die NFATc1/βC überexprimierten, waren viele dieser Gene an Apoptose und Zelltod beteiligt. Demgegenüber waren in NFATc1/αA-Zellen vor allem Gene betroffen, die an transkriptionaler Regulation und dem Zellzyklus beteiligt waren. Überdies war es uns möglich, ChIPseq Assays für NFATc1/αA und NFATc1/βC in einem Antikörper-unabhängigen Ansatz durchzuführen. Dadurch konnten wir neue NFATc1-Bindungstellen identifizieren. Es bedarf jedoch noch weiterer Untersuchungen, um diese Ergebnisse der Genom-weiten ChIPseq Assays zu bestätigen. Durch weitere ChIP Experimente konnten wir eine direkte Bindung von NFATc1/αA und NFATc1/βC an die regulatorischen Regionen der Prdm1- und Aicda-Gene nachweisen. Die Transkription beider Gene wurde durch die Überexpression von NFATc1/αA und -βC deutlich reguliert und spielt offenbar bei der Bildung von Plasma-B-Zellen, die für die Antikörper-Produktion verantwortlich sind, eine wesentliche Rolle. KW - Lymphozyt KW - Transkriptionsfaktor KW - Lymphozyten KW - NFATc1 KW - Lymphocytes KW - NFATc1 KW - Genregulation KW - Maus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83993 ER - TY - THES A1 - Wehner, Nora T1 - Etablierung und Anwendung molekularer Methoden zur Analyse des Arabidopsis thaliana Transkriptionsfaktor-ORFeoms T1 - Establishment and application of molecular tools to analyse the Arabidopsis thaliana transcription factor ORFeome N2 - Transkriptionsfaktoren (TF) sind wichtige Regulatoren der Genexpression. In Arabidopsis kodieren ca. 1500-2000 Gene für TF, von denen die Mehrheit bis heute nicht funktionell charakterisiert ist. Um die Aufklärung der TF-Funktionen weiter voranzutreiben, werden daher Analyse-Plattformen für Hochdurchsatzverfahren immer wichtiger. In den letzten Jahren sind umfangreiche Gateway® -kompatible ORF (open-reading-frame)-Kollektionen für Arabidopsis aufgebaut worden, die nun als nützliche Ressourcen für genetische Analysen zur Verfügung stehen. Auf Grundlage dieser Kollektionen wurde in dieser Arbeit eine neue Screening-Plattform etabliert, mit der trans-regulatorische Eigenschaften von TF in einem Hochdurchsatzverfahren untersucht werden können. Ein Mikrotiterplatten-System für Protoplastentransformationen erlaubt die transiente Koexpression von 96 verschiedenen TF-Expressionsvektoren mit einem Promotor:Luciferase-Reporter der Wahl. Das Transaktivierungspotential jedes einzelnen TF kann über die Luciferaseaktivität bestimmt werden, indem emittierte Lumineszenz in einem Luminometer detektiert wird. Die Funktionalität des PTA (Protoplast Trans Activation)-Systems wurde anhand einer Transaktivierungsstudie der bereits gut charakterisierten Promotoren von RD29A und PDF1.2 und der ERF (Ethylene Response Factor)-TF-Familie überprüft, wobei bekannte Bindungsspezifitäten der TF bestätigt werden konnten. Für das System wurde eine umfassende Arabidopsis TF-Kollektion aufgebaut. Ca. 950 verschiedene Gateway® -kompatible TF-Expressionsvektoren stehen für Screening-Ansätze zur Verfügung. Für das PTA-System wurden verschiedene Anwendungen etabliert. Neben transaktivierenden, konnten beispielsweise auch repressive Eigenschaften von TF bestimmt werden. Darüber hinaus wurde gezeigt, dass es möglich ist, (I) die Expression von Promotoren gezielt durch verschiedene Stimuli, wie Salz oder Pflanzenhormone zu modulieren, (II) Protein-Protein-Interaktionen zu bestimmen, sowie (III) den Einfluss von Signalmolekülen (wie z. B. Kinasen) auf ihre Aktivierungseigenschaften zu untersuchen. Das PTA-System wurde in verschiedenen Screening-Ansätzen zur Identifizierung transkriptioneller Regulatoren pflanzlicher Stressantworten eingesetzt. In einer Analyse des Auxin-induzierbaren GH3.3-Promotors wurde dabei gezeigt, dass weit mehr bZIP-TF Einfluss auf die Auxin-vermittelte GH3.3-Expression haben, als bisher angenommen. Beispielsweise zeigten bZIP16 und bZIP68 ein höheres Transaktivierungspotential, als die bisher beschriebenen bZIP-Regulatoren der GH3.3-Expression. In einem zweiten Ansatz wurde die koordinierte Regulation der Biosynthese von Tryptophan-abgeleiteten antimikrobiellen Sekundärmetaboliten (Indol-Glukosinolate, Camalexin) untersucht. Dabei konnten ERF-TF der phylogenetischen Gruppen VIII und IX als potentielle Regulatoren mehrerer wichtiger Gene der Biosynthesewege identifiziert werden. Mit einem zusätzlichen Screening-Ansatz der gesamten TF-Expressionsvektor-Kollektion und einem Markerpromotor des Camalexin-Biosynthesewegs wurden weitere potentielle Regulatoren identifiziert, von denen einige bereits in der Pathogenantwort beschrieben sind. In einem weiteren Schwerpunkt dieser Arbeit wurde die von Weiste et al. (2007) etablierte Arabidopsis thaliana TF-ORF-Überexpressions-Kollektion (AtTORF-EX) erweitert. Mit Hilfe des dafür entwickelten Hochdurchsatzverfahrens zur Generierung stabil transformierter Pflanzenlinien wurden neue Überexpressionssamen-Kollektionen hergestellt und anschließend in einem Screening-Ansatz auf erhöhte Toleranz gegenüber oxidativem Stress getestet, wobei die Chemikalie Paraquat als oxidativer Stress-Geber eingesetzt wurde. Die TF bZIP1 und OBP1 konnten dabei als Resistenz-vermittelnd identifiziert werden. Zusammenfassend wurden in dieser Arbeit mit Hilfe beider Systeme neue potentielle Regulatoren pflanzlicher Stressantworten identifiziert. N2 - Transcription factors (TFs) are important cellular regulators of gene expression. In Arabidopsis approximately 1500-2000 genes encode for TFs. Until now, the majority of these genes has not been functionally characterized. To further promote the evaluation of TF function, high-throughput tools are required. In recent years, comprehensive Arabidopsis open reading frame (ORF) collections have been established, which are valuable resources for functional genomics. Based on these collections a high-throughput microtiter plate based Protoplast Trans Activation (PTA) system has been established to screen for TFs which regulate a given promoter:Luciferase construct in planta. 96 protoplast transfection experiments can be performed simultaneously in a standard microtiter plate. Transactivation of a promoter:Luciferase reporter is measured via luciferase imaging. A screening collection of roughly 950 TFs expression vectors has been assembled using Gateway® technology and can be tested in various screening approaches. In this respect, it is possible to analyze transactivating as well as repressive properties. Moreover (I) stimulus induced transcription, (II) studies of protein-protein interaction and (III) the impact of signaling molecules (e.g. kinases) on the promoters activation potential can be measured. To demonstrate the feasibility of the high-throughput system, the transactivating properties of the Ethylene Response Factor (ERF) TF family were studied in combination with the well-characterized RD29A and PDF1.2 promoters. By this means, known binding specificities of the TF family were confirmed. Furthermore, the PTA-System was applied to identify transcriptional regulators involved in plant stress responses. In one approach the influence of bZIP TFs on the auxin-inducibility of the GH3.3-promoter was studied. In particular, bZIP16 and bZIP68 showed a stronger transactivation potential than those bZIPs which were previously described to regulate this auxin-responsive promoter. In an independent approach the transcriptional regulation of tryptophan-derived antifungal compounds (indol-glycosinolates, camalexin) biosynthesis has been studied. ERF TFs of the groups VIII and IX were identified as potential regulators of several biosynthetic genes. A subsequent screening approach of a key promoter of the camalexin biosynthetic pathway disclosed further potential regulators. Among these TFs, many have been described previously in plant pathogen responses. As a second approach to examine TF function the Arabidopsis thaliana TF ORF-EXpression-library (AtTORF-EX) established by Weiste et al. (2007) was extended. The developed high-throughput transformation procedure was used to generate new TF overexpression seed collections. Afterwards the library was applied in a screening approach to identify regulators which mediate enhanced tolerance towards the oxidative stress inducing chemical Paraquat. Thus, the TFs bZIP1 and OBP1 were found to promote resistance against Paraquat when overexpressed in Arabidopsis. In summary, using both approaches novel putative regulators of plant stress response signaling were identfied. KW - Ackerschmalwand KW - Transkriptionsfaktor KW - Protoplast KW - High throughput screening KW - Genaktivierung KW - Arabidopsis thaliana KW - transcription factor KW - protoplast KW - high throughput screening KW - gene activation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72057 ER -