TY - THES A1 - Schliermann [geb. Stratmann], Anna Theresa T1 - The Role of FGF Receptor 2 in GDF5 mediated Signal Transduction T1 - Die Rolle des FGF Rezeptors 2 in GDF5-vermittelter Signaltransduktion N2 - Bone morphogenetic proteins (BMPs) are involved in various aspects of cell-cell communication in complex life forms. They act as morphogens, help differentiate different cell types from different progenitor cells in development, and are involved in many instances of intercellular communication, from forming a body axis to healing bone fractures, from sugar metabolism to angiogenesis. If the same protein or protein family carries out many functions, there is a demand to regulate and fine-tune their biological activities, and BMPs are highly regulated to generate cell- and context-dependent outcomes. Not all such instances can be explained yet. Growth/differentiation factor (GDF)5 (or BMP14) synergizes with BMP2 on chondrogenic ATDC5 cells, but antagonizes BMP2 on myoblastic C2C12 cells. Known regulators of BMP2/GDF5 signal transduction failed to explain this context-dependent difference, so a microarray was performed to identify new, cell-specific regulatory components. One identified candidate, the fibroblast growth factor receptor (FGFR)2, was analyzed as a potential new co-receptor to BMP ligands such as GDF5: It was shown that FGFR2 directly binds BMP2, GDF5, and other BMP ligands in vitro, and FGFR2 was able to positively influence BMP2/GDF5-mediated signaling outcome in cell-based assays. This effect was independent of FGFR2s kinase activity, and independent of the downstream mediators SMAD1/5/8, p42/p44, Akt, and p38. The elevated colocalization of BMP receptor type IA and FGFR2 in the presence of BMP2 or GDF5 suggests a signaling complex containing both receptors, akin to other known co-receptors of BMP ligands such as repulsive guidance molecules. This unexpected direct interaction between FGF receptor and BMP ligands potentially opens a new category of BMP signal transduction regulation, as FGFR2 is the second receptor tyrosine kinase to be identified as BMP co-receptor, and more may follow. The integration of cell surface interactions between members of the FGF and BMP family especially may widen the knowledge of such cellular communication mechanisms which involve both growth factor families, including morphogen gradients and osteogenesis, and may in consequence help to improve treatment options in osteochodnral diseases. N2 - Bone morphogenetic proteins (BMPs) sind oft an interzellulärer Kommunikation beteiligt. Sie sind Morphogene, spielen eine Rolle in der Differenzierung von zahlreichen Zelltypen aus verschiedenen Vorgängerzellen während der Entwicklung, und sind an vielen weiteren Beispielen der Zell-Zell-Kommunikation beteiligt: von der Formation einer Körperachse bis hin zur Heilung von Knochenbrüchen, vom Zuckermetabolismus bis zur Angiogenese. Wann immer dasselbe Protein oder dieselbe Proteinfamilie so viele Funktionen erfüllt, bedarf es der Regulation und Feinabstimmung ihrer diversen biologischen Aktivitäten, und BMPs sind zu dem Erzielen zell- und kontextspezifischer Effekte in ihrer Wirkung entsprechend stark reguliert. Nicht in allen Fällen sind die Mechanismen solcher Regulation bisher bekannt. Growth/differentiation factor (GDF)5 (oder BMP14) agiert mit BMP2 auf den chondrogenen ATDC5 Zellen synergistisch, aber antagonisiert BMP2 auf den myoblastischen C2C12 Zellen. Diese kontextabhängige Diskrepanz konnte mithilfe der bekannten Regulatoren von BMP2/GDF5-mediierten Signalen nicht erklärt werden. Daher wurde ein Microarray durchgeführt, um neue, zellspezifische regulatorische Proteine zu identifizieren. Einer der identifizierten Kandidaten, fibroblast growth factor receptor (FGFR)2, wurde auf eine potentielle Funktion als neuer Korezeptor für BMP Liganden wie GDF5 analysiert: Es konnte gezeigt werden, dass FGFR2 BMP2, GDF5 und andere BMP Liganden in vitro direkt binden und die biologische Aktivität von BMP2 und GDF5 in Zellkultursystemen positiv beeinflussen konnte. Diese Beobachtungen waren unabhängig von der Kinaseaktivität des FGFR2, und unabhängig von den intrazellulären Mediatoren SMAD1/5/8, p42/p44, Akt und p38. Die erhöhte Kolokalisation von FGFR2 mit dem BMP Rezeptor IA in der Präsenz von BMP2 oder GDF5 weist darauf hin, dass der entsprechende Signalkomplex möglicherweise beide Rezeptoren gleichzeitig enthält; ähnlich, wie das für andere bekannte Korezeptoren von BMP Liganden wie etwa den repulsive guidance molecules der Fall ist. Die unerwartete direkte Interaktion von einem FGF Rezeptor mit BMP-Liganden ist möglicherweise nur ein Beispiel für einen generelleren Mechanismus. Tatsächlich ist FGFR2 bereits die zweite Rezeptortyrosinkinase, die als BMP-Korezeptor identifiziert wurde, und es ist möglich, dass es noch mehr gibt. Speziell im Bezug auf die FGF-BMP Interaktion bergen die hier dargestellten Ergebnisse Potential zu neuen Erkenntnissen. Die Proteinfamilien dieser beiden Wachstumsfaktoren sind häufiger an demselben zellulären Mechanismen beteiligt; etwa an der Entstehung von Morphogengradienten in der Entwicklung oder an der Osteogenese. Die Interaktion der FGF und BMP Proteinfamilien auf der Zelloberfläche könnte eine wertvolle Ergänzung zu der Untersuchung ihres Zusammenspiels im Zellinneren sein, und könnte in diesem Zusammenhang sogar langfristig die Behandlungsmöglichkeiten von osteochondralen Erkrankungen erweitern. KW - Molekularbiologie KW - FGF signaling KW - BMP signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192889 ER - TY - THES A1 - Li, Kunkun T1 - Dissecting the interconnection of Ca\(^{2+}\) and pH signaling in plants with a novel biosensor for dual imaging T1 - Untersuchung der Verknüpfung von Ca\(^{2+}\) und pH-Signalen in Pflanzen mit einem neuartigen Biosensor für duale Bildgebung N2 - Calcium ion (Ca2+) and protons (H+) are both regarded as second messengers, participating in plant growth and stress mechanisms. However, H+ signals in plant physiology are less well investigated compared to Ca2+ signals. If interconnections between these two second messengers exist remains to be uncovered because appropriate imaging tools to monitor Ca2+ and H+ simultaneously in the same cell as well as accurate bioinformatics analysis remain to be developed. To overcome this problem and unravel the role and possible interconnection of Ca2+ and H+ in plants, a new biosensor named CapHensor was developed and optimized to visualize intracellular Ca2+ and H+ changes simultaneously and ratiometrically in the same cell. The CapHensor consisted of an optimized green fluorescent pH sensor (PRpHluorin) and an established red fluorescent Ca2+ sensor (R-GECO1) that were combined in one construct via a P2A sequence. A P2A self-cleavage site between the two sensors allowed to express equal amounts but spatially separated sensors, which enabled artifact-free and ratiometric imaging of cellular Ca2+ and pH side-by-side. The function of the CapHensor was verified in pollen tubes, since they possess standing Ca2+ and pH gradients. We found better imaging quality and the signal-to-noise ratio to be enhanced in live-cell imaging when two R-GECO1 proteins were fused in tandem within the CapHensor construct. To guarantee exclusive subcellular localization and avoid mixed signals from different compartments, Nuclear Export Sequence (NES) and Nuclear Localization Sequence (NLS) were used to target PRpHluorin and R-GECO1 to distinct compartments. After optimization and verification its function, CapHensor was successfully expressed in different cell types to investigate the role of Ca2+ and H+ signals to control polar growth of pollen tube, stomatal movement or leaf defense signaling. Results obtained in the past indicated both Ca2+ gradients and pH gradients in pollen tubes play roles in polar growth. However, the role and temporal relationship between the growth process and changes in Ca2+ and pH have not been conclusively resolved. Using CapHensor, I found cytosolic acidification at the tip could promote and alkalization to suppress growth velocity in N. tabacum pollen tubes, indicating that cytosolic H+ concentrations ([H+]cyt) play an important role in regulation pollen tubes growth despite the accompanied changes in cytosolic Ca2+ concentrations ([Ca2+]cyt). Moreover, growth correlated much better with the tip [H+]cyt regime than with the course of the tip [Ca2+]cyt regime. However, surprisingly, tip-focused [Ca2+]cyt andII [H+]cyt oscillations both lagged behind growth oscillations approximately 33 s and 18 s, respectively, asking for a re-evaluation of the role that tip [Ca2+]cyt may play in pollen tube growth. Live-cell CapHensor imaging combined with electrophysiology uncovered that oscillatory membrane depolarization correlated better with tip [H+]cyt oscillations than with tip [Ca2+]cyt oscillations, indicative for a prominent role of [H+]cyt to also control electrogenic membrane transport. Using CapHensor, reading out cellular movement at the same time enabled to provide a precise temporal and spatial resolution of ion signaling events, pointing out a prominent role of [H+]cyt in pollen tube tip growth. For leaf cells, a special CapHensor construct design had to be developed, containing additional NES localization sequences to avoid overlapping of fluorescense signals from the nucleus and the cytosol. Once this was achieved, the role of Ca2+ and pH changes in guard cells, another typical single-cell system was investigated. Cytosolic pH changes have been described in stomatal movement, but the physiological role of pH and the interaction with changing Ca2+ signals were still unexplored. Combining CapHensor with the here developed technique to monitor stomatal movement in parallel, the role of Ca2+ and H+ in stomatal movement was studied in detail and novel aspects were identified. The phytohormone ABA and the bacterial elicitor flagellin (flg22) are typical abiotic and biotic stresses, respectively, to trigger stomatal closure. What kind of Ca2+ and H+ signals by ABA and flg22 are set-off in guard cells and what their temporal relationship and role for stomatal movement is were unknown. Similar [Ca2+]cyt increases were observed upon ABA and flg22 triggered stomatal closure, but [H+]cyt dynamics differed fundamentally. ABA triggered pronounced cytosolic alkalization preceded the [Ca2+]cyt responses significantly by 57 s while stomata started to close ca. 205 s after phytohormone application. With flg22, stomatal closure was accompanied only with a mild cytosolic alkalization but the [Ca2+]cyt response was much more pronounced compared to the ABA effects. Where the cytosolic alkalization originates from was unclear but the vacuole was speculated to contribute in the past. In this thesis, vacuolar pH changes were visualized by the dye BCECF over time, basically displaying exactly the opposite course of the concentration shift in the vacuole than observed in the cytosol. This is indicative for the vacuolar pH dynamics to be coupled strongly to the cytosolic pH changes. In stomatal closure signalling, reactive oxygen species (ROS) were proposed to play a major role, however, only very high concentration of H2O2 (> 200 µM), which resulted in the loss of membrane integrity, induced stomatal closure. Unexpectedly, physiological concentrations of ROS led to cytosolic acidificationIII which was associated with stomatal opening, but not stomatal closure. To study the role of [H+]cyt to steer stomatal movement in detail, extracellular and intracellular pH variations were evoked in N. tabacum guard cells and their behaviour was followed. The results demonstrated cytosolic acidification stimulated stomatal opening while cytosolic alkalization triggered stomatal closure accompanied by [Ca2+]cyt elevations. This demonstrated pH regulation to be an important aspect in stomatal movement and to feed-back on the Ca2+-dynamics. It was remarkable that cytosolic alkalization but not [Ca2+]cyt increase seemed to play a crucial role in stomatal closure, because more pronounced cytosolic alkalization, evoked stronger stomatal closure despite similar [Ca2+]cyt increases. Increases in [Ca2+]cyt, which are discussed as an early stomatal closure signal in the past, could not trigger stomatal closure alone in my experiments, even when extremely strong [Ca2+]cyt signals were triggered. Regarding the interaction between the two second messengers, [Ca2+]cyt and [H+]cyt were negatively correlated most of the times, which was different from pollen tubes showing positive correlation of [Ca2+]cyt and [H+]cyt regimes. [Ca2+]cyt elevations were always associated with a cytosolic alkalization and this relationship could be blocked by the presence of vanadate, a plasma membrane H+-pump blocker, indicating plasma membrane H+-ATPases to contribute to the negative correlation of [Ca2+]cyt and [H+]cyt. To compare with guard cells, cytosolic and nuclear versions of CapHensor were expressed in N. benthamiana mesophyll cells, a multicellular system I investigated. Mesophyll cell responses to the same stimuli as tested in guard cells demonstrated that ABA and H2O2 did not induce any [Ca2+]cyt and [H+]cyt changes while flg22 induced an increase in [Ca2+]cyt and [H+]cyt, which is different from the response in guard cells. I could thus unequivocally demonstrate that guard cells and mesophyll cells do respond differently with [Ca2+]cyt and [H+]cyt changes to the same stimuli, a concept that has been proposed before, but never demonstrated in such detail for plants. Spontaneous Ca2+ oscillations have been observed for a long time in guard cells, but the function or cause is still poorly understood. Two populations of oscillatory guard cells were identified according to their [Ca2+]cyt and [H+]cyt phase relationship in my study. In approximately half of the oscillatory cells, [H+]cyt oscillations preceded [Ca2+]cyt oscillations whereas [Ca2+]cyt was the leading signal in the other half of the guard cells population. Strikingly, natural [H+]cyt oscillations were dampened by ABA but not by flg22. This effect could be well explained by dampening of vacuolar H+ oscillations in the presence of ABA, but not through flg22. Vacuolar pH contributes to spontaneous [H+]cyt oscillations and ABA but not flg22 can block the interdependence of naturalIV [Ca2+]cyt and [H+]cyt signals. To study the role of [Ca2+]cyt oscillations in stomatal movement, solutions containing high and low KCl concentrations were applied aiming to trigger [Ca2+]cyt oscillations. The triggering of [Ca2+]cyt oscillations by this method was established two decades ago leading to the dogma that [Ca2+]cyt increases are the crucial signal for stomatal closure. However, I found stomatal movement by this method was mainly due to osmotic effects rather than [Ca2+]cyt increases. Fortunately, through this methodology, I found a strong correlation between cytosolic pH and the transport of potassium across the plasma membrane and vacuole existed. The plasma membrane H+-ATPases and H+-coupled K+ transporters were identified as the cause of [H+]cyt changes, both very important aspects in stomata physiology that were not visualized experimentally before. Na+ transport is also important for stomatal regulation and leaves generally since salt can be transported from the root to the shoot. Unlike well-described Ca2+- dependent mechanisms in roots, how leaves process salt stress is not at all understood. I applied salt on protoplasts from leaves, mesophyll cells and guard cells and combined live-cell imaging with Vm recordings to understand the transport and signaling for leaf cells to cope with salt stress. In both, mesophyll and guard cells, NaCl did not trigger Ca2+-signals as described for roots but rather triggered Ca2+ peaks when washing salt out. However, membrane depolarization and pronounced alkalinization were very reliably triggered by NaCl, which could presumably act as a signal for detoxification of high salt concentrations. In line with this, I found the vacuolar cation/H+ antiporter NHX1 to play a role in sodium transport, [H+]cyt homeostasis and the control of membrane potential. Overexpression of AtNHX1 enabled to diminish [H+]cyt changes and resulted in a smaller depolarization responses druing NaCl stress. My results thus demonstrated in contrast to roots, leaf cells do not use Ca2+-dependent signalling cascades to deal with salt stress. I could show Na+ and K+ induced [H+]cyt and Vm responses and Cl- transport to only have a minor impact. Summing all my results up briefly, I uncovered pH signals to play important roles to control pollen tube growth, stomatal movement and leaf detoxification upon salt. My results strongly suggested pH changes might be a more important signal than previously thought to steer diverse processes in plants. Using CapHensor in combination with electrophysiology and bioinformatics tools, I discovered distinct interconnections between [Ca2+]cyt and [H+]cyt in different cell types and distinct [Ca2+]cyt and [H+]cyt signals are initiated through diverse stimuli and environmental cues. The CapHensor will be very useful in the future to further investigate the coordinated role of Ca2+ and pH changes in controlling plant physiology. N2 - Kalziumionen (Ca2+) und Protonen (H+) werden beide als Botenstoffe angesehen, die am Pflanzenwachstum und an Mechanismen zur Stressbewältigung beteiligt sind. In der Pflanzenphysiologie sind H+-Signale jedoch im Vergleich zu Ca2+-Signalen weniger gut untersucht. Die Frage, ob zwischen diesen beiden Botenstoffen Zusammenhänge bestehen, muss noch geklärt werden, da geeignete bildgebende Verfahren zur gleichzeitigen Aufzeichnung von Ca2+ und H+ Signalen sowie eine genaue bioinformatische Analyse noch entwickelt werden müssen. Um dieses Problem zu überwinden und die Rolle und möglichen Zusammenhang von Ca2+ und H+ Signalen in Pflanzen zu entschlüsseln, wurde ein neuer Biosensor namens CapHensor entwickelt und optimiert, um intrazelluläre Ca2+- und H+-Veränderungen gleichzeitig und ratiometrisch zu untersuchen. Der CapHensor bestand aus einem optimierten grün fluoreszierenden pH-Sensor (PRpHluorin) und einem etablierten rot fluoreszierenden Ca2+-Sensor (R-GECO1), die über eine P2A-Sequenz in einem Konstrukt kombiniert wurden. Eine sogenannte P2A-„self-cleavage site“ zwischen den beiden Sensoren ermöglichte die Expression gleicher Mengen, aber räumlich getrennter Sensoren, was eine artefaktfreie und ratiometrische Darstellung von zellulärem Ca2+ und pH nebeneinander ermöglichte. Die Funktion des CapHensors wurde in Pollenschläuchen verifiziert, da diese einen ständigen Ca2+- und pH-Gradienten aufweisen. Wir stellten fest, dass die Qualität der Bildaufnahmen und das Signal-Rausch-Verhältnis bei der Bildgebung in lebenden Zellen verbessert wurden, wenn zwei R-GECO1-Proteine innerhalb des CapHensor-Konstrukts translational fusioniert wurden. Um eine ausschließliche zytosolische Lokalisierung zu gewährleisten und gemischte Signale aus verschiedenen Kompartimenten zu vermeiden, wurden sogenannte „Nuclear Export Sequence“ (NES) und die „Nuclear Localization Sequence“ (NLS) verwendet, um PRpHluorin und R-GECO1 in unterschiedlichen Kompartimente zu lokalisieren. Nach der Optimierung und Überprüfung seiner Funktionsweise wurde CapHensor erfolgreich in verschiedenen Zelltypen exprimiert, um die Rolle von Ca2+- und H+-Signalen bei der Kontrolle des polaren Wachstums von Pollenschläuchen, die Stomabewegung oder Abwehrmechanismen der Blätter zu untersuchen. Die in der Vergangenheit erzielten Ergebnisse deuten darauf hin, dass sowohl der Ca2+-Gradient als auch der pH-Gradient in Pollenschläuchen eine Rolle beim polaren Wachstum spielen, wobei dem Ca2+-Gradient zum Teil die Hauptrolle zugesprochen wird. Die Rolle und die zeitlicheVI Beziehung zwischen dem Wachstumsprozess und den Veränderungen von Ca2+ und pH sind jedoch noch nicht abschließend geklärt. Mit Hilfe von CapHensor fand ich heraus, dass eine zytosolische Ansäuerung an der Spitze die Wachstumsgeschwindigkeit in N. tabacumPollenschläuchen fördern und eine Alkalisierung die Wachstumsgeschwindigkeit unterdrücken kann, was darauf hindeutet, dass die zytosolische H+-Konzentration ([H+]cyt) trotz der damit einhergehenden Veränderungen der zytosolischen Ca2+-Konzentration ([Ca2+]cyt) eine wichtige Rolle bei der Regulierung des Wachstums von Pollenschläuchen spielt. Außerdem korrelierte das Wachstum viel besser mit dem [H+]cyt-Verlauf an der Spitze als mit dem Verlauf des [Ca2+]cytSignals. Überraschenderweise hinkten jedoch sowohl die [Ca2+]cyt- als auch die [H+]cytOszillationen an der Spitze den Wachstumsoszillationen um etwa 33 s bzw. 18 s hinterher, so dass die Rolle von [Ca2+]cyt an der Spitze für das Wachstum des Pollenschlauchs neu bewertet werden muss. Die CapHensor-Bildgebung an lebenden Zellen in Kombination mit Elektrophysiologie ergab, dass die oszillierende Membrandepolarisation besser mit den [H+]cyt-Oszillationen an der Spitze korrelierte als mit den [Ca2+]cyt-Oszillationen, was darauf hindeutet, dass [H+]cyt auch eine wichtige Rolle bei der Kontrolle des elektrogenen Membrantransports spielt. Mit Hilfe des CapHensors und dem gleichzeitigen Auslesen der Zellbewegungen konnte eine präzise zeitliche und räumliche Auflösung der Ereignisse erzielt werden, was auf eine herausragende Rolle von [H+]cyt beim Wachstum der Pollenschlauchspitze hinweist. Für den Einsatz des CapHensors in Blattzellen musste ein spezielles CapHensor-Konstrukt entwickelt werden, das zusätzliche NES-Lokalisierungssequenzen enthielt, um eine Überlappung der Fluoreszenzsignale aus dem Zellkern und dem Zytosol zu vermeiden. Nachdem dies erreicht war, wurde die Rolle von Ca2+- und pH-Änderungen in Schließzellen, einem gut beschriebenen Einzelzellsystem, untersucht. Veränderungen des zytosolischen pH-Werts wurden bei der Bewegung von Stomata in früheren Studien beschrieben, aber die physiologische Rolle dieser Veränderungen und die Interaktion mit sich verändernden Ca2+-Signalen waren noch unerforscht. Der Einsatz von CapHensor zusammen mit der von mir entwickelten Technik zur parallelen Erfassung der Stomatabewegung hat unser Verständnis der Rolle von Ca2+ und H+ bei der Stomatabewegung erheblich verbessert. Das Phytohormon ABA und der bakterielle Elicitor Flagellin (flg22) sind typische abiotische bzw. biotische Stressfaktoren, die das Schließen der Stomata auslösen. Welche Art von Ca2+- und H+-Signalen in den Schließzellen durch ABA und flg22 ausgelöst werden und in welchem zeitlichen Zusammenhang sie stehen und welche Rolle sieVII für die Bewegung der Stomata spielen, war bisher unbekannt. Bei der durch ABA und flg22 ausgelösten Schließung der Stomata wurde ein Anstieg von [Ca2+]cyt beobachtet, aber die Dynamik von [H+]cyt unterschied sich grundlegend und zeigte eine andere Dynamik. ABA löste eine ausgeprägte zytosolische Alkalisierung aus, die der [Ca2+]cyt-Antwort um 57 s deutlich vorausging, während die Spaltöffnungen erst ca. 205 s danach anfingen zu schliessen. Bei Flg22 ging das Schließen der Spaltöffnungen nur mit einer leichten zytosolischen Alkalisierung einher, aber die Ca2+-Reaktion war im Vergleich zur ABA-Reaktion viel ausgeprägter. Woher die zytosolische Alkalisierung stammt, war unklar, aber in der Vergangenheit wurde spekuliert, dass die Vakuole dazu beiträgt. In dieser Arbeit wurden vakuoläre pH-Änderungen mit Hilfe des Farbstoffs BCECF über die Zeit verfolgt, wobei die Konzentrationsverschiebung in der Vakuole im Grunde genommen genau den umgekehrten Verlauf aufwies als im Zytosol beobachtet. Dies deutet darauf hin, dass die Dynamik des vakuolären pH-Wertes stark an die Änderungen des zytosolischen pHWertes gekoppelt ist. Aus der Literatur ist bekannt, dass reaktive Sauerstoffspezies (ROS) bei der Signalgebung für das Schließen der Stomata eine wichtige Rolle spielen. Als ich jedoch definierte H2O2-Mengen auf die Zellen applizierte, führten nur unphysiologosch hohe H2O2-Konzentrationen (> 200 µM), die zu einem Verlust der Membranintegrität führten, zum Schließen der Stomata. Unerwarteterweise führten physiologische Konzentrationen von ROS zu einer Ansäuerung des Zytosols, die mit der Öffnung der Stomata, aber nicht mit der Schließung der Stomata in Verbindung gebracht wurde. Um die Rolle von [H+]cyt bei der Steuerung der stomatären Bewegung im Detail zu untersuchen, wurden extrazelluläre und intrazelluläre pH-Änderungen in N. tabacumSchließzellen hervorgerufen um deren Verhalten bei pH-Änderungen zu untersuchen. Die Ergebnisse zeigten, dass eine zytosolische Ansäuerung die Öffnung der Stomata stimuliert, während eine zytosolische Alkalisierung die Schließung der Stomata auslöst, begleitet von einem Anstieg von [Ca2+]cyt. Dies beweist, dass die pH-Regulierung ein wichtiger Aspekt der stomatären Bewegung darstellt und auf die Ca2+-Dynamik einwirkt. Bemerkenswert war, dass die zytosolische Alkalisierung und nicht der Ca2+-Anstieg eine entscheidende Rolle bei der Schließung der Stomata zu spielen schien, da eine stärkere zytosolische Alkalisierung trotz eines ähnlichen [Ca2+]cyt - Anstiegs eine stärkere Schließung der Stomata hervorrief. Erhöhungen von [Ca2+]cyt, die in der Vergangenheit als frühes Stomataschließungssignal diskutiert wurden, konnten in meinen Experimenten den Stomataschluß nicht allein auslösen, selbst wenn extrem starke Ca2+-Signale ausgelöst wurden. Was die Interaktion zwischen den beiden Botenstoffen anbelangt, so warenVIII [Ca2+]cyt und [H+]cyt meist negativ miteinander korreliert, was sich von den Pollenschläuchen unterschied, die eine positive Korrelation zwischen [Ca2+]cyt und [H+]cyt aufwiesen. Ca2+- Erhöhungen waren immer mit einer Alkalisierung des Zytosols verbunden, und diese Beziehung konnte durch die Anwesenheit von Vanadat, ein H+-Pumpen Blocker blockiert werden, was darauf hindeutet, dass die H+-ATPasen der Plasmamembran zu der negativen Korrelation von [Ca2+]cyt und [H+]cyt beitragen. Im Vergleich zu den CapHensor-Reaktionen bei Schließzellen wurden zytosolische und Zellkern-lokalisierende Versionen von CapHensor in Mesophyllzellen von N. benthamiana, einem von uns untersuchten multizellulären System, exprimiert. Die Reaktionen der Mesophyllzellen auf die gleichen Stimuli wie bei den Schließzellen zeigten, dass ABA und H2O2 keine Veränderungen von [Ca2+]cyt und [H+]cyt hervorrufen, während flg22 einen Anstieg von [Ca2+]cyt und [H+]cyt bewirkt, der sich von der Reaktion in Schließzellen unterscheidet. Damit konnte ich eindeutig nachweisen, dass Schließ- und Mesophyllzellen in Bezug auf [Ca2+]cyt- und [H+]cyt-Änderungen sehr unterschiedlich auf dieselben Stimuli reagieren, ein Konzept, das zwar schon früher vorgeschlagen, aber noch nie so detailliert für Pflanzen nachgewiesen wurde. Ein Phänomen, das seit langem in Schließzellen beobachtet wird, dessen Funktion oder Ursache aber noch nicht verstanden ist, sind regelmäßige Ca2+-Oszillationen, die spontan auftreten. Interessanterweise wurden zwei Populationen von oszillierenden Schließzellen anhand ihrer [Ca2+]cyt- und [H+]cyt-Phasenbeziehung identifiziert. Bei etwa der Hälfte der oszillierenden Zellen gingen die [H+]cyt-Oszillationen den [Ca2+]cyt-Oszillationen voraus, während in der anderen Hälfte der Schließzellenpopulation [Ca2+]cyt das vorangehende Signal war. Auffallend ist, dass die natürlichen [H+]cyt-Oszillationen durch ABA gedämpft wurden, nicht aber durch flg22. Dieser Effekt lässt sich gut durch die Dämpfung der vakuolären H+-Oszillationen in Gegenwart von ABA erklären, aber nicht durch flg22, das ich mit BCECF sichtbar gemacht habe. Es zeigte sich, dass sowohl der vakuoläre pH-Wert zu spontanen [H+]cyt-Oszillationen beiträgt als auch, dass ABA, nicht aber flg22, den Zusammenhang der natürlichen [Ca2+]cyt- und [H+]cyt-Signale blockieren kann. Um die Rolle der [Ca2+]cyt-Oszillationen bei der Bewegung der Stomata zu untersuchen, wurden Lösungen mit hohen und niedrigen KCl-Konzentrationen verwendet, um [Ca2+]cyt-Oszillationen auszulösen. Das Auslösen von Ca2+-Oszillationen nach dieser Methode wurde in Studien vor zwei Jahrzehnten etabliert, und die Ergebniss daraus haben zu dem Dogma geführt, dass der Anstieg von [Ca2+]cyt das entscheidende Signal für die Schließung von Stomata ist. Ich habe jedoch herausgefunden, dass die Bewegung der Stomata mit dieser Methode hauptsächlich auf osmotischeIX Effekte und nicht auf die Auswirkungen der [Ca2+]cyt-Erhöhungen zurückzuführen waren. Glücklicherweise fand ich mit dieser Methode heraus, dass es eine starke Korrelation zwischen dem zytosolischen pH-Wert und dem Kaliumtransport über die Plasmamembran und die Vakuole gibt. Die H+-ATPasen der Plasmamembran und die H+-gekoppelten K+-Transporter wurden als Ursache für die pH-Änderungen identifiziert, beides sehr wichtige Aspekte in der Stomaphysiologie, die zuvor nicht experimentell sichtbar gemacht werden konnten. Der Transport von Natriumionen (Na+) ist für die Regulierung der Stomata und der Adaption von Blättern bei Salzstress wichtig, da Salz von der Wurzel zum Spross transportiert werden kann. Im Gegensatz zu den gut beschriebenen Ca2+-abhängigen Na+-Transportmechanismen in den Wurzeln ist überhaupt nicht bekannt, wie Blätter Salzstress verarbeiten. Ich habe Salz auf Protoplasten von Blättern, Mesophyllzellen und Schießzellen appliziert und „Live-Cell-Imaging“ mit Aufzeichnungen der Membranspannung kombiniert, um den Transport und die Signalreizweiterleitung bei Salzstress in Blättern zu verstehen. Sowohl in Mesophyll- als auch in Schließzellen löste NaCl keine Ca2+-Signale aus, wie sie für Wurzeln beschrieben wurden, sondern führte beim Auswaschen von Salz zu [Ca2+]cyt-Transienten. Eine Membrandepolarisation und eine ausgeprägte Alkalisierung wurden jedoch sehr zuverlässig durch NaCl ausgelöst, was vermutlich als Signal für die Entgiftung von hohen Salzkonzentrationen dienen könnte. Im Einklang damit konnte ich zeigen, dass der vakuoläre Kationen/H+-Antiporter NHX1 eine Rolle beim Natriumtransport, der zytosolischen pH-Homöostase und der Kontrolle des Membranpotenzials spielt. Die Überexpression von AtNHX1 ermöglichte es, [H+]cyt-Veränderungen zu vermindern und führte zu einer geringeren Depolarisationsreaktion unter NaCl-Stress. Meine Ergebnisse zeigen somit, dass Blattzellen im Gegensatz zu Wurzeln keine Ca2+-abhängigen Signalkaskaden nutzen, um mit Salzstress umzugehen, und ich konnte zeigen, dass Na+ und K+ die [H+]cyt- und Membranspannungs-Reaktionen auslöst und der Cl--Transport nur einen geringen Einfluss hat. Zusammenfassend habe ich festgestellt, dass pH-Signale eine wichtige Rolle bei der Kontrolle des Wachstums von Pollenschläuchen spielen, sowie bei der Bewegung der Stomata und der Entgiftung der Blätter durch Salz beteiligt sind. Meine Ergebnisse deuten stark darauf hin, dass pH-Änderungen ein wichtigeres Signal für die Steuerung verschiedener Prozesse in Pflanzen sein könnten als bisher angenommen. Durch den Einsatz des CapHensors in Kombination mit elektrophysiologischen und bioinformatischen Methoden konnte ich feststellen, dass in verschiedenen Zelltypen unterschiedliche Zusammenhänge zwischen [Ca2+]cyt und [H+]cyt bestehenX und dass unterschiedliche [Ca2+]cyt- und [H+]cyt-Signale durch verschiedene Stimuli und Umweltreize ausgelöst werden. Der CapHensor wird in Zukunft sehr nützlich sein, um die koordinierte Rolle von Ca2+- und pH-Änderungen bei der Steuerung der Pflanzenphysiologie weiter zu untersuchen. KW - Calcium KW - pH KW - live-cell imaging KW - pollen tubes KW - guard cells KW - mesophyll cells KW - Pflanzen KW - Biosensor KW - Bilderzeugung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249736 ER - TY - THES A1 - Lambour, Benjamin T1 - Regulation of sphingolipid long-chain bases during cell death reactions and abiotic stress in \(Arabidopsis\) \(thaliana\) T1 - Regulation von Sphingobasen während der Zelltodreaktion und abiotischem Stress in \(Arabidopsis\) \(thaliana\) N2 - Sphingobasen (LCBs) sind die Bausteine der Biosynthese von Sphingolipiden. Sie werden als Strukturelemente der pflanzlichen Zellmembran definiert und spielen eine wichtige Rolle für das Schicksal der Zellen. Komplexe Ceramide machen einen wesentlichen Teil der gesamten Sphingolipide aus, die einen großen Teil der eukaryotischen Membranen bilden. Gleichzeitig sind LCBs bekannte Signalmoleküle für zelluläre Prozesse in Eukaryonten und sind an Signalübertragungswegen in Pflanzen beteiligt. Es hat sich gezeigt, dass hohe LCB-Konzentrationen mit der Induktion des programmierten Zelltods sowie mit dem durch Pathogene ausgelösten Zelltod in Verbindung stehen. Mehrere Studien haben die regulierende Funktion der Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen bestätigt: (i) Spontaner PCD und veränderte Zelltodreaktionen, die durch mutierte verwandte Gene des Sphingobasen-Stoffwechsels verursacht werden. (ii) Zelltodbedingungen erhöhen den Gehalt an LCBs. (iii) PCD aufgrund eines gestörten Sphingolipid-Stoffwechsels, der durch von nekrotrophen Krankheitserregern produzierte Toxine wie Fumonisin B1 (FB1) hervorgerufen wird. Um den Zelltod zu verhindern und die Zelltodreaktion zu kontrollieren, kann daher die Regulierung des Gehalts an freien LCBs entscheidend sein. Die Ergebnisse der vorliegenden Studie stellten das Verständnis der Sphingobasen und Sphingolipidspiegel während der PCD in Frage. Wir lieferten eine detaillierte Analyse der Sphingolipidspiegel, die Zusammenhänge zwischen bestimmten Sphingolipidarten und dem Zelltod aufzeigte. Darüber hinaus ermöglichte uns die Untersuchung der Sphingolipid-Biosynthese ein Verständnis des Fluxes nach Akkumulation hoher LCB-Konzentrationen. Weitere Analysen von Abbauprodukten oder Sphingolipid-Mutantenlinien wären jedoch erforderlich, um vollständig zu verstehen, wie die Pflanze mit hohen Mengen an Sphingobasen umgeht. N2 - Sphingolipid long-chain bases (LCBs) are the building blocks of the biosynthesis of sphingolipids. They are defined as structural elements of the plant cell membrane and play an important role determining the fate of the cells. Complex ceramides represent a substantial fraction of total sphingolipids which form a major part of eukaryotic membranes. At the same time, LCBs are well known signaling molecules of cellular processes in eukaryotes and are involved in signal transduction pathways in plants. High levels of LCBS have been shown to be associated with the induction of programmed cell death as well as pathogen-derived toxin-induced cell death. Indeed, several studies confirmed the regulatory function of sphingobases in plant programmed cell death (PCD): (i) Spontaneous PCD and altered cell death reaction caused by mutated related genes of sphingobase metabolism. (ii) Cell death conditions increases levels of LCBs. (iii) PCD due to interfered sphingolipid metabolism provoked by toxins produced from necrotrophic pathogens, such as Fumonisin B1 (FB1). Therefore, to prevent cell death and control cell death reaction, the regulation of levels of free LCBs can be crucial. The results of the present study challenged the comprehension of sphingobases and sphingolipid levels during PCD. We provided detailed analysis of sphingolipids levels that revealed correlations of certain sphingolipid species with cell death. Moreover, the investigation of sphingolipid biosynthesis allowed us to understand the flux after the accumulation of high LCB levels. However, further analysis of degradation products or sphingolipid mutant lines, would be required to fully understand how high levels of sphingobases are being treated by the plant. KW - PCD KW - Sphingolipids KW - LCB KW - Ackerschmalwand KW - programmed cell death KW - arabidopsis thaliana KW - abiotic stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325916 ER - TY - THES A1 - Fei, Lin T1 - Optogenetic regulation of osmolarity and water flux T1 - Optogenetische Regulation der Osmolarität und des Wasserflusses N2 - Optogenetics is a powerful technique that utilizes light to precisely regulate physiological activities of neurons and other cell types. Specifically, light-sensitive ion channels, pumps or enzymes are expressed in cells to enable their regulation by illumination, thus allowing for precise control of biochemical signaling pathways. The first part of my study involved the construction, optimization, and characterization of two optogenetic tools, KCR1 and NCR1. Elena Govorunova et al. discovered a lightgated potassium channel, KCR1, in the protozoan Hyphochytrium catenoides. Traditional potassium ion channels are classified as either ligand-gated or voltage-gated and possess conserved pore-forming domains and K+ -selective filters. However, KCR1 is unique in that it does not contain the signature sequence of previously known K+ channels and is a channelrhodopsin. We synthesized the KCR1 plasmid according to the published sequence and expressed it in Xenopus oocytes. Due to the original KCR1 current being too small, I optimized it into KCR1 2.0 to improve its performance by fusing LR (signal peptide LucyRho, enhances expression) at the N-terminal and T (trafficking signal peptide) and E (ER export signal peptide) at the C-terminal. Additionally, I investigated the light sensitivity, action spectrum, and kinetics of KCR1 2.0 in Xenopus oocytes. The potassium permeability of KCR1 2.0, PK/Pna  24, makes KCR1 2.0 a powerful hyperpolarizing tool that can be used to inhibit neuronal firing in animals. Inspired by KCR1, we used the KCR1 sequence as a template for gene sequence alignment with the sequences in H. catenoides. We found that NCR1 and KCR1 have similar gene sequences. NCR1 was characterized by us as a light-gated sodium channel. This NCR1 was also characterized and published by Govorunova et al. very recently, with the name HcCCR. Due to the original NCR1 current being too small, I optimized it into NCR1 2.0 to improve its performance by fusing LR at the N-terminal and T and E at the C-terminal, which significantly improved the expression level and greatly increased the current amplitude of NCR1. Full-length NCR1 2.0 contains 432 amino acids. To test whether the number of amino acids changes the characteristics of NCR1 2.0, we designed NCR1 2.0 (330), NCR1 2.0 (283), and NCR1 2.0 (273) by retaining the number of amino acids at 330, 280, and 273 in NCR1 2.0, respectively. As the number of amino acids decreased, the current in NCR1 2.0 increased. I also investigated the light sensitivity, action spectrum, and kinetics of NCR1 2.0 (273) in the Xenopus Abstract 2 oocytes. We performed four point mutations at amino acid positions 133 and 116 of NCR1 2.0 and analyzed the reversal potentials of the mutants. The mutations were as follows: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), and NCR1 2.0 (283 D116Q). The second part of this study focuses on light-induced water transport using optogenetic tools. We explored the use of optogenetic tools to regulate water flow by changing the osmolarity in oocytes. Water flux through AQP1 is driven by the osmotic gradient that results from concentration differences of small molecules or ions. Therefore, we seek to regulate ion concentrations, using optogenetic tools to regulate the flux of water noninvasively. To achieve this, I applied the light-gated cation channels XXM 2.0 and NCR1 2.0 to regulate the concentration of Na+ , while K + channel KCR1 2.0 was used to regulate K + concentration. As Na+ flows into the Xenopus oocytes, the membrane potential of the oocytes becomes positive, and Clcan influx through the light-gated anion channel GtACR1. By combining these optogenetic tools to regulate NaCl or KCl concentrations, I can change the osmolarity inside the oocytes, thus regulating the flux of water. I co-expressed AQP1 with optogenetic tools in the oocytes to accelerate water flux. Overall, I designed three combinations (1: AQP1, XXM 2.0 and GtACR1. 2: AQP1, NCR1 2.0 and GtACR1. 3: AQP1, KCR1 2.0 and GtACR1) to regulate the flow of water in oocytes. The shrinking or swelling of the oocytes can only be achieved when AQP1, light-gated cation channels (XXM 2.0/NCR1 2.0/KCR1 2.0), and light-gated anion channels (GtACR1) are expressed together. The illumination after expression of either or both alone does not result in changes in oocyte morphology. In sum, I demonstrated a novel strategy to manipulate water movement into and out of Xenopus oocytes, non-invasively through illumination. These findings provide a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms. N2 - Die Optogenetik ist eine leistungsstarke Technik, die Licht zur präzisen Regulierung der physiologischen Aktivitäten von Neuronen und anderen Zelltypen einsetzt. Konkret werden Licht-empfindliche Ionenkanäle, Pumpen oder Enzyme in Zellen exprimiert, um ihre Regulierung durch Belichtung zu ermöglichen und so eine präzise Kontrolle biochemischer Signalwege zu ermöglichen. Der erste Teil meiner Studie umfasste die Konstruktion, Optimierung und Charakterisierung von zwei optogenetischen Werkzeugen, KCR1 und NCR1. Elena Govorunova und Mitarbeiter entdeckten einen lichtgesteuerten Kaliumkanal, KCR1, in dem Protozoen Hyphochytrium catenoides. Herkömmliche Kalium-Ionenkanäle werden entweder als ligandengesteuert oder spannungsgesteuert klassifiziert und verfügen über konservierte porenbildende Domänen und K+-selektive Filter. KCR1 ist jedoch insofern einzigartig, als er nicht die Signatursequenz der bisher bekannten K+-Kanäle enthält und ein Kanalrhodopsin ist. Wir synthetisierten das KCR1-Plasmid entsprechend der veröffentlichten Sequenz und exprimierten es in Xenopus-Oozyten. Da der ursprüngliche KCR1-Strom zu klein war, optimierte ich ihn zu KCR1 2.0, um seine Leistung zu verbessern, indem LR (Signalpeptid LucyRho, verbessert die Expression) am N-Terminus und T (Trafficking-Signalpeptid) und E (ER-Export-Signalpeptid) am C-Terminus fusioniert wurden. Außerdem untersuchte ich die Lichtempfindlichkeit, das Wirkungs-Spektrum und die Kinetik von KCR1 2.0 in Xenopus-Oozyten. Die Kaliumpermeabilität von KCR1 2.0, PK/PNa  24, macht KCR1 2.0 zu einem leistungsfähigen hyperpolarisierenden Werkzeug, das zur Hemmung von Nervenzellen in Tieren eingesetzt werden kann. Inspiriert von KCR1 verwendeten wir die KCR1-Sequenz als Vorlage für den Gen-Sequenzabgleich mit Sequenzen in H. catenoides. Wir fanden heraus, dass NCR1 und KCR1 ähnliche Gensequenzen haben. NCR1 wurde von uns als lichtgesteuerter Natriumkanal charakterisiert. NCR1 wurde ebenfalls von Govorunova et al. charakterisiert und vor kurzem unter dem Namen HcCCR veröffentlicht. Da der ursprüngliche NCR1-Strom zu gering war, optimierte ich ihn zu NCR1 2.0, um seine Leistung zu verbessern, indem ich LR am N-Terminus und T und E am C-Terminus fusionierte, was das Expressionsniveau erheblich verbesserte und die Stromamplitude von NCR1 stark erhöhte. NCR1 2.0 in voller Länge enthält 432 Aminosäuren. Um zu testen, ob die Anzahl der Aminosäuren die Eigenschaften von NCR1 2.0 verändert, haben wir NCR1 2.0 (330), NCR1 2.0 (283) und NCR1 2.0 (273) entwickelt, indem wir die Anzahl der Aminosäuren auf 330, 280 bzw. 273 in NCR1 2.0 verkürzt haben. Mit abnehmender Anzahl der Aminosäuren nahm der Strom in NCR1 2.0 zu. Ich untersuchte auch die Licht-Empfindlichkeit, das Wirkungsspektrum und die Kinetik von NCR1 2.0 (273) in Xenopus-Oozyten. Wir führten vier Punktmutationen an den Aminosäurepositionen 133 und 116 von NCR1 2.0 durch und analysierten die Umkehrpotentiale der Mutanten. Die Mutationen waren wie folgt: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), und NCR1 2.0 (283 D116Q). Der zweite Teil dieser Studie konzentriert sich auf den lichtinduzierten Wassertransport mit Hilfe optogenetischer Methoden. Wir untersuchten den Einsatz optogenetischer Werkzeuge zur Regulierung des Wasserflusses durch Veränderung der Osmolarität in Oozyten. Der Wasserfluss durch AQP1 wird durch den osmotischen Gradienten angetrieben, der durch Konzentrationsunterschiede kleiner Moleküle oder Ionen entsteht. Daher versuchen wir, die Ionenkonzentration mit optogenetischen Mitteln zu regulieren, um den Wasserfluss nicht-invasiv zu steuern. Zu diesem Zweck verwendete ich die lichtgesteuerten Kationenkanäle XXM 2.0 und NCR1 2.0 zur Regulierung der Na+-Konzentration, während der K+-Kanal KCR1 2.0 zur Regulierung der K+-Konzentration eingesetzt wurde. Wenn Na+ in die Xenopus-Oozyten fließt, wird das Membranpotential der Oozyten positiv, und Cl- kann durch den lichtgesteuerten Anionenkanal GtACR1 einströmen. Durch die Kombination dieser optogenetischen Werkzeuge zur Regulierung der NaCl- oder KCl-Konzentration kann ich die Osmolarität innerhalb der Oozyten verändern und so den Wasserfluss regulieren. Ich habe AQP1 zusammen mit optogenetischen Werkzeugen in den Oozyten exprimiert, um den Wasserfluss zu beschleunigen. Insgesamt habe ich drei Kombinationen entwickelt (1: AQP1, XXM 2.0 und GtACR1. 2: AQP1, NCR1 2.0 und GtACR1. 3: AQP1, KCR1 2.0 und GtACR1) zur Regulierung des Wasserflusses in den Eizellen. Das Schrumpfen oder Anschwellen der Oozyten kann nur erreicht werden, wenn AQP1, lichtgesteuerte Kationenkanäle (XXM 2.0/NCR1 2.0/KCR1 2.0) und lichtgesteuerte Anionenkanäle (GtACR1) gemeinsam exprimiert werden. Die Belichtung nach Expression von einem oder beiden allein führt nicht zu Veränderungen der Morphologie der Oozyten. Zusammenfassend lässt sich sagen, dass ich eine neuartige Strategie zur nicht-invasiven Beeinflussung der Wasserbewegung in und aus Xenopus-Oozyten durch Licht demonstriert habe. Diese Ergebnisse eröffnen einen neuen Weg zur Beeinflussung der Wasserhomöostase als Mittel zur Untersuchung verwandter biologischer Phänomene in verschiedenen Zelltypen und Organismen. KW - aquaporins KW - Osmolarität KW - optogenetic KW - sodium KW - potassium Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323092 ER - TY - THES A1 - Jaślan, Justyna Joanna T1 - R-type currents in \(Arabidopsis\) guard cells: properties and molecular nature T1 - R-type Ströme in \(Arabidopsis\) Schließzellen: Eigenschaften und molekularer Hintergrund N2 - In contrast to the well described molecular basis for S-type anion currents, the genes underlying R-type anion currents were unknown until 2010. Meyer S. and colleagues (2010) showed that, localized in the guard cell plasma membrane, AtALMT12 is an R-type anion channel involved in stomatal closure. However, knocking out AtALMT12 did not fully shut down R-type currents; the almt12 loss-of-function mutant has residual R-type-like currents indicating that ALMT12 is not the only gene encoding Arabidopsis thaliana R-type channels (Meyer S. et al., 2010). This PhD thesis is focussed on understanding the properties, regulation and molecular nature of the R-type channels in Arabidopsis thaliana plants. To fulfil these aims, the patch clamp technique was used to characterize electrical features of R-type currents in various conditions such as the presence/absence of ATP, variation in cytosolic calcium concentration or the presence of cytosolic chloride. Electrophysiological study revealed many similarities between the features of Arabidopsis thaliana R-type currents (Col0) and residual R-type currents (the almt12 loss-of-function mutant). Strong voltage dependency, channel activity in the same voltage range, position of maximal recorded current and blockage by cytosolic ATP all pointed to a shared phylogenetic origin of the channels underlying these R-type currents. Expression patterns of the ALMT family members for Col0 and the almt12 mutant revealed ALMT13 and AMT14 as potential candidates of the R-type channels. Electrical characterization of Col0, almt12 and the two double loss-of-function mutants (almt12/almt13 and almt12/almt14) strongly suggest that ALMT13 mediates the calcium-dependent R-type current component that is directly regulated by cytosolic calcium. Additionally, similarly to ALMT12, ALMT14 could participate as a calcium-independent R-type anion channel. Differences in response to the cytosolic calcium concentration between ALMT12, ALMT13 and ALMT14 suggest their possible involvement in different signalling pathways leading to stomatal closure. Moreover, a study performed for the two Arabidopsis thaliana ecotypes Col0 and WS showed drastically increased ALMT13 expression for WS, which is related to R-type current properties. The WS ecotype has calcium-dependent R-type current behaviour, while it is calcium-independent in Col0. Furthermore, this plant line showed lower peak current densities compared to Col0 and almt mutants. These facts strongly suggest interaction between ALMT12 and ALMT13, with ALMT13 as a repressor of the ALMT12. Acquired patch clamp data revealed sulphate-dependent increases in ALMT13 current. This could be caused by changes in absolute open probability and/or permeability for sulphate and possibly chloride and links ALMT13 with sulphate-mediated stomatal closure under drought stress. It was then confirmed that ATP affects R-type currents. In contrast to Vicia faba, ATP was identified as a negative regulator of the Arabidopsis thaliana R-type anion channels. The effect of ATP is ambiguous but there is a high probability that it is a result of direct block and phosphorylation. However, the phosphorylation site and place of ATP binding needs further investigation. The story of the ALMT family, as examined in this thesis, sheds light on the complexity of the stomatal closure process. N2 - Im Gegensatz zu den gut beschriebenen S-Typ Anionenströmen, die durch Kanäle der SLAC1 Familie vermittelt werden, waren die Gene, die für R-Typ Anionenkanäle kodieren bis 2010 unbekannt (Negi J. et al., 2008, Vahisalu T. et al., 2008). In diesem Jahr identifizierten Meyer S. und Kollegen AtALMT12 als R-Typ Anionenkanal, der in der Plasmamembran von Schließzellen lokalisiert und am Stomaschluss beteiligt ist. In almt12 Verlustmutanten sind jedoch restliche R-Typ Ströme messbar, die darauf hinweisen, dass ALMT12 nicht das einzige Gen ist, das in Arabidopsis thaliana für R-Typ Anionenkanäle kodiert (Meyer S. et al., 2010). Diese Dissertation konzentriert sich auf die Analyse der Eigenschaften, der Regulation und der molekularen Natur der R-Typ Kanäle in Arabidopsis thaliana Pflanzen. Dafür wurde die Patch Clamp Technik angewandt, um den Einfluss verschiedener Faktoren wie z.B. das Fehlen/Vorhandensein von ATP, Unterschiede in der zytosolischen Kalziumkonzentration oder das Vorhandensein von zytosolischem Chlorid auf die elektrische Eigenschaften der R-Typ Ströme der verschiedene Kanäle zu untersuchen. Die elektrophysiologischen Untersuchungen zeigten viele Ähnlichkeiten zwischen den Eigenschaften von R-Typ Ströme in Wildtyp Pflanzen (Col0) und den noch vorhandenen Strömen in der Verlustmutante almt12. Beide sind stark spannungsabhängig, zeigen Kanalaktivität im gleichen Spannungsbereich und werden durch zytosolisches ATP inhibiert, was auf einen gemeinsamen phylogenetischen Ursprung der R-Typ Anionenkanäle hinweist. Die Expressionsanalyse der Gene der ALMT-Familie zeigte, dass ALMT13 und ALMT14 weitere potenzielle Kandidaten für Anionenkanäle des R-Typs sind. Die elektrophysiologische Charakterisierung von Col0, almt12 und den beiden zweifachen Verlustmutanten almt12/almt13 und almt12/almt14 ermöglichte es, die durch ALMT13 vermittelten Ströme als kalziumabhängige Komponente der R-Typ Ströme zu spezifizieren. Dabei wird ALMT13 direkt durch zytosolisches Kalzium reguliert. ALMT14 vermittelt dagegen kalziumunabhängige Ströme, ähnlich wie ALMT12. Unterschiede in der Reaktion auf die zytosolische Kalziumkonzentration zwischen ALMT12, ALMT13 und ALMT14 deuten auf eine mögliche Beteiligung an verschiedenen Signalwegen hin, die zum Stomaschluss führen. Darüber hinaus wurde eine Studie für zwei Arabidopsis thaliana Ökotypen durchgeführt. Pflanzen des Ökotyps WS zeigten eine erhöhte Expression von ALMT13 im Vergleich zu Col0 Pflanzen, während die Expression von ALMT12 in beiden vergleichbar ist. Diese Unterschiede wirken sich auf die R-Typ Ströme aus, die nur in WS-Pflanzen kalziumabhängig sind und eine geringere Amplitude haben. Diese Fakten deuten stark auf eine Interaktion zwischen ALMT12 und ALMT13 hin, bei der ALMT13 als Repressor von ALMT12 wirkt. Die Auswertung der Patch-Clamp-Daten zeigte außerdem eine sulfatabhängige Zunahme der durch ALMT13 vermittelten R-Typ Ströme. Diese wird wahrscheinlich durch eine Änderung der Offenwahrscheinlichkeit und/oder der Permeabilität für Sulfat und möglicherweise für Chlorid verursacht, und die darauf hinweist, dass ALMT13 für frühe Antworten im sulfatvermittelten Stomaschluss bei Trockenstress eine Rolle spielt. Außerdem wurde gezeigt, dass ATP die R-Typ Ströme beeinflusst. In Arabidopsis thaliana Pflanzen wirkt ATP als negativer Regulator der Anionenkanäle vom R-Typ, nicht jedoch in Vicia faba (Hedrich R. et al., 1990). Der Mechanismus, über den ATP wirkt ist nicht eindeutig geklärt, aber es wird davon ausgegangen, dass es sich um eine direkte Inhibierung und Phosphorylierung handelt. Die Phosphorylierungsstelle und der Ort der ATP-Bindung bedürfen jedoch weiterer Untersuchungen. Die Geschichte der ALMT-Familie, wie sie in dieser Arbeit untersucht wird, wirft ein Licht auf die Komplexität des stomatalen Verschlussprozesses. KW - R-type currents KW - ALMT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188836 N1 - Parts of this thesis have been published in Jaślan, J., Marten, I., Jakobson, L., Arjus, T., Deeken, R., Sarmiento, C., De Angeli, A., Brosché, M., Kollist, H. and Hedrich, R. (2023), ALMT-independent guard cell R-type anion currents. New Phytol. https://doi.org/10.1111/nph.19124. ER - TY - THES A1 - Kunz, Marcel T1 - Diffusion kinetics of organic compounds and water in plant cuticular model wax under the influence of diffusing barrier-modifying adjuvants T1 - Diffusionskinetiken organischer Verbindungen und Wasser in pflanzlichem kutikulärem Modellwachs unter dem Einfluss von diffundierenden, barriere-modifizierenden Adjuvantien N2 - To reach their target site, systemic pesticides must enter the plant from a spray droplet applied in the field. The uptake of an active ingredient (AI) takes place via the barrier-forming cuticular membrane, which is the outermost layer of the plant, separating it from the surrounding environment. Formulations are usually used which, in addition to the AI, also contain stabilizers and adjuvants. Adjuvants can either have surface-active properties or they act directly as barrier-modifying agents. The latter are grouped in the class of accelerating adjuvants, whereby individual variants may also have surface-active properties. The uptake of a pesticide from a spray droplet depends essentially on its permeability through the cuticular barrier. Permeability defines a combined parameter, which is the product of AI mobility and AI solubility within the cuticle. In recent decades, several tools have been developed that allowed the determination of individual parameters of organic compound penetration across the cuticular membrane. Nevertheless, earlier studies showed that mainly cuticular waxes are the barrier-determining component of the cuticular membrane and additionally, it was shown that mainly the very-long-chain aliphatic compounds (VLCAs) are responsible for establishing an effective barrier. However, the barrier-determining role of the individual VLCAs, being classified according to their respective functional groups, is still unknown. Therefore, the following objectives were pursued and achieved in this work: (1) A new ATR-FTIR-based approach was developed to measure the temperature-dependent real-time diffusion kinetics of organic models for active ingredients (AIs) in paraffin wax, exclusively consisting of very-long chain alkanes. (2) The developed ATR-FTIR approach was applied to determine the diffusion kinetics of self-accelerating adjuvants in cuticular model waxes of different VLCA composition. At the same time, wax-specific changes were recorded in the respective IR spectra, which provided information about the respective wax modification. (3) The ATR-FTIR method was used to characterize the diffusion kinetics, as well as to determine the wax-specific sorption capacities for an AI-modeling organic compound and water in cuticular model waxes after adjuvant treatment. Regarding the individual chemical compositions and structures, conclusions were drawn about the adjuvant-specific modes of action (MoA). In the first chapter, the ATR-FTIR based approach to determine organic compound diffusion kinetics in paraffin wax was successfully established. The diffusion kinetics of the AI modelling organic compounds heptyl parabene (HPB) and 4-cyanophenol (CNP) were recorded, comprising different lipophilicities and molecular volumes typical for AIs used in pesticide formulations. Derived diffusion coefficients ranged within 10-15 m2 s-1, thus being thoroughly higher than those obtained from previous experiments using an approach solely investigating desorption kinetics in reconstituted cuticular waxes. An ln-linear dependence between the diffusion coefficients and the applied diffusion temperature was demonstrated for the first time in cuticular model wax, from which activation energies were derived. The determined activation energies were 66.2 ± 7.4 kJ mol-1 and 56.4 ± 9.8 kJ mol-1, being in the expected range of already well-founded activation energies required for organic compound diffusion across cuticular membranes, which again confirmed the significant contribution of waxes to the cuticular barrier. Deviations from the assumed Fickian diffusion were attributed to co-occurring water diffusion and apparatus-specific properties. In the second and third chapter, mainly the diffusion kinetics of accelerating adjuvants in the cuticular model waxes candelilla wax and carnauba wax were investigated, and simultaneously recorded changes in the wax-specific portion of the IR spectrum were interpreted as indications of plasticization. For this purpose, the oil derivative methyl oleate, as well as the organophosphate ester TEHP and three non-ionic monodisperse alcohol ethoxylates (AEs) C12E2, C12E4 and C12E6 were selected. Strong dependence of diffusion on the respective principal components of the mainly aliphatic waxes was demonstrated. The diffusion kinetics of the investigated adjuvants were faster in the n-alkane dominated candelilla wax than in the alkyl ester dominated carnauba wax. Furthermore, the equilibrium absorptions, indicating equilibrium concentrations, were also higher in candelilla wax than in carnauba wax. It was concluded that alkyl ester dominated waxes feature higher resistance to diffusion of accelerating adjuvants than alkane dominated waxes with shorter average chain lengths due to their structural integrity. This was also found either concerning candelilla/policosanol (n-alcohol) or candelilla/rice bran wax (alkyl-esters) blends: with increasing alcohol concentration, the barrier function was decreased, whereas it was increased with increasing alkyl ester concentration. However, due to the high variability of the individual diffusion curves, only a trend could be assumed here, but significant differences were not shown. The variability itself was described in terms of fluctuating crystalline arrangements and partial phase separation of the respective wax mixtures, which had inevitable effects on the adjuvant diffusion. However, diffusion kinetics also strongly depended on the studied adjuvants. Significantly slower methyl oleate diffusion accompanied by a less pronounced reduction in orthorhombic crystallinity was found in carnauba wax than in candelilla wax, whereas TEHP diffusion was significantly less dependent on the respective wax structure and therefore induced considerable plasticization in both waxes. Of particular interest was the AE diffusion into both waxes. Differences in diffusion kinetics were also found here between candelilla blends and carnauba wax. However, these depended equally on the degree of ethoxylation of the respective AEs. The lipophilic C12E2 showed approximately Fickian diffusion kinetics in both waxes, accompanied by a drastic reduction in orthorhombic crystallinity, especially in candelilla wax, whereas the more hydrophilic C12E6 showed significantly retarded diffusion kinetics associated with a smaller effect on orthorhombic crystallinity. The individual diffusion kinetics of the investigated adjuvants sometimes showed drastic deviations from the Fickian diffusion model, indicating a self-accelerating effect. Hence, adjuvant diffusion kinetics were accompanied by a distinct initial lag phase, indicating a critical concentration in the wax necessary for effective penetration, leading to sigmoidal rather than to exponential diffusion kinetics. The last chapter dealt with the adjuvant-affected diffusion of the AI modelling CNP in candelilla and carnauba wax. Using ATR-FTIR, diffusion kinetics were recorded after adjuvant treatment, all of which were fully explicable based on the Fickian model, with high diffusion coefficients ranging from 10-14 to 10-13 m2 s-1. It is obvious that the diffusion coefficients presented in this work consistently demonstrated plasticization induced accelerated CNP mobilities. Furthermore, CNP equilibrium concentrations were derived, from which partition- and permeability coefficients could be determined. Significant differences between diffusion coefficients (mobility) and partition coefficients (solubility) were found on the one hand depending on the respective waxes, and on the other hand depending on treatment with respective adjuvants. Mobility was higher in candelilla wax than in carnauba wax only after methyl oleate treatment. Treatment with TEHP and AEs resulted in higher CNP mobility in the more polar alkyl ester dominated carnauba wax. The partition coefficients, on the other hand, were significantly lower after methyl oleate treatment in both candelilla and carnauba wax as followed by TEHP or AE treatment. Models were designed for the CNP penetration mode considering the respective adjuvants in both investigated waxes. Co-penetrating water, which is the main ingredient of spray formulations applied in the field, was likely the reason for the drastic differences in adjuvant efficacy. Especially the investigated AEs favored an enormous water uptake in both waxes with increasing ethoxylation level. Surprisingly, this effect was also found for the lipophilic TEHP in both waxes. This led to the assumption that the AI permeability is not exclusively determined by adjuvant induced plasticization, but also depends on a “secondary plasticization”, induced by adjuvant-attracted co-penetrating water, consequently leading to swelling and drastic destabilization of the crystalline wax structure. The successful establishment of the presented ATR-FTIR method represents a milestone for the study of adjuvant and AI diffusion kinetics in cuticular waxes. In particular, the simultaneously detectable wax modification and, moreover, the determinable water uptake form a perfect basis to establish the ATR-FTIR system as a universal screening tool for wax-adjuvants-AI-water interaction in crop protection science. N2 - Um ihren Zielort zu erreichen, müssen systemische Pestizide aus einem auf dem Feld ausgebrachten Sprühtropfen in die Pflanze gelangen. Die Aufnahme eines Wirkstoffs (AI) erfolgt über die barrierebildende Kutikularmembran, die äußerste Schicht der Pflanze, die sie von der Umgebung trennt. In der Regel werden Formulierungen verwendet, die neben dem AI auch Stabilisatoren und Adjuvantien enthalten. Adjuvantien können entweder oberflächenaktive Eigenschaften haben oder sie wirken direkt als barrieremodifizierende Substanzen. Letztere werden in der Klasse der beschleunigenden Adjuvantien zusammengefasst, wobei einzelne Varianten auch oberflächenaktive Eigenschaften haben können. Die Aufnahme eines Pestizids aus einem Sprühtropfen hängt im Wesentlichen von seiner Durchlässigkeit durch die kutikuläre Barriere ab. Die Permeabilität ist ein kombinierter Parameter, der sich aus der Mobilität und der Löslichkeit des Wirkstoffs in der Kutikula ergibt. In den letzten Jahrzehnten wurden mehrere Methoden entwickelt, die die Bestimmung einzelner Parameter der Permeation organischer Verbindungen durch die Kutikularmembran ermöglichen. Frühere Studien zeigten jedoch, dass hauptsächlich kutikuläre Wachse die barrierebestimmende Komponente der Kutikula darstellen, und darüber hinaus wurde gezeigt, dass hauptsächlich die sehr langkettigen aliphatischen Verbindungen (VLCAs) für die Errichtung einer wirksamen Barriere verantwortlich sind. Die Rolle der einzelnen VLCAs, die nach ihren jeweiligen funktionellen Gruppen klassifiziert werden, ist jedoch in Bezug auf die Bestimmung der Barriereeigenschaften noch unbekannt. Daher wurde in dieser Arbeit folgende Ziele verfolgt und erreicht: (1) Ein neuer ATR-FTIR-basierter Ansatz wurde entwickelt, um die temperaturabhängige Echtzeit-Diffusionskinetik von organischen Modellen für Wirkstoffe (AI) in ausschließlich aus Alkanen bestehendem Paraffinwachs zu messen. (2) Der entwickelte ATR-FTIR-Ansatz wurde zur Bestimmung der Diffusionskinetik von selbstbeschleunigenden Adjuvantien in kutikulären Modellwachsen unterschiedlicher VLCA-Zusammensetzung angewendet. Gleichzeitig wurden wachsspezifische Veränderungen in den jeweiligen IR-Spektren aufgezeichnet, welche Informationen über die jeweilige Wachsmodifikation lieferten. (3) Die ATR-FTIR-Methode wurde zur Charakterisierung der Diffusionskinetik, sowie zur Bestimmung der wachsspezifischen Sorptionskapazitäten für eine AI-modellierende organische Verbindung und von Wasser in kutikulären Modellwachsen nach Adjuvans-Behandlung verwendet. Im Hinblick auf die einzelnen chemischen Zusammensetzungen und Strukturen wurden Rückschlüsse auf die adjuvansspezifischen Wirkweisen (MoA) gezogen. Im ersten Kapitel wurde der ATR-FTIR-basierte Ansatz zur Bestimmung der Diffusionskinetik organischer Verbindungen in Paraffinwachs erfolgreich etabliert. Es wurde die Diffusionskinetik der organischen AI-Modellverbindungen Heptylparaben (HPB) und 4-Cyanophenol (CNP) aufgezeichnet, die unterschiedliche Lipophilitäten und Molekülvolumina aufweisen, wie sie für AIs in Pestizidformulierungen typisch sind. Die abgeleiteten Diffusionskoeffizienten lagen im Bereich von 10-15 m2 s-1 und waren damit höher als die zuvor in rekonstituierten kutikulären Wachsen beobachteten Diffusionskoeffizienten. Zum ersten Mal wurde eine ln-lineare Abhängigkeit zwischen den Diffusionskoeffizienten und der angewandten Diffusionstemperatur in kutikulärem Modellwachs nachgewiesen, aus der schließlich Aktivierungsenergien abgeleitet wurden. Die ermittelten Aktivierungsenergien betrugen 66.2 ± 7.4 kJ mol-1 und 56.4 ± 9,8 kJ mol-1 und lagen damit im erwarteten Bereich der bereits gut begründeten Aktivierungsenergien, die für die Diffusion organischer Verbindungen durch kutikuläre Membranen erforderlich sind. Dies bestätigte abermals den signifikanten Beitrag der Wachse zur kutikulären Barriere. Abweichungen von der angenommenen Fick'schen Diffusion wurden auf die gleichzeitig stattfindende Wasserdiffusion und gerätespezifische Artefakte zurückgeführt. Im zweiten und dritten Kapitel wurde vor allem die Diffusionskinetik von beschleunigenden Adjuvantien in den kutikulären Modellwachsen Candelillawachs und Carnaubawachs untersucht und gleichzeitig aufgezeichnete Veränderungen im wachspezifischen Teil des IR-Spektrums als Hinweise auf eine Plastifizierung interpretiert. Zu diesem Zweck wurden das Ölderivat Methyloleat, sowie der Organophosphatester TEHP und drei nichtionische monodisperse Alkoholethoxylate (AEs) C12E2, C12E4 und C12E6 ausgewählt. Es wurde eine starke Abhängigkeit der Adjuvansdiffusion von den jeweiligen Hauptkomponenten der hauptsächlich aliphatisch strukturierten Wachse nachgewiesen. So war die Diffusionskinetik der untersuchten Adjuvantien in dem hauptsächlich aus n-Alkanen bestehenden Candelillawachs schneller als in dem von Alkylestern dominierten Carnaubawachs. Darüber hinaus waren die Gleichgewichtsabsorptionen, die auf Gleichgewichtskonzentrationen hinweisen, in Candelillawachs ebenfalls höher als in Carnaubawachs. Daraus wurde gefolgert, dass Wachse mit hohen Alkylesteranteilen aufgrund ihrer strukturellen Integrität einen höheren Widerstand gegen die Diffusion von beschleunigenden Adjuvantien aufweisen als Wachse mit kürzeren durchschnittlichen Kettenlängen. Dies wurde auch bei Candelilla/Policosanol- (n-Alkohol) oder Candelilla/Reiskleiewachs-Mischungen (Alkylester) festgestellt: Mit steigender Alkoholkonzentration nahm die Barrierefunktion ab, während sie mit steigender Alkylesterkonzentration zunahm. Aufgrund der hohen Variabilität der einzelnen Diffusionskurven konnte hier jedoch nur ein Trend vermutet werden, signifikante Unterschiede zeigten sich jedoch nicht. Die Variabilität selbst wurde mit schwankenden kristallinen Anordnungen und teilweiser Phasentrennung der jeweiligen Wachsmischungen erklärt, die sich zwangsläufig auf die Diffusion der Adjuvantien auswirkten. Die Diffusionskinetik hing jedoch auch stark von den untersuchten Adjuvantien ab. In Carnaubawachs wurde eine deutlich langsamere Methyloleat-Diffusion festgestellt, die mit einer weniger ausgeprägten Verringerung der orthorhombischen Kristallinität einherging als in Candelillawachs, während die TEHP-Diffusion deutlich weniger von der jeweiligen Wachsstruktur abhängig war und in beiden Wachsen eine erhebliche Plastifizierung bewirkte. Von besonderem Interesse war die AE-Diffusion in den untersuchten Wachsen. Auch hier wurden Unterschiede in der Diffusionskinetik zwischen Candelillamischungen und Carnaubawachs festgestellt. Diese hingen jedoch gleichermaßen vom Ethoxylierungsgrad der jeweiligen AEs ab. Das lipophile C12E2 zeigte in beiden Wachsen eine annähernd Fick‘sche Diffusionskinetik, die mit einer drastischen Verringerung der orthorhombischen Kristallinität einherging, insbesondere im Candelillawachs, während das hydrophilere C12E6 eine deutlich verzögerte Diffusionskinetik zeigte, die mit einer geringeren Auswirkung auf die orthorhombische Kristallinität einherging. Die individuellen Diffusionskinetiken der untersuchten Adjuvantien zeigten teilweise drastische Abweichungen vom Fick‘schen Diffusionsmodell, was auf einen selbstbeschleunigenden Effekt hindeutet. Die Diffusionskinetik der Adjuvantien wurde von einer ausgeprägten anfänglichen Verzögerungsphase begleitet, die auf das Erreichen einer kritischen Konzentration im Wachs hindeutet. Es wird angenommen, dass aufgrund der initialen Verzögerungsphase letztlich sigmoidale, statt Fick’sche Diffusionskinetiken vorlagen. Das letzte Kapitel befasste sich mit der adjuvansbeeinflussten Diffusion der für Wirkstoffe modellhaften organischen Substanz CNP in Candelilla- und Carnaubawachs. Mittels ATR-FTIR wurden Diffusionskinetiken nach Adjuvans-Behandlung aufgezeichnet, die alle auf der Grundlage des Fick‘schen Modells vollständig erklärbar waren, einhergehend mit hohen Diffusionskoeffizienten von 10-14 bis 10-13 m2 s-1. Es ist offensichtlich, dass die in dieser Arbeit vorgestellten Diffusionskoeffizienten durchweg eine durch die Plastifizierung bedingte erhöhte CNP-Mobilität belegen. Darüber hinaus wurden CNP-Gleichgewichtskonzentrationen abgeleitet, aus denen Verteilungs- und Permeabilitätskoeffizienten bestimmt werden konnten. Signifikante Unterschiede zwischen Diffusionskoeffizienten (Mobilität) und Verteilungskoeffizienten (Löslichkeit) wurden zum einen in Abhängigkeit von den jeweiligen Wachsen und zum anderen in Abhängigkeit von den jeweiligen Adjuvantien festgestellt. Die CNP-Mobilität war in Candelillawachs nur nach Behandlung mit Methyloleat höher als in Carnaubawachs. Die Behandlung mit TEHP und AEs führte zu einer höheren CNP-Mobilität in dem polaren, von Alkylestern dominierten Carnaubawachs. Die Verteilungskoeffizienten hingegen waren nach der Behandlung mit Methyloleat sowohl in Candelilla- als auch in Carnaubawachs deutlich niedriger als nach der Behandlung mit TEHP oder AE. Es wurden Modelle für den CNP-Penetrationsmodus unter Berücksichtigung der jeweiligen Adjuvantien in den beiden untersuchten Wachsen entwickelt. Der Grund für die drastischen Unterschiede in der Wirksamkeit der Adjuvantien liegt wahrscheinlich im Ko-Penetrieren von Wasser, dem Hauptbestandteil der auf dem Feld angewandten Spritzformulierungen. Insbesondere die untersuchten AEs begünstigten eine enorme Wasseraufnahme in beiden Wachsen mit zunehmendem Ethoxylierungsgrad. Überraschenderweise wurde dieser Effekt auch für das lipophile TEHP in beiden Wachsen gefunden. Dies führte zu der Vermutung, dass die AI-Permeabilität nicht ausschließlich durch die adjuvansinduzierte Plastifizierung bestimmt wird, sondern auch von einer "sekundären Plastifizierung" abhängt, die durch die Ko-Penetration von Wasser induziert wird und so zur Quellung und drastischen Destabilisierung der kristallinen Wachsstruktur führt. Die erfolgreiche Etablierung der vorgestellten ATR-FTIR-Methode stellt einen Meilenstein für die Untersuchung der Diffusionskinetik von Adjuvantien und AIs in kutikulären Wachsen dar. Insbesondere die gleichzeitig nachweisbare Wachsmodifikation und darüber hinaus die bestimmbare Wasseraufnahme bilden eine perfekte Grundlage, um das ATR-FTIR-System als universelles Screening-Tool für Wachs-Adjuvans-AI-Wasser-Interaktionen in der Pflanzenschutzwissenschaft zu etablieren. KW - Pflanzen KW - Kutikula KW - Adjuvans KW - Aktivierungsenergie KW - ATR-FTIR KW - Diffusion coefficient KW - Pesticide KW - wax Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274874 ER - TY - THES A1 - Zhou, Yang T1 - The Exploitation of Opsin-based Optogenetic Tools for Application in Higher Plants T1 - Die Nutzung von optogenetischen Werkzeugen auf Opsin-Basis für die Anwendung in höheren Pflanzen N2 - The discovery, heterologous expression, and characterization of channelrhodopsin-2 (ChR2) – a light-sensitive cation channel found in the green alga Chlamydomonas reinhardtii – led to the success of optogenetics as a powerful technology, first in neuroscience. ChR2 was employed to induce action potentials by blue light in genetically modified nerve cells. In optogenetics, exogenous photoreceptors are expressed in cells to manipulate cellular activity. These photoreceptors were in the beginning mainly microbial opsins. During nearly two decades, many microbial opsins and their mutants were explored for their application in neuroscience. Until now, however, the application of optogenetics to plant studies is limited to very few reports. Several optogenetic strategies for plant research were demonstrated, in which most attempts are based on non-opsin optogenetic tools. Opsins need retinal (vitamin A) as a cofactor to generate the functional protein, the rhodopsin. As most animals have eyes that contain animal rhodopsins, they also have the enzyme - a 15, 15'-Dioxygenase - for retinal production from food-supplied provitamin A (beta-carotene). However, higher plants lack a similar enzyme, making it difficult to express functional rhodopsins successfully in plants. But plant chloroplasts contain plenty of beta-carotene. I introduced a gene, coding for a 15, 15'-Dioxygenase with a chloroplast target peptide, to tobacco plants. This enzyme converts a molecule of β-carotene into two of all-trans-retinal. After expressing this enzyme in plants, the concentration of all-trans-retinal was increased greatly. The increased retinal concentration led to increased expression of several microbial opsins, tested in model higher plants. Unfortunately, most opsins were observed intracellularly and not in the plasma membrane. To improve their localization in the plasma membrane, some reported signal peptides were fused to the N- or C-terminal end of opsins. Finally, I helped to identify three microbial opsins -- GtACR1 (a light-gated anion channel), ChR2 (a light-gated cation channel), PPR (a light-gated proton pump) which express and work well in the plasma membrane of plants. The transgene plants were grown under red light to prevent activation of the expressed opsins. Upon illumination with blue or green light, the activation of these opsins then induced the expected change of the membrane potential, dramatically changing the phenotype of plants with activated rhodopsins. This study is the first which shows the potential of microbial opsins for optogenetic research in higher plants, using the ubq10 promoter for ubiquitous expression. I expect this to be just the beginning, as many different opsins and tissue-specific promoters for selective expression now can be tested for their usefulness. It is further to be expected that the here established method will help investigators to exploit more optogenetic tools and explore the secrets, kept in the plant kingdom. N2 - Die Entdeckung, heterologe Expression und Charakterisierung von Channelrhodopsin-2 (ChR2) - einem lichtempfindlichen Kationenkanal, der in der Grünalge Chlamydomonas reinhardtii vorkommt - führte zum Erfolg der Optogenetik als leistungsfähige Technologie, zunächst in den Neurowissenschaften. ChR2 wurde eingesetzt, um in genetisch veränderten Nervenzellen durch blaues Licht Aktionspotentiale zu induzieren. Bei der Optogenetik werden exogene Photorezeptoren in Zellen exprimiert, um die zelluläre Aktivität zu manipulieren. Diese Photorezeptoren waren anfangs hauptsächlich mikrobielle Opsine. Im Laufe von fast zwei Jahrzehnten wurden viele mikrobielle Opsine und ihre Mutanten für ihre Anwendung in den Neurowissenschaften erforscht. Bis jetzt ist die Anwendung der Optogenetik in der Pflanzenforschung jedoch auf sehr wenige Arbeiten beschränkt. Es wurden mehrere optogenetische Strategien für die Pflanzenforschung aufgezeigt, wobei die meisten Versuche auf optogenetischen Werkzeugen, die nicht Opsine sind, beruhen. Opsine benötigen Retinal (Vitamin A) als Kofaktor, um das funktionelle Protein, das Rhodopsin, zu generieren. Da die meisten Tiere Augen haben, die tierische Rhodopsine enthalten, verfügen sie auch über das Enzym - eine 15, 15'-Dioxygenase - zur Retinalproduktion aus mit der Nahrung zugeführtem Provitamin A (Beta-Carotin). Höheren Pflanzen fehlt jedoch ein ähnliches Enzym, was es schwierig macht, funktionale Rhodopsine erfolgreich in Pflanzen zu exprimieren. Aber die Chloroplasten der Pflanzen enthalten reichlich Beta-Carotin. Ich führte ein Gen, das für eine 15, 15'-Dioxygenase mit einem Chloroplasten-Zielpeptid kodiert, in Tabakpflanzen ein. Dieses Enzym wandelt ein Molekül β-Carotin in zwei Moleküle all-trans-Retinal um. Nach Expression dieses Enzyms in Pflanzen wurde die Konzentration von all-trans-Retinal stark erhöht. ... KW - optogenetics KW - opsins KW - higher plants Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236960 ER - TY - THES A1 - Yu-Strzelczyk, Jing T1 - Generation and Characterization of novel proteins for light-activated hyperpolarization of cell membranes T1 - Generierung und Charakterisierung neuartiger Proteine für Licht-aktivierte Hyperpolarisation von Zellmembranen N2 - The light-gated cation channel Channelrhodopsin-2 was discovered and characterized in 2003. Already in 2005/2006 five independent groups demonstrated that heterologous expression of Channelrhodopsin-2 is a highly useful and simply applicable method for depolarizing and thereby activating nerve cells. The application of Channelrhodopsin-2 revolutionized neuroscience research and the method was then called optogenetics. In recent years more and more light-sensitive proteins were successfully introduced as “optogenetic tools”, not only in neuroscience. Optogenetic tools for neuronal excitation are well developed with many different cation-conducting wildtype and mutated channelrhodopsins, whereas for inhibition of neurons in the beginning (2007) only hyperpolarizing ion pumps were available. The later discovered light-activated anion channels (anion channelrhodopsins) can be useful hyperpolarizers, but only at low cytoplasmic anion concentration. For this thesis, I optimized CsR, a proton-pumping rhodopsin from Coccomyxa subellipsoidea, which naturally shows a robust expression in Xenopus laevis oocytes and plant leaves. I improved the expression and therefore the photocurrent of CsR about two-fold by N-terminal modification to the improved version CsR2.0, without altering the proton pump function and the action spectrum. A light pulse hyperpolarised the mesophyll cells of CsR2.0-expressing transgenic tobacco plants (N. tabacum) by up to 20 mV from the resting membrane potential of -150 to -200 mV. The robust heterologous expression makes CsR2.0 a promising optogenetic tool for hyperpolarization in other organisms as well. A single R83H point-mutation converted CsR2.0 into a light-activated (passive) proton channel with a reversal potential close to the Nernst potential for intra-/extra-cellular H+ concentration. This light-gated proton channel is expected to become a further useful optogenetic tool, e.g. for analysis of pH-regulation in cells or the intercellular space. Ion pumps as optogenetic tools require high expression levels and high light intensity for efficient pump currents, whereas long-term illumination may cause unwanted heating effects. Although anion channelrhodopsins are effective hyperpolarizing tools in some cases, their effect on neuronal activity is dependent on the cytoplasmic chloride concentration which can vary among neurons. In nerve cells, increased conductance for potassium terminates the action potential and K+ conductance underlies the resting membrane potential in excitable cells. Therefore, several groups attempted to synthesize artificial light-gated potassium channels but 2 all of these published innovations showed serious drawbacks, ranging from poor expression over lacking reversibility to poor temporal precision. A highly potassium selective light-sensitive silencer of action potentials is needed. To achieve this, I engineered a light-activated potassium channel by the genetic fusion of a photoactivated adenylyl cyclase, bPAC, and a cAMP-gated potassium channel, SthK. Illumination activates bPAC to produce cAMP and the elevated cAMP level opens SthK. The slow diffusion and degradation of cAMP makes this construct a very light-sensitive, long-lasting inhibitor. I have successfully developed four variants with EC50 to cAMP ranging from 7 over 10, 21, to 29 μM. Together with the original fusion construct (EC50 to cAMP is 3 μm), there are five different light- (or cAMP-) sensitive potassium channels for researchersto choose, depending on their cell type and light intensity needs. N2 - Der lichtgesteuerte Kationenkanal Channelrhodopsin-2 wurde 2003 entdeckt und charakterisiert. Bereits 2005/2006 zeigten fünf unabhängige Gruppen, dass die heterologe Expression von Channelrhodopsin-2 eine sehr nützliche und einfach anwendbare Methode zur Depolarisation und damit Aktivierung von Nervenzellen ist. Die Anwendung von Channelrhodopsin-2 revolutionierte die neurowissenschaftliche Forschung und die Methode wurde dann Optogenetik genannt. In den letzten Jahren wurden immer mehr lichtempfindliche Proteine als „optogenetische Werkzeuge“ eingeführt, und nicht nur in den Neurowissenschaften erfolgreich angewandt. Optogenetische Werkzeuge zur neuronalen Anregung sind mit vielen verschiedenen Kationen-leitenden Wildtyp- und mutierten Channelrhodopsinen gut entwickelt, während für die Hemmung von Neuronen zu Beginn (2007) nur hyperpolarisierende Ionenpumpen zur Verfügung standen. Die später entdeckten lichtaktivierten Anionenkanäle (Anionenkanalrhodopsine) können nützliche Hyperpolarisatoren sein, jedoch nur bei niedriger zytoplasmatischer Anionenkonzentration. Für diese Arbeit habe ich CsR optimiert, ein Protonen pumpendes Rhodopsin aus Coccomyxa subellipsoidea, das von Natur aus eine robuste Expression in Oozyten von Xenopus laevis und in Pflanzenblättern zeigt. Ich habe die Expression und damit den Photostrom von CsR etwa um das Zweifache durch N-terminale Modifikation verbessert, ohne die Protonenpump-Funktion und das Aktionsspektrum bei der verbesserten Version von CsR2.0 zu verändern. Ein Lichtpuls hyperpolarisierte die Mesophyllzellen von CsR2.0-exprimierenden transgenen Tabakpflanzen (N. tabacum) um bis zu 20 mV gegenüber dem Ruhe-Membranpotential von -150 bis -200 mV. Die robuste heterologe Expression macht CsR2.0 zu einem vielversprechenden optogenetischen Werkzeug für die Hyperpolarisation auch in anderen Organismen. Eine einzelne R83H-Punktmutation wandelte CsR2.0 um in einen Licht-aktivierten (passiven) Protonenkanal mit einem Umkehrpotential nahe dem Nernst-Potential für intra-/extrazelluläre H+-Konzentration. Es wird erwartet, dass dieser Licht-gesteuerte Protonenkanal ein weiteres nützliches optogenetisches Werkzeug wird, z. zur Analyse der pH-Regulation in Zellen oder dem Interzellularraum. Ionenpumpen als optogenetische Werkzeuge erfordern hohe Expressionsraten und eine hohe Lichtintensität für effiziente Pumpströme, wobei eine Langzeitbeleuchtung unerwünschte Erwärmungseffekte verursachen kann. Obwohl Anionen-Channelrhodopsine in einigen Fällen wirksame hyperpolarisierende Werkzeuge sind, hängt ihre Wirkung auf die neuronale Aktivität von der zytoplasmatischen Chloridkonzentration ab, die zwischen den Neuronen variieren kann. In Nervenzellen beendet eine erhöhte Leitfähigkeit für Kalium das Aktionspotential und die K+-Leitfähigkeit liegt dem Ruhe-Membranpotential in erregbaren Zellen zugrunde. Daher versuchten mehrere Gruppen, künstliche lichtgesteuerte Kaliumkanäle zu synthetisieren, aber alle diese veröffentlichten Innovationen zeigten schwerwiegende Nachteile, die von schlechter Expression über fehlende Reversibilität bis hin zu geringer zeitlicher Präzision reichten. Ein hoch Kalium-selektiver Licht-empfindlicher Inhibitor der Aktionspotentiale ist von hohem Wert für die Neurowissenschaft. Um dies zu erreichen, habe ich einen Licht-aktivierten Kaliumkanal durch genetische Fusion einer photoaktivierten Adenylylcyclase, bPAC, und eines cAMP-gesteuerten Kaliumkanals, SthK, konstruiert. Beleuchtung aktiviert bPAC zur Produktion von cAMP und der erhöhte cAMP-Spiegel öffnet SthK. Die langsame Diffusion und Degradation von cAMP macht dieses Konstrukt zu einem sehr Licht-empfindlichen, lang anhaltenden Inhibitor. Ich habe darüber hinaus erfolgreich vier Varianten mit EC50 für cAMP im Bereich von 7 über 10, 21 bis 29 µM entwickelt. Zusammen mit dem ursprünglichen Fusionskonstrukt (EC50 zu cAMP beträgt 3 μM) gibt es damit nun fünf verschiedene lichtempfindliche Kaliumkanäle, die je nach Zelltyp und Lichtintensitätsbedarf für optogenetische Experimente ausgewählt werden können. KW - neuronal silencing KW - optogenetics KW - hyperpolarization KW - Proteine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266752 ER - TY - THES A1 - Huang, Shouguang T1 - Role of ABA-induced Ca\(^{2+}\) signals, and the Ca\(^{2+}\)-controlled protein kinase CIPK23, in regulation of stomatal movements T1 - Rolle von ABA-abhängigen Ca\(^{2+}\) Signalen, und der Ca\(^{2+}\)-gesteuerten Proteinkinase CIPK23, bei der Regulation der Spaltöffnungsbewegungen N2 - Stomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependent signaling branch is still debated, as the core ABA signaling pathway only possesses Ca2+-independent components. Therefore, the aim of this thesis was to address the role of the Ca2+-dependent branch in the ABA signaling pathway of guard cells. In the first part of the thesis, the relation between ABA-induced Ca2+ signals and stomatal closure was studied, with guard cells that express the genetically encoded Ca2+-indicator R-GECO1-mTurquoise. Ejection of ABA into the guard cell wall rapidly induced stomatal closure, however, only in ¾ of the guard cells ABA evoked a cytosolic Ca2+ signal. A small subset of stomata (¼ of the experiments) closed without Ca2+ signals, showing that the Ca2+ signals are not essential for ABA-induced stomatal closure. However, stomata in which ABA evoked Ca2+ signals closed faster as those in which no Ca2+ signals were detected. Apparently, ABA-induced Ca2+ signals enhance the velocity of stomatal closure. In addition to ABA, hyperpolarizing voltage pulses could also trigger Ca2+ signals in wild type guard cells, which in turn activated S-type anion channels. However, these voltage pulses failed to elicit S-type anion currents in the slac1/slah3 guard cells, suggesting that SLAC1 and SLAH3 contribute to Ca2+-activated conductance. Taken together, our data indicate that ABA-induced Ca2+ signals enhance the activity of S-type anion channels, which accelerates stomatal closure. The second part of the thesis deals with the signaling pathway downstream of the Ca2+ signals. Two types of Ca2+-dependent protein kinase modules (CPKs and CBL/CIPKs) have been implicated in guard cells. We focused on the protein kinase CIPK23 (CBL-Interacting Protein Kinase 23), which is activated by the Ca2+-dependent protein CBL1 or 9 (Calcineurin B-Like protein 1 or 9) via interacting with the NAF domain of CIPK23. The CBL1/9-CIPK23 complex has been shown to affect stomatal movements, but the underlying molecular mechanisms remain largely unknown. We addressed this topic by using an estrogen-induced expression system, which specifically enhances the expression of wild type CIPK23, a phosphomimic CIPK23T190D and a kinase dead CIPK23K60N in guard cells. Our data show that guard cells expressing CIPK23T190D promoted stomatal opening, while CIPK23K60N enhanced ABA-induced stomatal closure, suggesting that CIPK23 is a negative regulator of stomatal closure. Electrophysiological measurements revealed that the inward K+ channel currents were similar in guard cells that expressed CIPK23, CIPK23T190D or CIPK23K60N, indicating that CIPK23-mediated inward K+ channel AKT1 does not contribute to stomatal movements. Expression of CIPK23K60N, or loss of CIPK23 in guard cells enhanced S-type anion activity, while the active CIPK23T190D inhibited the activity of these anion channels. These results are in line with the detected changes in stomatal movements and thus indicate that CIPK23 regulates stomatal movements by inhibiting S-type anion channels. CIPK23 thus serves as a brake to control anion channel activity. Overall, our findings demonstrate that CIPK23-mediated stomatal movements do not depend on CIPK23-AKT1 module, instead, it is achieved by regulating S-type anion channels SLAC1 and SLAH3. In sum, the data presented in this thesis give new insights into the Ca2+-dependent branch of ABA signaling, which may help to put forward new strategies to breed plants with enhanced drought stress tolerance, and in turn boost agricultural productivity in the future. N2 - Stomata sind Poren in der Blattoberfläche, die von einem Paar von Schließzellen gebildet werden. Die Schließzellen kontrollieren den Öffnungsweite der stomatären Pore, um die Aufnahme von CO2 und den Verlust von Wasserdampf in die Atmosphäre auszubalancieren. Während Trockenperioden bewirkt das Phytohormon Abscisinsäure (ABA) einen Stomaschluss über eine Signalkaskade, welche über Ca2+-abhängige und Ca2+-unabhängige Pfade verfügt. Beide Pfade aktivieren wahrscheinlich Anionenkanäle aus der SLAC1 Familie (Slow Anion Channel Associated 1), welche essentiell sind um den Stomaschluss einzuleiten. Allerdings wird über die Wichtigkeit des Ca2+-abhängigen Pfades noch immer diskutiert, da der ABA-Hauptsignalweg ausschließlich Ca2+-unabhängige Komponenten beinhaltet. Aus diesem Grund war das Ziel dieser Thesis, die Rolle des Ca2+-abhängigen Pfades im ABA-Signalweg aufzulösen. Im ersten Teil der Thesis wurde mit Schließzellen, die den genetisch kodierten Ca2+-Sensor R-GECO1-mTurquoise exprimierten, der Zusammenhang zwischen ABA-induzierten Ca2+ Signalen und dem Stomaschluss untersucht. Die Injektion von ABA in die Zellwand von Schließzellen bewirkte einen schnellen Stomaschluss, jedoch wurde nur bei drei Vierteln der Zellen auch ein zytosolisches Ca2+ Signal erzeugt. Ein kleiner Teil der Stomata (in einem Viertel der Experimente) schloss sich ohne Ca2+ Signal, was zeigt, dass die Ca2+ Signale nicht essentiell für den ABA-induzierten Stomaschluss sind. Es schlossen sich jedoch Stomata schneller, in deren Schließzellen ABA-induzierte Ca2+ Signale detektiert wurden. ABA-induzierte Ca2+-Signale verbesserten also offenbar die Geschwindigkeit des Stomaschlusses. Neben ABA konnten Ca2+ Signale in wildtypischen Schließzellen auch durch hyperpolarisierende Spannungspulse erzeugt werden, welche daraufhin S-Typ Anionenkanäle aktivierten. Diese Spannungspulse konnten jedoch in slac1/slah3 Schließzellen keine S-typischen Anionenströme hervorrufen, was darauf hindeutet, dass SLAC1 und SLAH3 zur Ca2+-aktivierten Leitfähigkeit beitragen. Zusammengefasst deuten unsere Daten darauf hin, dass ABA-induzierte Ca2+ Signale die Aktivität von S-Typ Anionenkanälen verbessern und somit den Stomaschluss beschleunigen. Der zweite Teil der Thesis befasst sich mit dem Signalweg, der den Ca2+-Signalen nachgeschaltet ist. Es wurden zwei Typen Ca2+-abhängiger Proteinkinase-Module (CPKs und CBL/CIPKs) in Schließzellen nachgewiesen. Wir haben uns auf die Proteinkinase CIPK23 (CBL-Interacting Protein Kinase 23) konzentriert, welche von den Ca2+-abhängigen Proteinen CBL1 und CBL9 (Calcineurin B-Like Protein 1 oder 9) über Interaktion mit der NAF Domäne des CIPK23 aktiviert wird. Es konnte bereits gezeigt werden, dass der CBL1/CIPK23 Komplex die stomatäre Bewegung beinflusst, jedoch sind die zugrunde liegenden molekularen Mechanismen bisher weitgehend unbekannt geblieben. Wir haben dieses Thema mit einem Östrogen-induzierten Expressionssystem untersucht, welches spezifisch in Schließzellen die Expression von wildtypischem CIPK23 erhöhte. Hinzu kamen Experimente mit einer phosphomimetischen CIPK23T190D und einer CIPK23K60N mit disfunktionaler Kinasedomäne. Unsere Daten zeigen, dass CIPK23T190D exprimierende Schließzellen eine verbesserte Stomaöffnung aufwiesen, während CIPK23K60N den ABA-induzierten Stomaschluss förderte, was auf eine negativ regulierende Rolle von CIPK23 beim Stomaschluss hindeutet. Elektrophysiologische Messungen zeigten, dass die einwärtsgerichteten K+-Ströme in CIPK23-, CIPK23T190D- oder CIPK23K60N-exprimierenden Schließzellen vergleichbar waren, was darauf hindeutet, dass die Aktivierung von AKT1 durch CIPK23 nicht zur stomatären Bewegung beiträgt. Allerdings führte die Expression von CIPK23K60N, wie auch der Verlust von CIPK23, in Schließzellen zu einer erhöhten S-typischen Anionenkanalaktivität, während eine CIPK23T190D-Expression diese Anionenkanalaktivität inhibierte. Diese Ergebnisse stimmen mit den Beobachtungen zu den gezeigten Veränderungen der stomatären Bewegung überein und deuten daher auf eine regulierende Rolle von CIPK23 für die stomatäre Bewegung durch die Inhibierung von S-Typ Anionenkanälen hin. Insgesamt beweisen unsere Befunde, dass die CIPK23-vermittelte stomatäre Bewegung nicht durch eine Interaktion von CIP23 mit AKT1, sondern durch die Regulierung der S-Typ Anionenkanäle SLAC1 und SLAH3 vermittelt wird. Zusammengefasst ergeben die in dieser Thesis präsentierten Daten neue Einblicke in den Ca2+-abhängigen Pfad des ABA-Signalwegs. Dies könnte in Zukunft helfen neue Strategien zur Zucht von Pflanzen mit verbesserter Trockenstresstoleranz zu entwickeln und somit die agrarwirtschaftliche Produktivität zu erhöhen. KW - Stomata KW - guard cells KW - ABA KW - OST1 KW - SLAC1 KW - anion channels KW - Ca2+ signal KW - CIPK23 KW - AKT1 KW - K+ channels KW - drought stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204737 ER -