TY - THES A1 - Gabel, Judith T1 - Interface Engineering of Functional Oxides: A Photoemission Study T1 - Kontrollierte Manipulation der Grenzflächen in funktionellen oxidischen Heterostrukturen: Eine Photoemissionsstudie N2 - Due to their complex chemical structure transition metal oxides display many fascinating properties which conventional semiconductors lack. For this reason transition metal oxides hold a lot of promise for novel electronic functionalities. Just as in conventional semiconductor heterostructures, the interfaces between different materials play a key role in oxide electronics. The textbook example is the (001) interface between the band insulators LaAlO\(_3\) and SrTiO\(_3\) at which a two-dimensional electron system (2DES) forms. In order to utilize such a 2DES in prospective electronic devices, it is vital that the electronic properties of the interface can be controlled and manipulated at will. Employing photoelectron spectroscopy as well as electronic transport measurements, this thesis examines how such interface engineering can be realized in the case of the LaAlO\(_3\)/SrTiO\(_3\) heterostructure: By photoemission we manage to unambiguously distinguish the different mechanisms by which SrTiO\(_3\) can be doped with electrons. An electronic reconstruction is identified as the driving mechanism to render stoichiometric LaAlO\(_3\)/SrTiO\(_3\) interfaces metallic. The doping of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface can furthermore be finely adjusted by changing the oxygen vacancy \(V_{\mathrm{O}}\) concentration in the heterostructure. Combining intense x-ray irradiation with oxygen dosing, we even achieve control over the \(V_{\mathrm{O}}\) concentration and, consequently, the doping in the photoemission experiment itself. Exploiting this method, we investigate how the band diagram of SrTiO\(_3\)-based heterostructures changes as a function of the \(V_{\mathrm{O}}\) concentration and temperature by hard x-ray photoemission spectroscopy. With the band bending in the SrTiO\(_3\) substrate changing as a function of the \(V_{\mathrm{O}}\) concentration, the interfacial band alignment is found to vary as well. The relative permittivity of the SrTiO\(_3\) substrate and, in particular, its dependence on temperature and electric field is identified as one of the essential parameters determining the electronic interface properties. That is also why the sample temperature affects the charge carrier distribution. The mobile charge carriers are shown to shift toward the SrTiO\(_3\) bulk when the sample temperature is lowered. This effect is, however, only pronounced if the total charge carrier concentration is small. At high charge carrier concentrations the charge carriers are always confined to the interface, independent of the sample temperature. The dependence of the electronic interface properties on the \(V_{\mathrm{O}}\) concentration is also investigated by a complementary method, viz. by electronic transport measurements. These experiments confirm that the mobile charge carrier concentration increases concomitantly to the \(V_{\mathrm{O}}\) concentration. The mobility of the charge carriers changes as well depending on the \(V_{\mathrm{O}}\) concentration. Comparing spectroscopy and transport results, we are able to draw conclusions about the processes limiting the mobility in electronic transport. We furthermore build a memristor device from our LaAlO\(_3\)/SrTiO\(_3\) heterostructures and demonstrate how interface engineering is used in practice in such novel electronic applications. This thesis furthermore investigates how the electronic structure of the 2DES is affected by the interface topology: We show that, akin to the (001) LaAlO\(_3\)/SrTiO\(_3\) heterointerface, an electronic reconstruction also renders the (111) interface between LaAlO\(_3\) and SrTiO\(_3\) metallic. The change in interface topology becomes evident in the Fermi surface of the buried 2DES which is probed by soft x-ray photoemission. Based on the asymmetry in the Fermi surface, we estimate the extension of the conductive layer in the (111)-oriented LaAlO\(_3\)/SrTiO\(_3\) heterostructure. The spectral function measured furthermore identifies the charge carriers at the interface as large polarons. N2 - Aufgrund ihrer komplexen chemischen Struktur weisen Übergangsmetalloxide viele faszinierende Eigenschaften auf, die konventionelle Halbleitermaterialien entbehren und die Potenzial für neuartige elektronische Funktionalitäten bergen. Genauso wie in konventionellen Halbleiterstrukturen kommt dabei den Grenzflächen zwischen den Materialien besondere Bedeutung zu. In der Oxid-Elektronik ist ein Paradebeispiel hierfür die (001)-Grenzfläche zwischen den Bandisolatoren LaAlO\(_3\) und SrTiO\(_3\), an der sich ein zweidimensionales Elektronensystem (2DES) ausbildet. Um solche Elektronensysteme zukünftig in elektronischen Anwendungen zu nutzen, ist es jedoch unabdingbar, dass die elektronischen Eigenschaften der Grenzfläche gezielt kontrolliert und manipuliert werden können. Mittels Photoelektronenspektroskopie sowie Transportmessungen untersucht diese Arbeit am Beispiel der LaAlO\(_3\)/SrTiO\(_3\)-Grenzfläche, wie eine derartige Kontrolle realisiert werden kann. Mithilfe von Photoemissionsexperimenten gelingt es, verschiedene Mechanismen zu unterscheiden, mit denen SrTiO\(_3\) dotiert werden kann. In stöchiometrischen LaAlO\(_3\)/SrTiO\(_3\)-Heterostrukturen kann so die elektronische Rekonstruktion als treibender Mechanismus identifiziert werden, der zur Ausbildung der leitfähigen Grenzschicht führt. Die Dotierung der LaAlO\(_3\)/SrTiO\(_3\)-Heterostruktur kann weiterhin auch durch die kontrollierte Erzeugung von Sauerstofffehlstellen \(V_{\mathrm{O}}\) gezielt gesteuert werden. Die \(V_{\mathrm{O}}\)-Konzentration kann sogar während der Photoemissionsexperimente zielgerichtet variiert werden, wenn die Bestrahlung mit intensivem Röntgenlicht mit einer Sauerstoffbehandlung kombiniert wird. Diese Methode nutzen wir in Folge aus, um in Photoemissionsmessungen mit harter Röntgenstrahlung systematisch zu untersuchen, wie sich das Banddiagramm von SrTiO\(_3\)-basierten Heterostrukturen als Funktion der \(V_{\mathrm{O}}\)-Konzentration und Temperatur ändert. Wir zeigen, dass sich parallel zur Bandverbiegung im SrTiO\(_3\)-Substrat auch die Bandanordnung an der Grenzfläche als Funktion der \(V_{\mathrm{O}}\)-Konzentration ändert. Dabei stellt sich heraus, dass die dielektrische Funktion des SrTiO\(_3\)-Substrats - insbesondere durch ihre starke Abhängigkeit vom elektrischen Feld und Temperatur - maßgeblich die elektronischen Eigenschaften der Grenzfläche bestimmt. Aus diesem Grund hat die Temperatur der Probe Einfluss auf die Ladungsträgerverteilung. Die mobilen Ladungsträger verschieben sich weg von der Grenzfläche tiefer in das Substrat, je niedriger die Temperatur gewählt wird. Dieser Effekt ist jedoch nur bei niedriger Dotierung zu beobachten. Bei hoher Dotierung ist das zweidimensionale Elektronensystem unabhängig von der Temperatur nahe der Grenzfläche lokalisiert. Die Abhängigkeit der elektronischen Eigenschaften von der \(V_{\mathrm{O}}\)-Konzentration wird auch komplementär im elektronischen Transport untersucht. Auch hier steigt die Ladungsträgerdichte simultan zur \(V_{\mathrm{O}}\)-Konzentration. Zugleich ändert sich auch die Mobilität der Ladungsträger. Der direkte Vergleich von Spektroskopie- und Transportmessungen erlaubt Rückschlüsse auf die Prozesse, die die Ladungsträgermobilität begrenzen. Am Beispiel eines LaAlO\(_3\)/SrTiO\(_3\)-basierten Memristors wird darüber hinaus praktisch demonstriert, wie die Kontrolle über die Grenzfläche in neuartigen elektronischen Anwendungen tatsächlich eingesetzt werden kann. Ferner untersucht diese Arbeit, wie die Topologie der Grenzfläche die elektronische Struktur des 2DES beeinflusst: Wir weisen nach, dass analog zur (001)-Grenzfläche auch die (111)-Grenzfläche zwischen LaAlO\(_3\) und SrTiO\(_3\) durch eine elektronische Rekonstruktion dotiert wird. Die Änderung in der Grenzflächentopologie zeigt sich deutlich in der Fermifläche des vergrabenen 2DES, die mittels resonanter Photoemission untersucht wird. Anhand der Asymmetrie der Fermifläche wird überdies die Ausdehnung des Elektronensystems abgeschätzt, wohingegen die Spektralfunktion Hinweise auf die Elektron-Phonon-Kopplung an der Grenzfläche liefert. KW - Übergangsmetalloxide KW - Grenzfläche KW - Strontiumtitanat KW - Heterostruktur KW - Röntgen-Photoelektronenspektroskopie KW - oxide heterostructure KW - interface conductivity KW - oxygen vacancies KW - LaAlO3/SrTiO3 KW - hard x-ray photoemission KW - soft x-ray photoemission Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192275 ER - TY - THES A1 - Zapf, Michael T1 - Oxidische Perovskite mit Hoher Massenzahl Z: Dünnfilmdeposition und Spektroskopische Untersuchungen T1 - High-Z Perovskite Oxides: Thin Film Deposition and Spectroscopic Investigations N2 - Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties. A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\). KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm. The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 %. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice. N2 - Komplexe Metalloxide mit Perowskitstruktur sind bekannt für ihre große Vielfalt einzigartiger physikalischer Eigenschaften. Eine interessante Untergruppe dieser Materialien sind Verbindungen von Elementen mit hoher Ordnungszahl \(Z\), in denen neue, durch Spin-Bahn Kopplung getriebene Phasen und anwendungsrelevante Funktionalitäten erwartet werden. Diese Arbeit handelt von der Präparation und Charakterisierung zweier Probensysteme, die auf eben solchen Materialien mit hoher \(Z\) basieren. KTaO\(_3\) ist ein Bandisolator, der im Grundzustand eine Ta 5\(d\)\(^0\) Valenz besitzt. Durch gepulste Laserdeposition von ungeordnetem LaAlO\(_3\) auf der KTaO\(_3\)(001) Oberfläche, werden die obersten Schichten des Substratkristalls durch die Erzeugung von Sauerstofffehlstellen dotiert. Es bildet sich ein quasi zweidimensionales metallisches Elektronensystem (q2DES) an der Grenzfläche der Heterostruktur aus. Messungen des Hall-Effekts ergeben Schichtladungsträgerdichten im Bereich von 0.1-1.2 10\(^{14}\) cm\(^2\), welche durch Anpassung des Sauerstoffhintergrunddrucks während der Deposition bzw. durch die Dicke der abgeschiedenen LaAlO\(_3\) Schicht beeinflusst werden können. Mit Werten von 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) bei Raumtemperatur (unter 10 K), besitzt das q2DES in LaAlO\(_3\)/KTaO\(_3\) im Vergleich zu ähnlichen Elektronensystemen in SrTiO\(_3\) bemerkenswert große Ladungsträgerbeweglichkeiten. Aus dem Tiefenprofil des Photoemissionspektrums des Ta 4\(f\) Rumpfniveaus ergibt sich, dass sich der Großteil der Ta 5\(d\) Ladungsträger, bestehend aus mobilen und lokalisierten Elektronen, innerhalb einer Schicht von 4 nm Dicke befindet. Die Vermessung der elektronischen Bandstruktur des vergrabenen q2DES mit Hilfe winkelaufgelöster Photoelektronenspektroskopie mit harter Röntgenstrahlung zeigt, dass das Elektronensystem, vermutlich wegen des starken Potentialgradients an der Grenzfläche, eine modifizierte elektronische Struktur gegenüber n-dotiertem Bulk-KTaO\(_3\) aufweist. Trotz der Einschränkung der Bewegung der Elektronen entlang einer Richtung, besitzt die Fermifläche des Systems eine dreidimensionale Struktur, woarus auf eine Tiefenausdehnung der metallischen Zustände von mindestens 1 nm geschlossen werden kann. Undotiertes BaBiO\(_3\) ist durch die Ausbildung einer Ladungsordnung isolierend. Unter Elektronendotierung gilt das Material als Kandidat für einen oxidischen topologischen Isolator. In dieser Studie wird die Deposition von BaBiO\(_3\) auf Nb:SrTiO\(_3\)(001) Substraten untersucht. Dabei wird der Mechanismus identifiziert, der epitaktisches Wachstum von BaBiO\(_3\), trotz einer Gitterfehlanpassung von 12 %, ermöglicht: Eine 1.7 nm dicke Lage mit abweichender Kristallstruktur an der Grenzfläche entkoppelt das Filmgitter vom Substrat, sodass darüber vollständig relaxiertes BaBiO\(_3\) aufwachsen kann. Dieses weist eine epitaktische Orientierung von BaBiO\(_3\)(001)||SrTiO\(_3\)(001) auf, die durch die Ausbildung von lateralen Gitterdomänen, bei denen 8 bzw. 9 BaBiO\(_3\) auf 9 bzw. 10 SrTiO\(_3\) Einheitszellen ausgerichtet sind, gewährleistet wird. Die Stoichiometrie und die strukturelle Qualität der BaBiO\(_3\) Filme werden durch eine systematische Anpassung der Depositionsbedingungen optimiert. Die Valenzbandstruktur der Proben stimmt gut mit Rechnungen der Dichtefunktionaltheorie überein, was darauf hindeutet, dass die Filme hinsichtlich der elektronischen Eigenschaften mit BaBiO\(_3\) Einkristallen vergleichbar sind. Eine abschließende Untersuchung eines schichtdickenabhängigen Phasenübergangs in BaBiO\(_3\) Dünnfilmen, von dem kürzlich in der Literatur berichtet wurde, belegt, dass dieser nicht allein auf die Ausdehnung des Kristallgitters, sondern auch auf strukturelle und stoichiometrische Modifikationen der untersten Filmlagen zurückzuführen ist. KW - Perowskit KW - Röntgen-Photoelektronenspektroskopie KW - Pulsed laser deposition KW - Übergangsmetalloxide KW - KTaO3 KW - BaBiO3 KW - Oxide Heterostructure KW - Interface Conductivity KW - oxidische Heterostruktur KW - Grenzflächenleitfähigkeit KW - Winkelaufgelöste Photoemission mit harten Röntgenstrahlen KW - Hard X-ray Angle Resolved Photoemission KW - High-Z Oxides KW - HARPES Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185370 ER -