TY - THES A1 - Jung, Jamin T1 - Precise timing of the trypanosome cell division cycle T1 - Präzises Timing des trypanosomalen Zellzyklus N2 - African trypanosomes are the causative agents of fatal diseases in humans and livestock. Trypanosomes show a complex lifecycle and shuttle between the transmitting vector, the tsetse (Glossina spec.), and the mammalian host. As a result of this the parasite undergoes tremendous changes in morphology and metabolism to adapt to the different living environments. The two best-studied lifecycle stages are the procyclic forms (PCF) that live in the tsetse fly and the proliferative bloodstream form (BSF) that resides in the mammalian blood. The most conspicuous weapon that trypanosomes use to evade the host immune attack is a dense layer of a single protein type, the variant surface glycoprotein (VSG), which shields the entire cell surface. Immune evasion required high rates of surface membrane turnover and surface coat recycling. Trypanosomes show highly polarised cell architecture with all major eukaryotic organelles (endoplasmic reticulum, Golgi apparatus, endosomal apparatus, lysosome, mitochondrion and peroxisome-like glycosomes) generally present in single copy. Furthermore, trypanosomes possess a single flagellum, which is important not only for cellular motility but also for cell division. How the duplication of all these cellular components is coordinated in order to progresss through the cell division cycle is poorly understood. We used trypanosomes as a model organism due to the relative simplicity and the polarised nature of their cell architecture and determined the duplication of all their compartments. This was only possible due to a new synchronisation approach developed during this project. In the first part of the thesis a precise temporal map of the cell division cycle of the BSF T. brucei cell division cycle was generated. By the use of well-described morphological markers (K/N status, new flagellum outgrowth and DNA synthesis) the position of individual cells was determined with high temporal resolution; this allowed us for the first time to synchronise a cell population in silico without affecting the naturally asynchronous growth. In the second part of the thesis we used this tool to follow duplication events of the Major organelles during progression through the cell division cycle. We precisely determined the time points of organelle duplication and found that it is ordered in trypanosomes. Furthermore we found that BSF T. brucei cells do not grow continuously, cell size start to increase rapidly, during a short period of time, late in the cell division cycle. We speculate that the initiation of cell volume increase is temporally separated from the formation of all secretory organelles in order to ensure maintenance of the protective coat, which must remain intact at all times in order for BSF trypanosomes to be able to evade the host immune response. N2 - Afrikanische Trypanosomen sind Erreger fataler Krankheiten sowohl bei Menschen also auch bei Nutztieren. Trypanosomen weisen einen komplexen Lebenszyklus auf und wechseln hierbei zwischen ihrem Überträger, der Tsetse Fliege (Glossina spec.) und ihrem Säugerwirt. Hieraus resultierend, erlebt der Parasit dramatische Veränderungen der Zellmorphologie und des Zell- metabolismus um sich an die jeweiligen Lebensräume anzupassen. Die zwei am besten unter- suchten Lebensstadien sind die Prozyklische Form (PCF), welche in der Tsetse Fliege vor- kommt und die Blutstrom Form, welche im Säugerwirt zirkuliert. BSF Trypanosomen leben extrazellulär im Säugerblut und sind hier kontinuierlich der Immunabwehr des Wirtes ausge- setzt. Durch einen dichten Proteinmantel eines einzigen Proteintyps, dem variablen Oberflä- chenglykoproteins (VSG) ummantelt der Parasit seine Zelloberfläche und schützt so invariable Proteine vor der Erkennung durch das Immunsystem. Um diesen VSG Mantel aufrecht zu er- halten werden enorm hohe Raten an Oberflächen-membran- und VSG- Recycling benötigt. Trypanosomen weisen eine hoch polarisierte Zellarchitektur auf und die wichtigen Organellen (Endoplasmatisches Retikulum, Golgi Apparat, Endosomaler Apparat, Lysosome, Mitochondri- um und Glykosomen) sind generell in einfacher Kopie vorhanden. Weiterhin besitzen Trypano- somen ein einzenes Flagellum welches sowohl für die Bewegung als auch die Zellteilung des Parasiten von großer Bedeutung ist. All diese Bestandteile müssen während des Zellzyklus verdoppelt werden um zwei lebensfähige Tochterzellen zu generieren. Über die Koordinierung und die Mechanismen der Organellenteilung ist kaum etwas bekannt. Wir nutzen den einfachen Zellaufbau und die polarisierte Zellarchitektur von Trypanosomen um die Verdopplung der zel- lulären Bestandteile zu untersuchen. Dies war jedoch nur durch einen neuen Synchronisie- rungsansatz möglich der im Rahmen dieser Arbeit entwickelt und etabliert wurde. Im ersten Teil der Arbeit wurde eine zeitlich hoch aufgelöste Kartierung des Zellzyklus vorge- nommen. Wir nutzen morphologisch gut beschriebene Marker um die Position einzelner Zellen im Zellzyklus zeitlich sehr genau zu bestimmen, somit kann eine in silico Synchronisierung durchgeführt werde ohne das natürliche Verhalten der Zellpopulation zu beeinflussen. Im zweiten Teil der Arbeit wurde mittels dieser zeitlichen Zellzykluskarte der Teilungszeitpunkt aller wichtigen Organellen bestimmt. Hierbei fanden wir heraus, dass die Teilung der Zellorga- nellen in einer definierten Reihenfolge stattfindet. Weiterhin konnten wir zeigen, dass Trypano- somen nicht kontinuierlich wachsen, die Zelle wächst in einer relativ kurzen Phase, spät im Zellzyklus. Wir vermuten, dass die Teilung der sekretorischen Organellen und das Zellwachs- tums zeitlich voneinander getrennt sind um so den schützenden Proteinmantel, der für das überleben im Blut unabdingbar ist, aufrecht zu erhalten. KW - Zellteilung KW - Trypanosomes KW - Trypanosomen KW - Zellbiologie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114932 ER - TY - JOUR A1 - Bargul, Joel L. A1 - Jung, Jamin A1 - McOdimba, Francis A. A1 - Omogo, Collins O. A1 - Adung'a, Vincent O. A1 - Krüger, Timothy A1 - Masiga, Daniel K. A1 - Engstler, Markus T1 - Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host JF - PLoS Pathogens N2 - African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate’s incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the ‘cellular waveform’. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites. KW - swimming KW - viscosity KW - flagella KW - host-pathogen interactions KW - cell motility KW - blood KW - parasitic diseases KW - trypanosoma brucei gambiense Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146513 VL - 12 IS - 2 ER -