TY - THES A1 - Kaymak, Irem T1 - Identification of metabolic liabilities in 3D models of cancer T1 - Identifikation metabolischer Abhängigkeiten in 3D Tumormodellen N2 - Inefficient vascularisation of solid tumours leads to the formation of oxygen and nutrient gradients. In order to mimic this specific feature of the tumour microenvironment, a multicellular tumour spheroid (SPH) culture system was used. These experiments were implemented in p53 isogenic colon cancer cell lines (HCT116 p53 +/+ and HCT116 p53-/-) since Tp53 has important regulatory functions in tumour metabolism. First, the characteristics of the cells cultured as monolayers and as spheroids were investigated by using RNA sequencing and metabolomics to compare gene expression and metabolic features of cells grown in different conditions. This analysis showed that certain features of gene expression found in tumours are also present in spheroids but not in monolayer cultures, including reduced proliferation and induction of hypoxia related genes. Moreover, comparison between the different genotypes revealed that the expression of genes involved in cholesterol homeostasis is induced in p53 deficient cells compared to p53 wild type cells and this difference was only detected in spheroids and tumour samples but not in monolayer cultures. In addition, it was established that loss of p53 leads to the induction of enzymes of the mevalonate pathway via activation of the transcription factor SREBP2, resulting in a metabolic rewiring that supports the generation of ubiquinone (coenzyme Q10). An adequate supply of ubiquinone was essential to support mitochondrial electron transport and pyrimidine biosynthesis in p53 deficient cancer cells under conditions of metabolic stress. Moreover, inhibition of the mevalonate pathway using statins selectively induced oxidative stress and apoptosis in p53 deficient colon cancer cells exposed to oxygen and nutrient deprivation. This was caused by ubiquinone being required for electron transfer by dihydroorotate dehydrogenase, an essential enzyme of the pyrimidine nucleotide biosynthesis pathway. Supplementation with exogenous nucleosides relieved the demand for electron transfer and restored viability of p53 deficient cancer cells under metabolic stress. Moreover, the mevalonate pathway was also essential for the synthesis of ubiquinone for nucleotide biosynthesis to support growth of intestinal tumour organoids. Together, these findings highlight the importance of the mevalonate pathway in cancer cells and provide molecular evidence for an enhanced sensitivity towards the inhibition of mitochondrial electron transfer in tumour-like metabolic environments. N2 - In soliden Tumoren führt die ineffiziente Bildung von Blutgefäßen (Vaskularisierung) zu einem Nährstoff- und Sauerstoffgradienten im gesamten Tumor, welches eine spezifische Tumormikroumgebung schafft. Um diese Tumorumgebung nachzuahmen, wurde ein spezielles multi-zelluläres Tumorsphäroid (SPH) Zellkultursystem verwendet. Da Tp53 wichtige regulatorische Funktionen im Tumormetabolismus hat, wurde zur Generierung von Sphäroiden p53 isogene Darmkrebs-Zelllinen HCT116 (p53 +/+ und p53 -/-) verwendet. Zunächst wurden die Sphäroide mittels RNA Sequenzierung und Metabolomik charakterisiert, um die Genexpression und metabolischen Eigenschaften in verschiedenen Zellkulturbedingungen zu vergleichen. Diese Analyse hat gezeigt, dass gewisse Genexpressionsmuster in Tumoren wie beispielsweise Proliferations- und Hypoxia verwandte Gene in Sphäroiden übereinstimmen, nicht jedoch in Monolayer-Kulturen. Vergleicht man die zwei unterschiedlichen Genotypen miteinander, so sind Gene, die in der Cholesterinhomöostase involviert sind, in p53 defizienten Zellen induziert, nicht jedoch in p53 wildtypischen Zellen. Dieser Unterschied ist in Sphäroiden vorhanden, nicht jedoch in Monolayer-Kulturen. Verlust von p53 führt über die Aktivierung des Transkriptionsfaktors SREBP2 zur Induktion von Enzymen des Mevalonat-Synthesewegs und zudem zu einer neuen metabolischen Vernetzung, die die Generierung von Ubichinon (Coenzym Q10) unterstützt. Eine ausreichende Ubichinon-Versorgung ist wichtig, um den mitochondrialen Elektronentransport und die Pyrimidin-Biosynthese in p53-defizienten Krebszellen unter metabolischen Stressbedingungen zu unterstützen. Darüber hinaus induziert die Inhibition des Mevalonat-Synthesewegs durch Statine in p53-defizienten Darmkrebszellen, die Sauerstoff und Nährstoffmangel ausgesetzt sind, selektiv oxidativen Stress und Apoptose. Verursacht wird dies durch einen Mangel an Ubichinon, welches für den Elektronentransfer der Dihydroorotatdehydrogenase, einem essentiellen Enzym der Pyrimidinnukleotid-Biosynthese, notwendig ist. Gabe von exogenen Nukleosiden entlastete die Nachfrage an Elektronentransfer und stellte die Lebensfähigkeit von p53-defizienten Krebszellen unter metabolischem Stress wieder her. Darüber hinaus konnte gezeigt werden, dass der Mevalonat-Syntheseweg auch für die Synthese von Ubichinon für die Pyrimidinnukleotid-Biosynthese unerlässlich ist, um das Wachstum von Darmtumor-Organoiden zu unterstützen. Zusammengenommen interstreichen diese Ergebnisse die Bedeutung des Mevalonat-Syntheseweg in Krebszellen und liefern den molekularen Mechanismus für die erhöhte Empfindlichkeit von Tumorzellen gegenüber der Hemmung des mitochondrialen Elektronentransfers in einer Tumor-ähnlichen Stoffwechselumgebung. KW - p53 KW - cancer KW - CoQ10 KW - Tumor KW - Modell KW - Stoffwechsel Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181544 ER - TY - THES A1 - Ulrich, Tanja T1 - Function of Lin9 in vivo and MAP3K4-p38 signaling regulates p53 mediated cell cycle arrest after defective mitosis T1 - Funktion von Lin9 in vivo und MAP3K4-p38 Signalweg reguliert einen p53-vermittelten Zellzyklus-Arrest nach fehlerhafte Mitose N2 - Eine genaue Kontrolle des Verlaufs durch die Mitose ist entscheidend für die Gewährleistung genomischer Stabilität und für die Vermeidung von Aneuploidy. Der DREAM Komplex ist ein wichtiger Regulator der Expression von mitotischen Genen. Die Depletion der DREAM-Untereinheit Lin9, führt zu einer verminderten Expression von G2/M Genen und beeinträchtigt die Proliferation. In konditionellen knockout Mauszellen (MEFs) verursacht das Ausschalten von Lin9 Defekte in Mitose und Zytokinese und löst vorzeitige Seneszenz aus, um eine weitere Zellproliferation zu verhindern. In dieser Arbeit konnte gezeigt werden, dass der seneszente Phänotyp in Lin9 knockout MEFs unabhängig von den beiden Tumorsuppressor-Signalwegen p53-p21 und p16-pRB induziert wird. Untersuchungen mit dem konditionellen Lin9 knockout Mausmodell verdeutlichten die wichtige Funktion von Lin9 in der Regulierung der mitotischen Genexpression und der Proliferation in vivo. Das Fehlen von Lin9 führte zu einer verringerten Proliferation in den Krypten des Dünndarms und verursachte eine Atrophie des Darmepithels und einen schnell eintretenden Tod der Tiere. Im zweiten Teil der Arbeit wurden Signalwege untersucht, die nach fehlerhafter Zytokinese zu einem p53 vermittelten G1-Arrest führen. Hierfür wurde ein chemischer Inhibitor der mitotischen Kinase Aurora B verwendet. Mit Hilfe eines Hochdurchsatz siRNA Screens wurde die MAP Kinase MAP3K4 als Aktivator des p53 Signalwegs identifiziert. Es konnte gezeigt werden, dass MAP3K4 die Stresskinase p38b aktiviert, um den p53 vermittelten Zellzyklusarrest in tetraploiden Zellen auszulösen. Dabei wurde p38b nach Hemmung von Aurora B für die transkriptionelle Aktivierung des p53 Zielgens p21 benötigt. Im Gegenteil dazu erfolgte die Phosphorylierung, Stabilisierung und die Rekrutierung von p53 an den p21 Promoter unabhängig von p38. Die teilweise Hemmung von Aurora B zeigte, dass fehlerhafte Segregation von Chromosomen auch den MAP3K4-p38-p53 Signalweg aktiviert und lässt darauf schließen, dass subtile Defekte in der Mitose ausreichen diesen Stress-Signalweg zu induzieren. Obwohl p38 für den G1 Zellzyklusarrest nach mitotischen Schäden erforderlich war, führte die gleichzeitige Inhibierung von p38 und Aurora B über einen längeren Zeitraum zu einer verringerten Proliferation, vermutlich aufgrund verstärkter Apoptose. Es ist anzunehmen, dass der MAP3K4-p38-p53 Signalweg generell nach Defekten in der Mitose oder Zytokinese aktiviert wird um Zellen in G1 zu arretieren und um chromosomale Instabilität zu vermeiden. N2 - Precise control of progression through mitosis is essential to maintain genomic stability and to prevent aneuploidy. The DREAM complex is an important regulator of mitotic gene expression. Depletion of Lin9, one core-subunit of DREAM, leads to reduced expression of G2/M genes and impaired proliferation. In conditional mouse knockout cells (MEFs) Lin9 deletion causes defects in mitosis and cytokinesis and cells undergo premature senescence in order to prevent further proliferation. In this work it could be shown that the senescence phenotype in Lin9 knockout MEFs is independently mediated by the two tumor suppressor pathways p53-p21 and p16-pRB. Studies using the conditional Lin9 knockout mouse model demonstrated an important function of Lin9 in the regulation of mitotic gene expression and proliferation in vivo. Deletion of Lin9 caused reduced proliferation in the intestinal crypts resulting in atrophy of the intestinal epithelium and in rapid death of the animals. In the second part of this work, the pathways leading to p53 mediated G1 arrest after failed cytokinesis were analyzed by using a chemical inhibitor of the mitotic kinase Aurora B. In a high throughput siRNA screen the MAP kinase MAP3K4 was identified as an upstream activator of p53. It could be shown that MAP3K4 activates the downstream stress kinase p38b to induce the p53 mediated cell cycle arrest of tetraploid cells. p38b was required for the transcriptional activation of the p53 target gene p21 in response to Aurora B inhibition. In contrast, phosphorylation, stabilization and recruitment of p53 to the p21 promoter occured independently of p38 signaling. Partial inhibition of Aurora B demonstrated that chromosome missegregation also activates the MAP3K4-p38-p53 pathway, suggesting that subtle defects in mitosis are sufficient for inducing this stress signaling pathway. Although p38 was required for the G1 cell cycle arrest after mitotic failures, long-term co-inhibition of p38 and Aurora B resulted in reduced proliferation probably due to increased apoptosis. Presumably, MAP3K4-p38-p53 signaling is a common pathway that is activated after errors in mitosis or cytokinesis to arrest cells in G1 and to prevent chromosomal instability. KW - Mitose KW - MAP-Kinase KW - Protein p53 KW - Aneuploidie KW - Lin9 KW - defective Mitosis KW - MAP3K4 KW - p53 KW - aneuploidy KW - fehlerhafte Mitose Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73975 ER -