TY - THES A1 - Schardt, Simon T1 - Agent-based modeling of cell differentiation in mouse ICM organoids T1 - Agentenbasierte Modellierung von Maus ICM Organoiden N2 - Mammalian embryonic development is subject to complex biological relationships that need to be understood. However, before the whole structure of development can be put together, the individual building blocks must first be understood in more detail. One of these building blocks is the second cell fate decision and describes the differentiation of cells of the inner cell mass of the embryo into epiblast and primitive endoderm cells. These cells then spatially segregate and form the subsequent bases for the embryo and yolk sac, respectively. In organoids of the inner cell mass, these two types of progenitor cells are also observed to form, and to some extent to spatially separate. This work has been devoted to these phenomena over the past three years. Plenty of studies already provide some insights into the basic mechanics of this cell differentiation, such that the first signs of epiblast and primitive endoderm differentiation, are the expression levels of transcription factors NANOG and GATA6. Here, cells with low expression of GATA6 and high expression of NANOG adopt the epiblast fate. If the expressions are reversed, a primitive endoderm cell is formed. Regarding the spatial segregation of the two cell types, it is not yet clear what mechanism leads to this. A common hypothesis suggests the differential adhesion of cell as the cause for the spatial rearrangement of cells. In this thesis however, the possibility of a global cell-cell communication is investigated. The approach chosen to study these phenomena follows the motto "mathematics is biology's next microscope". Mathematical modeling is used to transform the central gene regulatory network at the heart of this work into a system of equations that allows us to describe the temporal evolution of NANOG and GATA6 under the influence of an external signal. Special attention is paid to the derivation of new models using methods of statistical mechanics, as well as the comparison with existing models. After a detailed stability analysis the advantages of the derived model become clear by the fact that an exact relationship of the model parameters and the formation of heterogeneous mixtures of two cell types was found. Thus, the model can be easily controlled and the proportions of the resulting cell types can be estimated in advance. This mathematical model is also combined with a mechanism for global cell-cell communication, as well as a model for the growth of an organoid. It is shown that the global cell-cell communication is able to unify the formation of checkerboard patterns as well as engulfing patterns based on differently propagating signals. In addition, the influence of cell division and thus organoid growth on pattern formation is studied in detail. It is shown that this is able to contribute to the formation of clusters and, as a consequence, to breathe some randomness into otherwise perfectly sorted patterns. N2 - Die embryonale Entwicklung von Säugetieren unterliegt komplexen biologischen Zusammenhängen, die es zu verstehen gilt. Bevor jedoch das gesamte Gebilde der Entwicklung zusammengesetzt werden kann, müssen zunächst die einzelnen Bausteine genauer verstanden werden. Einer dieser Bausteine ist die zweite Zellschicksalsentscheidung und beschreibt die Differenzierung von Zellen der inneren Zellmasse des Embryos hin zu Epiblast- und primitiven Endodermzellen. Diese Zellen teilen sich daraufhin räumlich auf und bilden die anschließend die Grundlagen für den Embryo und den Dottersack. In Organoiden der inneren Zellmasse wird ebenfalls beobachtet, wie sich diese zwei Typen von Vorläuferzellen bilden, und sich in gewissem Maße räumlich voneinander trennen. Diesem Phänomenen widmete sich diese Arbeit im Verlaufe der letzten drei Jahre. Über diese Zelldifferenzierung ist bereits bekannt, dass die ersten Anzeichen für Epiblast- und primitive Endodermdifferenzierung jeweils die Expressionslevel der Transkriptionsfaktoren NANOG und GATA6 sind. Dabei nehmen Zellen mit niedriger Expression an GATA6 und hoher Expression an NANOG das Epiblastschicksal an. Sind die Expressionen umgekehrt, so entsteht eine primitive Endodermzelle. Bei der räumlichen Aufteilung der beiden Zelltypen ist noch nicht eindeutig geklärt, welcher Mechanismus dazu führt. Eine gängige Hypothese besagt, dass die Ursache für die räumliche Umlagerung der Zellen in der unterschiedlichen Adhäsion der Zellen liegt. In dieser Arbeit wird jedoch die Möglichkeit einer globalen Zell-Zell-Kommunikation untersucht. Die gewählte Vorgehensweise bei der Untersuchung dieser Phänomene folgt dem Motto "Die Mathematik ist das nächste Mikroskop der Biologie". Mit Hilfe mathematischer Modellierung wird das zentrale genregulierende Netzwerk im Mittelpunkt dieser Arbeit in ein Gleichungssystem umgewandelt, welches es ermöglicht, die zeitliche Entwicklung von NANOG und GATA6 unter Einfluss eines externen Signals zu beschreiben. Ein besonderes Augenmerk liegt dabei auf der Herleitung neuer Modelle mit Hilfe von Methoden der statistischen Mechanik, sowie dem Vergleich mit bestehenden Modellen. Nach einer ausführlichen Stabilitätsanalyse werden die Vorteile des hergeleiteten Modells dadurch deutlich, dass ein exakter Zusammenhang der Modellparameter und der Formierung von heterogenen Mischungen zweier Zelltypen gefunden wurde. Dadurch lässt sich das Modell einfach kontrollieren und die Proportionen der resultierenden Zelltypen bereits im Voraus abschätzen. Dieses mathematische Modell wird außerdem kombiniert mit einem Mechanismus zur globalen Zell-Zell Kommunikation, sowie einem Modell zum Wachstum eines Organoiden. Dabei wird gezeigt dass die globale Zell-Zell Kommunikation dazu in der Lage ist die Bildung von Schachbrettmustern, sowie auch umrandenden Muster anhand unterschiedlich ausbreitender Signale zu vereinen. Zusätzlich wird der Einfluss der Zellteilung und somit des Organoidwachstums auf die Musterbildung genauestens untersucht. Es wird gezeigt, dass dies zur Bildung von Clustern beiträgt und infolgedessen eine gewisse Zufälligkeit in ansonsten perfekt sortierte Muster einbringt. KW - Mathematische Modellierung KW - Embryonalentwicklung KW - Organoid KW - Differentialgleichung KW - Agentenbasierte Modellierung KW - Transkriptionelle Regulierung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301940 ER - TY - CHAP A1 - Peter, R. U. A1 - Schartl, Manfred A1 - Anders, F. A1 - Duncker, H.-R. T1 - Pigment pattern formation during embryogenesis in Xiphophorus N2 - No abstract available. KW - Schwertkärpfling KW - Embryonalentwicklung KW - Pigmentmuster Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69370 ER - TY - THES A1 - Englberger, Eva T1 - Gene regulation in hearts of Hey-mutant mouse embryos and monitoring of sub-cellular Hey1 distribution T1 - Genregulation in Herzen Hey-mutierter Mausembryonen und Darstellung der sub-zellulären Verteilung von Hey1 N2 - Hey-mutant mouse hearts at embryonic day E14.5 were shown to react to the knock out of Hey2 with several up-regualted genes. This up-regulation is due to the lack of Hey2 and cannot be explained by the structural changes in heart morphology as shown using control animals. Part of the gene regulation was further validated using in situ hybridization. Hey1 was located to the nucleus in immunofluorescence experiments. However, experiments on protein level showed also amount of Hey1 within the cytoplasm. The nuclear localization of Hey1 was unchanged during all cell cycle phases as well as when CaMKII was co-expressed or other cellular pathways were inhibited or stimulated. Hey1 does not seem to interact with the nuclear transport proteins importin-alpha and -beta, therefore it still needs to be elucidated how Hey1 is transported into the nucleus. N2 - Am Embryonaltag 14,5 zeigten Herzproben von Hey2-KO-Mäusen eine deutliche Hochregulation mehrerer Gene, die auf das Fehlen von Hey2 zurückzuführen ist, da Kontroll-Tiere gezeigt haben, dass die morphologischen Veränderungen in der Herzstruktur keinen Einfluss auf die Genregulation haben. Vereinzelt wurden die regulierten Gene noch mittels in situ Hybridisierung weiter verdeutlicht. In Immunfloureszenzexperimenten wurde Hey1 im Zellkern lokalisiert. Auf Proteinebene zeigte sich allerdings auch ein Vorhandensein von Hey1 im Cytoplasma der Zellen. Die Kernlokalisaiton von Hey1 veränderte sich während des gesamten Zellzykluses nicht und wurde auch nicht durch die Co-Expression von CaMKII beeinflusst oder die Inhibition oder Stimulation anderer Signalwege in der Zelle. Hey1 scheint nicht mit den Kerntransportproteinen Importin-alpha und -beta zu interagieren, so dass weiterhin nach einem Kernimport-System für Hey1 gesucht werden muss. KW - Maus KW - Herz KW - Embryonalentwicklung KW - Genregulation KW - Herzentwicklung KW - Kerntransport KW - Hey KW - heart development KW - nuclear transport Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73395 ER - TY - THES A1 - Porsch, Matthias T1 - OMB and ORG-1 T1 - OMB und ORG-1 N2 - Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity. N2 - Die Mitglieder der T-box Genfamilie kodieren Transkriptionsfaktoren mit Schlüsselrollen in der Embryogenese und der Organentwicklung von Invertebraten und Vertebraten. Charakteristisch für T-box Proteine ist der Besitz einer T Domäne, eines ungefähr 200 Aminosäuren großen, homologen DNA Bindungsmotivs. Die Relevanz dieser Proteine in vielen Entwicklungsprozessen zeigt sich deutlich in den dramatischen Phänotypen von Tieren mit Mutationen in T-box Genen. Die vorliegende Arbeit konzentrierte sich vor allem auf das Studium von zwei Drosophila T-box Genen, optomotor-blind (omb) und optomotor-blind related 1 (org-1) und beinhaltet (i) eine genetische Analyse der org-1 Gens und (ii) die Identifikation der molekularen Determinanten innerhalb OMB und ORG-1, die den verwandten Proteinen ihre funktionelle Spezifität verleihen. (i) Die genetische Analyse des org-1 Gens stützte sich anfänglich auf die Drosophila Mutante C31. C31 ist eine X-gekoppelte, rezessive Mutation und wurde in den Bereich 7E-7F kartiert, in dem sich auch org-1 befindet. C31 Fliegen zeigen Defekte im Laufverhalten, Strukturdefekte im Zentralkomplex des Gehirns und eine Flügelfehlstellung. Eine Molekularanalyse ergab, daß C31 eine Insertion eines 5' verkürzten I Retrotransposons innerhalb des 3' untranslatierten org-1 Transkripts enthält und ließ vermuten, daß C31 das erste mutante org-1 Allel darstellen könnte. Dieser Hypothese folgend durchsuchten wir ca 44.500 F1 Weibchen aus der Kreuzung von EMS mutagenisierten Männchen mit C31 Weibchen auf den C31 Flügelphänotyp, konnten allerdings keine org-1 oder C31 Mutante isolieren. Da wir nicht ausschließen konnten, daß unser Scheitern durch eine Eigentümlichkeit der C31 Mutante verursacht wurde, verfolgten wir nun eine revers-genetische Strategie mit dem Ziel, P Element Insertionen im org-1 Gen zu isolieren. Alle Fliegenlinien mit P Elementen in 7E-7F wurden molekular charakterisiert und ihre Integrationsstellen präzise bestimmt. 13 der 19 analysierten Linien trugen ihre Insertionen in einem hot-spot ungefähr 37 kb distal zu org-1. Keine P Element Insertion konnte im org-1 Gens gefunden werden, jedoch wurden mehrere P Elemente auf beiden Seiten von org-1 identifiziert. Die beiden org-1 nächsten Insertionen wurden für mehrere local-hop Experimente verwendet, in denen wir 6 neue Gene mit P Insertionen assoziieren konnten, jedoch nicht org-1. Nachfolgend wurden zwei org-1 flankierende P Elemente verwendet, um präzise Deletionen über den org-1 Genlokus zu erzeugen. Zwei org-1 flankierende P Elemente wurden zunächst auf ein Chromosom rekombiniert. Die Remobilisierung von P Elementen in cis Anordnung führt häufig zu Deletionen mit den P Element Insertionsstellen als Defizienz-Endpunkten. In einem ersten Versuch erwarteten wir mutmaßliche Defizienzen als neue C31 Allele zu identifizieren. Acht C31 Allele konnten isoliert werden. Zu unserer Überraschung trugen diese neuen C31 Chromosomen aber nicht die gewünschte Deletion. Weitere Analysen ergaben, daß C31 nicht durch Mutationen im org-1 Gen verursacht wird, sondern durch Mutationen in einem distalen Gen. Wir wiederholten die P Element Remobilisierung, suchten nun aber auf Verlust der P Element-Marker nach Defizienzen. Vier lethale Chromosomen konnten isoliert werden, die eine Deletion über org-1 tragen. (ii) Die Konsequenzen einer ektopischen Expression von org-1 wurden mit Hilfe von UAS-org-1 transgenen Fliegen und einer Reihe Gal4 Treiberlinien studiert. Mißexpression von org-1 während der Imaginalentwicklung stört die normale Entwicklung in vielen Organen und führt zu Fliegen mit einer Vielzahl von Phänotypen. Diese beinhalten eine homeotische Transformation distaler Antennensegmente in distale Beinstrukturen, stark verkürzte Beine und verkrüppelte Flügel. Ebenso wie ektopische org-1 Expression bewirkt auch die ektopische Expression von omb eine dramatische Veränderung des normalen Entwicklungsprogramms. dpp-Gal4/ UAS-omb Fliegen sind puppal lethal und weisen ein ektopisches Flügelpaar und verkleinerte Augen auf. GMR-Gal4 getriebene ektopische omb Expression in der Augenentwicklung verursacht eine Degeneration der Photorezeptorzellen, während GMR-Gal4/ UAS-org-1 Tiere intakte Augen besitzen. Die ektopische Expression von omb und org-1 verursacht also jeweils deutliche, jedoch qualitativ sehr unterschiedliche Phänotypen für die homologen Gene. Um zu bestimmen, wo sich innerhalb der OMB und ORG-1 Proteine die Spezifitätsdeterminanten befinden, haben wir beide Proteine konzeptionell in drei Domänen unterteilt und die Bedeutung der einzelnen Domänen für funktionelle Spezifität mit Hilfe von chimären omb-org-1 Transgenen in vivo untersucht. Die Analyse der chimären omb-org-1 Transgene mit der GMR-Gal4 Treiberlinie ergab, daß alle drei OMB Domänen zur funktionellen Spezifität von OMB beitragen. KW - Taufliege KW - Transkriptionsfaktor KW - Embryonalentwicklung KW - Drosophila KW - Transkriptionsfaktor KW - chimär KW - Spezifität KW - Beinentwicklung KW - Drosophila KW - transcription factor KW - chimeric KW - specificity KW - appendage development Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3614 ER -