TY - THES A1 - Höcherl, Nicole T1 - Nesting behaviour of the paper wasp Polistes dominula - with special focus on thermoregulatory mechanisms T1 - Nistverhalten der Feldwespe Polistes dominula - mit besonderem Augenmerk auf thermoregulatorische Mechanismen N2 - Wasps of the genus Polistes comprise over 200 species and are nearly cosmopolitan. They show a lack of physiological caste differentiation and are therefore considered as primitively eusocial. Furthermore, paper wasps are placed between the solitary living Eumenidae and the highly social organized Vespinae. Hence, they are often called a “key genus” for understanding the evolution of sociality. Particularly, Polistes dominula, with its small easy manageable nests and its frequent occurrence and wide distribution range is often the subject of studies. In Europe, the invasion of this species into northern regions is on the rise. Since little was known about the nesting behaviour of P. dominula in Central Europe, the basic principles about nesting were investigated in Würzburg, Germany (latitude 49°) by conducting a comprehensive field-study spanning three consecutive years. Furthermore, the thermoregulation of individual wasps in their natural habitat had not yet been investigated in detail. Therefore, their ability to respond to external hazards with elevated thorax temperatures was tested. In addition, different types of nest thermoregulation were investigated using modern methods such as infrared thermography and temperature data logger. In the present work, the investigation of basic nesting principles revealed that foundress groups (1-4 foundresses) and nests are smaller and that the nesting season is shorter in the Würzburg area than in other regions. The mean size of newly founded nests was 83 cells and the average nesting season was around 4.6 months. The queens neither preferred single (54%) nor multiple founding (46%) in this study. The major benefit of multiple founding is an increased rate of survival. During the three years of observation, only 47% of single-foundress colonies survived, whereas 100% of colonies that were built by more than two queens, survived. However, an influence of the number of foundresses on the productivity of colonies in terms of number of cells and pupae per nest has not shown up. However, the length of the nesting season as well as the nest sizes varied strongly depending on the climatic conditions of the preceding winter during the three consecutive years. In order to investigate the thermoregulatory mechanisms of individual adult P. dominula wasps, I presented artificial threats by applying smoke or carbon dioxide simulating fire and predator attacks, respectively, and monitored the thorax temperature of wasps on the nest using infrared thermography. The results clearly revealed that P. dominula workers recognized smoke and CO2 and reacted almost instantaneously and simultaneously with an increase of their thorax temperature. The maximal thorax temperature was reached about 65 s after the application of both stressors, but subsequently the wasps showed a different behaviour pattern. They responded to a longer application of smoke with moving to the exit and fled, whereas in case of CO2 the wasps started flying and circling the nest without trying to escape. No rise of the thorax temperature was detectable after an air blast was applied or in wasps resting on the nest. Additionally, the thorax temperatures of queens were investigated during dominance battles. I found that the thorax temperature of the dominant queens rose up to 5°C compared to that of subordinate queens that attacked the former. The study of active mechanisms for nest thermoregulation revealed no brood incubation or clustering behaviour of P. dominula. Furthermore, I found out that wing fanning for cooling the nest was almost undetectable (4 documented cases). However, I could convincingly record that water evaporation is most effective for nest cooling. By the direct comparison of active (with brood and adults) and non-active (without brood and adults) nests, the start of cooling by water evaporation was detected above maximum outside temperatures of 25°C or at nest temperatures above 35°C. The powerful role of water in nest cooling was manifested by an average decrease of temperature of a single cell of about 8°C and a mean duration of 7 min until the cell reached again its initial temperature. The investigation of passive thermoregulatory mechanisms revealed that the nest site choice as well as nest orientation appears to be essential for P. dominula wasps. Furthermore, I was able to show that the architecture of the nests plays an important role. Based on the presented results, it can be assumed that the vertical orientation of cells helps maintaining the warmth of nests during the night, whereas the pedicel assists in cooling the nest during the day. N2 - Die Wespen-Gattung Polistes ist mit über 200 Arten nahezu auf der ganzen Welt vertreten. Da physiologische Unterschiede zwischen den Kasten fehlen, werden sie als primitiv eusozial eingestuft. Des Weiteren werden sie zwischen den solitär lebenden Eumenidae und den hoch eusozialen Vespinae eingeordnet. Sie werden daher oft als „Schlüssel-Gattung“ für das Verständnis der Evolution von Sozialität bezeichnet. Insbesondere Polistes dominula (Haus-Feldwespe) wird aufgrund der kleinen einfach zu handhabenden Nester, dem häufigen Vorkommen und der weiten Verbreitung vielfach für Studien genutzt. In Europa ist diese Wespenart auf dem Vormarsch in nördlichere Regionen. Bisher war kaum etwas über das Nistverhalten von P. dominula in Zentraleuropa bekannt. Daher wurde eine umfassende, drei aufeinanderfolgende Jahre andauernde Freilandstudie zu den Grundlagen des Nistverhaltens in Würzburg (Deutschland, Breitengrad 49°) durchgeführt. Auch die Thermoregulation der Einzeltiere wurde noch nie im Detail erforscht. Daher wurde ein Experiment durchgeführt, das aufzeigen sollte, ob diese Tiere die Fähigkeit besitzen, mit erhöhten Thoraxtemperaturen auf Gefahr zu reagieren. Zusätzlich kamen neuere Methoden wie die Infrarot-Thermographie und Temperaturdatenlogger zum Einsatz, um die verschiedenen Arten der Nestthermoregulation zu untersuchen. In der vorliegenden Arbeit über die Grundlagen des Nistverhaltens zeigte sich, dass im Vergleich zu anderen Regionen in Würzburg sowohl die Gruppengröße der Nestgründerinnen (1-4 Gründerinnen) als auch die Nester an sich kleiner sind (≈ 83 Zellen) und die Nestsaison kürzer (≈ 4,6 Monate). Die Königinnen bevorzugten weder die Gründung des Nestes allein (54%) noch zusammen mit mehreren Königinnen (46%). Der größte Vorteil einer Gründung der Nester durch mehrere Königinnen liegt in einer erhöhten Überlebensrate der Nester. In der drei Jahre andauernden Studie überlebten nur 47% der Nester, die von einer Königin gegründet wurden, während 100% der Völker, die von mehr als zwei Königinnen gegründet wurden, überlebten. Es konnte jedoch kein Einfluss der Anzahl an Gründerinnen auf die Produktivität (bezüglich der Anzahl von Zellen und Puppen) der Völker festgestellt werden. Allerdings variierten Saisonlängen und Nestgrößen stark in Abhängigkeit der klimatischen Bedingungen des vorangegangenen Winters in den drei aufeinanderfolgenden Jahren. Zur Untersuchung der thermoregulatorischen Mechanismen der adulten Tiere setzte ich künstliche Bedrohungen in Form von Rauch und Kohlendioxid ein, um entweder ein Feuer oder einen Raubtierangriff zu simulieren. Die Thoraxtemperaturen der auf dem Nest sitzenden Feldwespen wurde zeitgleich mit einer Thermokamera überwacht. Die Ergebnisse belegen eindeutig, dass P. dominula-Arbeiterinnen Rauch und CO2 wahrnehmen und beinahe unverzüglich und zeitgleich mit einer Erhöhung der Thoraxtemperatur reagieren. Nach der Applikation der beiden Stressoren war die maximale Temperatur nach durchschnittlich 65 s erreicht, allerdings zeigten die Wespen unterschiedliche Verhaltensmuster. Auf eine längere Rauchapplikation reagierten sie mit Flucht, während sie im Fall von CO2 fliegend das Nest umkreisten, ohne zu fliehen. Nach der Gabe eines Luftstoßes oder bei ruhenden Wespen war kein Anstieg der Thoraxtemperatur nachweisbar. Zusätzlich wurden die Thoraxtemperaturen von Königinnen bei Dominanzkämpfen untersucht. Ich verzeichnete einen Anstieg der Thoraxtemperatur der dominanten Königin um bis zu 5°C im Vergleich zu der Temperatur der untergeordneten Königin, die die dominante angriff. Die Studie der aktiven Mechanismen der Nestthermoregulation belegte, dass bei P. dominula kein Heizen der Brut oder „Clustern“ stattfindet. Des Weiteren war Fächeln zur Kühlung des Nestes so gut wie nicht feststellbar (4 dokumentierte Fälle). Allerdings war ich in der Lage nachzuweisen, dass die Verdunstung von Wasser für die Kühlung des Nestes sehr effektiv ist. Durch den direkten Vergleich von aktiven (mit Brut und adulten Tieren) und nicht-aktiven (ohne Brut und adulten Tieren) Nestern konnte der Beginn des Kühlens bei einer maximalen Außentemperatur von über 25°C oder einer Nesttemperatur von über 35°C ermittelt werden. Die wichtige Rolle, die Wasser für die Nestkühlung spielt, zeigte sich zum Einen durch die mittlere Abkühlung einer einzelnen Zelle von ca. 8°C und zum Anderen durch eine durchschnittliche Dauer von 7 min, bis die Zelle wieder ihre Ausgangstemperatur erreichte. Die Untersuchung der passiven Mechanismen zur Nestthermoregulation zeigte, dass sowohl die Wahl des Nistplatzes als auch die Orientierung des Nestes für die Haus-Feldwespe essentiell ist. Darüber hinaus war ich in der Lage nachzuweisen, dass die Architektur des Nestes eine entscheidende Rolle spielt. Auf der Grundlage der vorgestellten Ergebnisse kann angenommen werden, dass die nach unten ausgerichteten Zellen helfen, das Nest nachts zu wärmen, während der Stiel des Nestes hilft, das Nest tagsüber zu kühlen. KW - Französische Feldwespe KW - Nestbau KW - nesting behaviour KW - Thermoregulation KW - Polistes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132681 ER - TY - THES A1 - Basile, Rebecca T1 - Thermoregulation and Resource Management in the Honeybee (Apis mellifera) T1 - Thermoregulation und Ressourcenmanagment bei der Honigbiene (Apis mellifera) N2 - Ein grundlegender Faktor, der für das Überleben einer Kolonie sozialer Insekten ausschlaggebend ist, liegt in der Fähigkeit Nahrung durch sogenannte „Trophallaxis“ auszutauschen. Diese Fütterungskontakte sorgen für die gleichmäßige Verteilung der Nahrung innerhalb der Kolonie und werden als einer der Grundpfeiler der Sozialität der Staatenbildenden Insekten erachtet. Im Fall der Honigbienen finden diese Kontakte in vollkommener Dunkelheit statt. Damit es in dieser Situation überhaupt zum Nahrungsaustausch kommen kann, sind die Antennen von großer Wichtigkeit. Ein erster Schritt in den Verhaltensweisen, die der Rezipient eines trophallaktischen Kontaktes zeigt, ist der Kontakt einer Antennenspitze mit den Mundwerkzeugen des Donoren, da sich dort die regurgitierte Nahrung befindet. Diese Berührung hat aufgrund der gustatorischen Sensibilität der Antenne den Zweck, das angebotene Futter zu „erschmecken“. Die rechte Antenne wird vom Rezipienten eines trophallaktischen Kontakts signifikant häufiger eingesetzt als die linke Antenne. Die Präferenz für die rechte Antenne bleibt dabei auch erhalten, wenn ein Teil der Antennengeisel abgetrennt wurde, also die sensorischen Fähigkeiten der rechten Antenne stark beeinträchtigt wurden. Der Grund für die Präferenz der rechten Antenne könnte ihrer erhöhten Sensibilität gegenüber Zuckerwasser zugrunde liegen, da die rechte Antenne im Laborversuch signifikant stärker auf Stimulationen mit Zuckerwasser verschiedener Konzentrationen reagierte als die linke. Trophallaktische Kontakte sichern Individuen innerhalb einer Kolonie den Zugang zur lebenswichtigen Nahrung. Im Beispiel der Honigbienen ist ständige Zugriff auf Nahrung besonders wichtig, da es sich um ein heterothermes Tier handelt, das die Fähigkeit besitzt, aktiv seine Körpertemperatur zu regulieren. Obgleich jedes Individuum in der Lage ist, seine Körpertemperatur den eigenen Bedürfnissen anzupassen, ist diese Fähigkeit streng durch den in der Nahrung aufgenommenen Zucker reguliert. Im Gegensatz zu den Säugetieren oder Vögeln, die für eine Erhöhung des Blutzuckerspiegels auch auf Fett- oder Eiweißressourcen zurückgreifen können, ist die Honigbiene auf die Glucose aus der aufgenommenen Nahrung angewiesen. Die Ergebnisse dieser Untersuchung zeigen, dass der Zuckergehalt der aufgenommenen Nahrung positiv mit der Thoraxtemperatur der Bienen korreliert. Dieser Zusammenhang tritt auf, selbst wenn keine Wärmeerzeugung für die Brutpflege oder für das Erwärmen der Wintertraube notwendig ist und die Tiere außerhalb des Stockes ohne eigentliche Notwendigkeit für die Wärmeerzeugung in einem Käfig gehalten werden. Die Ergebnisse der Untersuchung zeigen, dass die Rezipienten beim Nahrungsaustausch eine signifikant höhere Thoraxtemperatur haben als die Donoren. Außerdem zeigen die Rezipienten nach der Fütterung signifikant häufiger Brutwärmeverhalten als die Donoren. Letztere haben eine signifikant niedrigere Thoraxtemperatur als die Rezipienten und zeigen eine Verhaltenstendenz, häufig zwischen Brutbereich und Honiglager hin- und her zu pendeln. Dabei nehmen sie im Honiglager Honig in ihren Kropf auf und füttern mit dieser Nahrung danach Bienen im Brutbereich. Außerdem zeigen die Ergebnisse, dass es einen wärmegesteuerten Auslösemechanismus gibt, der den Donoren und Rezipienten des trophallaktischen Kontakts dazu verhilft, trotz der Dunkelheit des Stocks praktisch verzögerungsfreie Nahrungsübertragung am Ort des höchsten Energieverbrauchs zu gewährleisten. Das Hervorwürgen von Nahrung angesichts einer Wärmequelle könnte seinen Ursprung in einer Beschwichtigungsgeste haben. Aggressive Tiere zeigen neben sichtbaren aggressiven Verhalten auch durch ihre erhöhte Körpertemperatur, dass sie bereit sind sich auf einen Kampf einzulassen. Die Temperaturerhöhung eines aggressiven Tieres beruht dabei auf der erhöhten Muskelaktivität, die vor allem bei Insekten dazu nötig ist, einen entsprechende Reaktion im Falle eines Kampfes oder der Flucht zeigen zu können. Wird ein Individuum mit Aggression konfrontiert, so bleibt ihm die Wahl sich auf einen Kampf einzulassen, zu flüchten oder durch eine Beschwichtigungsgeste eine Deeskalation der Situation einzuleiten. Besonders häufig wird für diesen Zweck Nahrung regurgitiert und dem dominanteren Tier angeboten, um einem Konflikt aus dem Weg zu gehen. Die Fähigkeit, Arbeiterinnen mit kleinen Portionen konzentrierter Nahrung zu versorgen trägt zu einer ökonomischen Verteilung der Ressourcen bei, die mit den physiologischen Bedürfnissen der Honigbienen konform geht und die ökologischen Erfordernisse des Stockes erfüllt. Das daraus resultierende Managementsystem, welches sparsam mit den Ressourcen haushaltet und auf die individuellen Bedürfnisse jeder einzelnen Biene einzugehen vermag, könnte ein Grund für die Fähigkeit der Honigbienen zur Entwicklung mehrjähriger Kolonien sein, die, anders als Hummeln oder Wespen, auch den Winter in gemäßigten Zonen als Gemeinschaft zu überstehen vermögen. N2 - Like many other social insect societies, honeybees collectively share the resources they gather by feeding each other. These feeding contacts, known as trophallaxis, are regarded as the fundamental basis for social behavior in honeybees and other social insects for assuring the survival of the individual and the welfare of the group. In honeybees, where most of the trophallactic contacts are formed in the total darkness of the hive, the antennae play a decisive role in initiation and maintenance of the feeding contact, because they are sensitive to gustatory stimuli. The sequences of behaviors performed by the receiver bees at the beginning of a feeding contact includes the contact of one antenna with the mouthparts of a donor bee where the regurgitated food is located. The antennal motor action is characterized by behavioral asymmetry, which is novel among communicative motor actions in invertebrates. This preference of right over left antenna is without exception even after removal of the antennal flagellum. This case of laterality in basic social interaction might have its reason in the gustatory asymmetry in the antennae, because the right antenna turns out to be significantly more sensitive to stimulation with sugar water of various concentrations than the left one. Trophallactic contacts which guarantee a constant access to food for every individual in the hive are vitally important to the honeybee society, because honeybees are heterothermic insects which actively regulate their thoracic temperature. Even though the individual can regulate its body temperature, its heating performance is strictly limited by the amount of sugar ingested. The reason for this is that honeybees use mostly the glucose in their hemolymph as the energy substrate for muscular activity, and the heat producing flight muscles are among the metabolically most active tissues known. The fuel for their activity is honey; processed nectar with a sugar content of ~80% stored in the honeycomb. The results show that the sugar content of the ingested food correlates positively with the thoracic temperature of the honeybees even if they are caged and show no actual heating-related behavior as in brood warming or heating in the centre of the winter cluster. Honeybees actively regulate their brood temperature by heating to keep the temperature between 33 °C to 36 °C if ambient temperatures are lower. Heating rapidly depletes the worker’s internal energy; therefore the heating performance is limited by the honey that is ingested before the heating process. This study focused on the behavior and the thoracic temperature of the participants in trophallactic food exchanges on the brood comb. The brood area is the centre of heating activity in the hive, and therefore the region of highest energy demand. The results show that the recipients in a trophallactic food exchange have a higher thoracic temperature during feeding contacts than donors, and after the feeding contact the former engage in brood heating more often. The donor bees have lower thoracic temperature and shuttle constantly between honey stores and the brood comb, where they transfer the stored honey to heating bees. In addition, the results show a heat-triggered mechanism that enables donor and recipient to accomplish trophallactic contacts without delay in the total darkness of the hive in the brood area as the most energy consuming part of the hive. Providing heat-emitting workers with small doses of high performance fuel contributes to an economic distribution of resources consistent with the physiological conditions of the bees and the ecological requirements of the hive, resulting in a highly economical resource management system which might be one of the factors favouring the evolution of perennial bee colonies in temperate regions. The conclusion of these findings suggests a resource management strategy that has evolved from submissive placation behavior as it is seen in honeybees, bumblebees and other hymenopterans. The heat-triggered feedback mechanism behind the resource management of the honeybee´s thermoregulatory behavior reveals a new aspect of the division of labor and a new aspect of communication, and sheds new light on sociality in honeybees. KW - Biene KW - Thermoregulation KW - Ressourcenmanagement KW - Sozialität KW - Hautflügler KW - Honeybee KW - Thermoregulation KW - Resource Managment KW - Sociality KW - Hymenoptera Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39793 ER - TY - THES A1 - Weidenmüller, Anja T1 - From individual behavior to collective structure T1 - Von individuellem Verhalten zu kollektiven Strukturen N2 - The social organization of insect colonies has long fascinated naturalists. One of the main features of colony organization is division of labor, whereby each member of the colony specializes in a subset of all tasks required for successful group functioning. The most striking aspect of division of labor is its plasticity: workers switch between tasks in response to external challenges and internal perturbations. The mechanisms underlying flexible division of labor are far from being understood. In order to comprehend how the behavior of individuals gives rise to flexible collective behavior, several questions need to be addressed: We need to know how individuals acquire information about their colony's current demand situation; how they then adjust their behavior according; and which mechanisms integrate dozens or thousands of insect into a higher-order unit. With these questions in mind I have examined two examples of collective and flexible behavior in social bees. First, I addressed the question how a honey bee colony controls its pollen collection. Pollen foraging in honey bees is precisely organized and carefully regulated according to the colony's needs. How this is achieved is unclear. I investigated how foragers acquire information about their colony's pollen need and how they then adjust their behavior. A detailed documentation of pollen foragers in the hive under different pollen need conditions revealed that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: Pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need of their colony was high. The number of cells inspected before foragers unloaded their pollen load did not change and thus presumably did not serve as cue to pollen need. In contrast, the trophallactic experience of pollen foragers changed with pollen need conditions: trophallactic contacts were shorter when pollen need was high and the number and probability of having short trophallactic contacts increased when pollen need increased. Thus, my results have provided support for the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. The second example of collective behavior I have examined in this thesis is the control of nest climate in bumble bee colonies, a system differing from pollen collection in honey bees in that information about task need (nest climate parameters) is directly available to all workers. I have shown that an increase in CO2 concentration and temperature level elicits a fanning response whereas an increase in relative humidity does not. The fanning response to temperature and CO2 was graded; the number of fanning bees increased with stimulus intensity. Thus, my study has evidenced flexible colony level control of temperature and CO2. Further, I have shown that the proportion of total work force a colony invests into nest ventilation does not change with colony size. However, the dynamic of the colony response changes: larger colonies show a faster response to perturbations of their colony environment than smaller colonies. Thus, my study has revealed a size-dependent change in the flexible colony behavior underlying homeostasis. I have shown that the colony response to perturbations in nest climate is constituted by workers who differ in responsiveness. Following a brief review of current ideas and models of self-organization and response thresholds in insect colonies, I have presented the first detailed investigation of interindividual variability in the responsiveness of all workers involved in a collective behavior. My study has revealed that bumble bee workers evidence consistent responses to certain stimulus levels and differ in their response thresholds. Some consistently respond to low stimulus intensities, others consistently respond to high stimulus intensities. Workers are stimulus specialists rather than task specialists. Further, I have demonstrated that workers of a colony differ in two other parameters of responsiveness: response probability and fanning activity. Response threshold, response probability and fanning activity are independent parameters of individual behavior. Besides demonstrating and quantifying interindividual variability, my study has provided empirical support for the idea of specialization through reinforcement. Response thresholds of fanning bees decreased over successive trials. I have discussed the importance of interindividual variability for specialization and the collective control of nest climate and present a general discussion of self-organization and selection. This study contributes to our understanding of individual behavior and collective structure in social insects. A fascinating picture of social organization is beginning to emerge. In place of centralized systems of communication and information transmission, insect societies frequently employ mechanisms based upon self-organization. Self-organization promises to be an important and unifying principle in physical, chemical and biological systems. N2 - Ein besonderes Merkmal sozialer Insekten ist die Arbeitsteilung. Die Mitglieder einer Kolonie führen jeweils unterschiedliche Arbeiten aus und wechseln, je nach Bedarfslage der Kolonie, flexibel zwischen den verschiedenen Tätigkeiten. Die Mechanismen dieser flexiblen Arbeitsteilung sind bislang weitgehend unverstanden. Wie erfahren einzelne Arbeiterinnen welche Tätigkeiten gerade notwendig sind? Nach welchen Regeln ändern sie ihr Verhalten, wenn sich die Anforderungen an die Kolonie ändern? Wie wird das Verhalten vieler Einzelindividuen so koordiniert, daß die Kolonie als Ganzes sinnvoll auf eine sich verändernde Umwelt reagieren kann? In der vorliegenden Arbeit bin ich diesen Fragen an zwei unterschiedlichen Systemen nachgegangen. Im ersten Kapitel dieser Arbeit untersuchte ich die Regulation des Pollensammelns bei Honigbienen. Pollen ist für Honigbienen eine wichtige Proteinquelle zur Aufzucht der Brut. Sowohl die Menge an Brut als auch die bereits im Stock vorhanden Menge an Pollen beeinflußt die Sammelaktivität. Bislang ist unklar, wie die Sammelbienen Information über den Pollenbedarf ihrer Kolonie erhalten und wie sie ihr Verhalten dementsprechend ändern. Meine Versuche zeigten, daß Pollensammlerinnen ihr Arbeitstempo der aktuellen Bedarfslage anpassen: Ist der Pollenbedarf der Kolonie hoch, verbringen sie wenig Zeit im Stock, ist ausreichend Pollen vorhanden, gehen sie ihrer Sammeltätigkeit langsamer nach. Während ihres Aufenthalts im Stock haben die Sammlerinnen eine Vielzahl trophallaktischer Kontakte mit anderen Bienen. Die Anzahl solcher Kontakte änderte sich mit dem Pollenbedarf der Kolonie: Bei hohem Pollenbedarf sind die trophallaktischen Kontakte kürzer und die Anzahl sehr kurzer Kontakte hoch. Diese Ergebnisse unterstützen die Hypothese, daß Änderungen in der trophallaktischen Erfahrung eine wichtige Informationsquelle über den aktuellen Pollenbedarf einer Kolonie darstellen. Das zweite Beispiel flexibler Arbeitsteilung, welches ich in dieser Arbeit untersucht habe, ist die Regulation des Nestklimas in Hummelkolonien. Dieses System unterscheidet sich von dem oben dargestellten grundlegend, da Information über Änderungen im Bedarf an Arbeitskraft jedem Koloniemitglied zugänglich ist. Jedes Koloniemitglied im Nest kann direkt erfahren wie sich das Nestklima ändert. Ich konnte zeigen, daß Hummelkolonien auf einen Temperaturanstieg und eine Zunahme der Kohlendioxidkonzentration im Nest mit Ventilationsverhalten reagieren. Einzelne Hummeln fächeln dabei mit ihren Flügeln und sorgen so für Evaporationskühlung bzw. eine verstärkte Belüftung des Nestes. Erhöhte Luftfeuchtigkeit löste diese Reaktion nicht aus. Die Anzahl fächelnder Hummeln war abhängig von den Temperatur/CO2 Werten, die Kolonie reagierte fein abgestimmt auf die aktuellen Bedingungen. Unabhängig von ihrer Größe investierten die untersuchten Kolonien einen bestimmten Anteil ihrer Arbeiterinnen in die Ventilation des Nestes. Große Kolonien unterschieden sich jedoch von kleinen Kolonien in ihrer Antwortgeschwindigkeit: Große Kolonien antworten schneller auf einen Temperatur / CO2 Anstieg als kleine. Die flexible und fein abgestimmte Kolonieantwort auf Veränderungen im Nestklima basiert auf dem Verhalten vieler Einzelindividuen. Im dritten Kapitel dieser Arbeit stellte ich aktuelle Ideen und Hypothesen zu Selbstorganisation und dem Einfluß interindividueller Variabilität auf Kolonieverhalten dar. Regulation des Nestklimas in Hummelkolonien ist ein ideales System um interindividuelle Variabilität und ihre Auswirkungen zu untersuchen. Ich konnte zum ersten Mal Unterschiede im Antwortverhalten aller an einem kollektiven Verhalten beteiligten Koloniemitglieder quantifizieren. Neben Unterschieden in Antwortschwellen, die in der Literatur zwar viel diskutiert, aber noch nie schlüssig nachgewiesen wurden, konnte ich zeigen, daß sich Arbeiterinnen einer Kolonie in zwei weiteren Parametern unterscheiden: Die Wahrscheinlichkeit auf einen Stimulus zu reagieren und die Dauer, mit der die Arbeiterinnen das Verhalten ausführen (Aktivität) ist zwischen Individuen unterschiedlich. Diese drei Parameter (Reaktionsschwelle, Antwortwahrscheinlichkeit und Aktivität) sind vermutlich unabhängige Parameter individuellen Verhaltens. Neben diesen interindividuellen Unterschieden konnte ich nachweisen, daß sich die Antwortschwellen verändern, je häufiger eine Hummel fächelt: Arbeiterinnen reagieren von Mal zu Mal auf niedrigere Stimulusintensitäten. Diese Ergebnisse sind für unser Verständnis von Arbeitsteilung und Spezialisierung bei sozialen Insekten von besonderer Bedeutung. In dieser Arbeit habe ich sowohl das Verhalten individueller Arbeiterinnen als auch die daraus resultierende kollektive Antwort der Kolonie untersucht. Es wird zunehmend deutlicher, daß dem faszinierenden Verhalten sozialer Insekten häufig nicht zentrale Informationsverarbeitung sondern Selbstorganisation zugrunde liegt. KW - Hummeln KW - Soziale Insekten KW - Thermoregulation KW - Arbeitsteilung KW - Bienenstaat KW - Pollen KW - Sammeln KW - Arbeitsteilung KW - Pollen KW - Nestklima KW - Thermoregultion KW - CO2 KW - Antwortschwellen KW - Selbstorgansation KW - social organization KW - division of labor KW - pollen foraging KW - nest climate KW - thermoregulation KW - CO2 KW - response threshold models KW - self-organization Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2448 ER -