TY - THES A1 - Drechsler, Patrick Hans T1 - Mechanics of adhesion and friction in stick insects and tree frogs T1 - Mechanik der Adhäsion und Reibung von Stabheuschrecken und Baumfröschen N2 - Many arthropods and vertebrates can cling to surfaces using adhesive pads on their legs. These pads are either smooth and characterised by a specialised, soft cuticle or they are hairy, i.e. densely covered with flexible adhesive setae. Animals climbing with adhesive organs are able to control attachment and detachment dynamically while running. The detailed mechanisms of how tarsal pads generate adhesive and frictional forces and how forces are controlled during locomotion are still largely unclear. The aim of this study was to clarify the attachment mechanism of smooth adhesive pads as present in many insects and tree frogs. To understand the function of these fluid-based adhesive systems, I characterized their performance under standardized conditions. To this end, experiments were conducted by simultaneously measuring adhesion, friction, and contact area in single adhesive pads. The first result of this study showed that friction in stick insect attachment pads is anisotropic: Attachment pads regularly detached when slid away from the body. Further analyses of "immobilized" arolia revealed that this anisotropy is not caused by an increased shear stress in the proximal direction, but by the instability of the tarsus when pushed distally. In the second part of this study, I analysed the role of the pad secretion present in insects and tree frogs. In stick insects, shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity effect of a continuous fluid film. However, measurements of the remaining force two minutes after a sliding movement showed that adhesive pads could sustain considerable static friction in insects and tree frogs. Repeated sliding movements and multiple consecutive pull-offs of stick insect single legs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid in insects. In contrast, stick insect pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides with stick insect arolia were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction in stick insects, which is biologically important to prevent sliding, is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate. % Analogous measurements in toe pads of tree frogs showed that they are also able to generate static friction, even though their pads are wetted by mucus. In contrast to the mechanism proposed for insects, static friction in tree frogs apparently results from the very close contact of toe pads to the substrate and boundary lubrication. In the last section of this study, I investigated adhesive forces and the mode of detachment by performing pull-off measurements at different velocities and preloads. These experiments showed that preload has only an increasing effect on adhesion for faster pull-offs. This can be explained by the viscoelastic material properties of the stick insect arolium, which introduce a strong rate-dependence of detachment. During fast pull-offs, forces can spread over the complete area of contact, leading to forces scaling with area. In contrast, the pad material has sufficient time to withdraw elastically and peel during slow detachments. Under these conditions the adhesive force will concentrate on the circumference of the contact area, therefore scaling with a length, supporting models such as the peeling theory. The scaling of single-pad forces supported these conclusions, but large variation between pads of different stick insects did not allow statistically significant conclusions. In contrast, when detachment forces were quantified for whole insects using a centrifuge, forces scaled with pad contact area and not with length. N2 - Viele Arthropoden und Vertebraten können sich mit Hilfe tarsaler Haftorgane an Oberflächen festhalten. Diese Organe sind entweder glatt, mit einer spezialisierten, weichen Cuticula oder haarig, d.h. dicht besetzt mit mikroskopisch kleinen, biegsamen Hafthaaren. Mit Haftorganen kletternde Tiere können während des Laufens Haftkräfte dynamisch kontrollieren. Die genaueren Mechanismen, mit denen Adhäsions- und Reibungskräfte erzeugt werden und mit denen die Kräfte während des Laufens schnell kontrolliert werden können, sind allerdings noch immer weitgehend unklar. Das Ziel dieser Arbeit war es, den Haftmechanismus von glatten Haftorganen bei Insekten und Baumfröschen näher aufzuklären. Um die Funktion dieser flüssigkeitsbasierten Haftsysteme zu verstehen, charakterisierte ich ihr Adhäsions- und Reibungsverhalten unter standardisierten Bedingungen. Dazu führte ich Experimente an einzelnen Haftorganen durch, bei denen ich gleichzeitig Adhäsion, Reibung, und Kontaktfläche erfasste. Das erste Ergebnis dieser Arbeit war, dass die Reibung von Insektenhaftorganen von der Bewegungsrichtung abhängt. Ein Haftorgan, das vom Körper weg bewegt wird (distale Richtung), löst sich meist von der Oberfläche ab. Weitere Untersuchungen an Haftorganen bei fixiertem Tarsus zeigten, dass die Richtungsabhängigkeit nicht durch eine erhöhte Scherspannung in der proximalen Richtung hervorgerufen wird, sondern durch die Instabilität des Tarsus, wenn der Fuß vom Körper weg bewegt wird. Im zweiten Teil der Arbeit untersuchte ich die Rolle des Haftsekrets bei Stabheuschrecken und Baumfröschen. Bei Stabheuschrecken war die Scherspannung unabhängig von der Normalkraft und nahm mit der Bewegungsgeschwindigkeit zu, scheinbar in Einklang mit der viskosen Reibung eines durchgehenden Flüssigkeitsfilms. Jedoch ergaben Scherspannungsmessungen bei Stabheuschrecken und Fröschen selbst zwei Minuten nach einer Gleitbewegung ein beträchtliches Maß an statischer "Rest"-Reibung. Um den Einfluss geringer werdender Haftflüssigkeit zu untersuchen, wurden wiederholte Gleitversuche sowie aufeinanderfolgende Ablöseversuche auf glatten Oberflächen durchgeführt. Diese Experimente zeigten, dass sowohl die Reibungs- als auch die Adhäsionskraft mit abnehmender Flüssigkeitsmenge anstieg. Im Gegensatz hierzu nahm die Adhäsionskraft auf rauen Oberflächen mit abnehmender Haftflüssigkeitsmenge ab. Demzufolge führte die Haftflüssigkeit nur auf rauen Oberflächen zu einer Vergrößerung der Kontaktfläche und zu einer Erhöhung der Adhäsionskraft. Reibungskräfte auf glatten Oberflächen wurden bei Stabheuschrecken umso geringer, je häufiger Reibungsversuche an ein und der selben Stelle durchgeführt wurden (um die Menge an Haftflüssigkeit zu erhöhen). Dennoch blieb immer eine statische Reibung vorhanden. Das Vorhandensein von statischer Reibung ist biologisch wichtig um das unfreiwillige Ausrutschen zu verhindern. Meine Ergebnisse weisen darauf hin, dass die Haftreibung bei Insekten nicht auf direkte Kontakte zwischen Cuticula und Untergrund zurückzuführen ist, sondern auf die (scherverdünnende) nicht-Newtonschen Eigenschaften des zweiphasigen Haftsekrets. Analoge Messungen an Haftzehen von Baumfröschen zeigten, dass auch diese statische Reibungskräfte erzeugen können, obwohl sie von einem flüssigen Schleim benetzt sind. Im Gegensatz zu dem bei Insekten gefundenen Mechanismus, entsteht bei Fröschen die statische Reibung wahrscheinlich durch Trockenreibung und den sehr nahen Kontakt zur Oberfläche. Im letzten Teil dieser Arbeit untersuchte ich Adhäsionskräfte und den Ablösevorgang durch Haftkraftmessungen bei verschiedenen Geschwindigkeiten und Normalkräften. Diese Experimente zeigten, dass die Normalkraft nur bei schnellem Ablösen zu höheren Adhäsionskräften führt. Dies ist durch die viskoelastischen Materialeigenschaften der Stabheuschrecken-Arolien erklärbar, die zu einer starken Geschwindigkeitsabhängigkeit des Ablösevorgangs führen. Bei schnellem Ablösen breiten sich die Kräfte über die gesamte Kontaktzone aus, was zu einer Flächenskalierung der Adhäsion führt. Im Gegensatz dazu hat das Haftorgan bei einem langsamen Ablöseprozess genügend Zeit, sich elastisch zurückzuziehen und abzuschälen. Unter diesen Bedingungen konzentriert sich die Kraft am Rand der Kontaktzone, wodurch die Adhäsionskräfte mit einer Länge skalieren, wie z.B. von der "peeling" Theorie vorhergesagt. Die Skalierung von Einzelbein-Haftkräften bestätigte diese Schlußfolgerungen, aber die starke Variation zwischen verschiedenen Stabheuschrecken erlaubte es nicht, diese statistisch abzusichern. Im Gegensatz dazu zeigten die Haftkräfte ganzer Insekten, welche mit Hilfe einer Zentrifuge gemessen wurden, eine deutliche Flächenskalierung. KW - Biomechanik KW - Adhäsion KW - Flüssigkeitsreibung KW - Reibung KW - Frosch KW - Insekten KW - Carausius morosus KW - Haftung KW - Schubspannung KW - Emulsion KW - Schälen KW - Haftmechanismen KW - Haftorgane KW - Haftflüssigkeit KW - Litoria caerulea KW - Scherspannung KW - Wet adhesion model KW - biomechanics KW - adhesion KW - friction KW - attachment structure KW - adhesive fluid KW - wet adhesion KW - shear stress KW - emulsion KW - attachment devices KW - peeling Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26836 ER - TY - THES A1 - Paul, Jürgen T1 - The Mouthparts of Ants T1 - Die Mundwerkzeuge der Ameisen N2 - Ant mandible movements cover a wide range of forces, velocities and precision. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain how the attachment angles are optimized with respect to force and velocity output and how filament-attached fibers help to generate the largest force output from the available head capsule volume. In general, the entire mandible closer muscle is controlled by 10-12 motor neurons, some of which exclusively supply specific muscle fiber groups. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and accurate movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. For fine control, distinct fiber bundles can be activated independently of each other. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the suboesophageal ganglion. In addition, some motor neurons invade specific parts of the neuropil. The labiomaxillary complex of ants is essential for food intake. I investigated the anatomical design of the labiomaxillary complex in various ant species focusing on movement mechanisms. The protraction of the glossa is a non muscular movement. Upon relaxation of the glossa retractor muscles, the glossa protracts elastically. I compared the design of the labiomaxillary complex of ants with that of the honey bee, and suggest an elastic mechanism for glossa protraction in honey bees as well. Ants employ two different techniques for liquid food intake, in which the glossa works either as a passive duct (sucking), or as an up- and downwards moving shovel (licking). For collecting fluids at ad libitum food sources, workers of a given species always use only one of both techniques. The species-specific feeding technique depends on the existence of a well developed crop and on the resulting mode of transporting the fluid food. In order to evaluate the performance of collecting liquids during foraging, I measured fluid intake rates of four ant species adapted to different ecological niches. Fluid intake rate depends on sugar concentration and the associated fluid viscosity, on the species-specific feeding technique, and on the extent of specialization on collecting liquid food. Furthermore, I compared the four ant species in terms of glossa surface characteristics and relative volumes of the muscles that control licking and sucking. Both probably reflect adaptations to the species-specific ecological niche and determine the physiological performance of liquid feeding. Despite species-specific differences, single components of the whole system are closely adjusted to each other according to a general rule. N2 - Ameisenmandibeln führen eine Vielzahl verschiedener Bewegungen bezüglich Kraft, Geschwindigkeit und Präzision aus. Der Schlüssel zu dieser Vielfalt ist der Mandibelschließmuskel. In Ameisen besteht dieser Muskel aus verschiedenen Muskelfasertypen, die sich sowohl morphologisch als auch anhand ihrer kontraktilen Eigenschaften unterscheiden. Die Anteile der Fasertypen am Gesamtvolumen des Mandibelschließers sind artspezifisch und korrelieren mit der für die Art typischen Lebensweise. Zwei biomechanische Modelle erklären, wie die Angriffswinkel der Muskelfasern am Apodem im Hinblick auf Kraft und Geschwindigkeit optimiert werden und wie Filamentfasern dazu beitragen, aus dem vorhandenen Kopfkapselvolumen die größtmögliche Kraft zu entwickeln. Der gesamte Mandibelschließmuskel wird von 10-12 Motoneuronen gesteuert, wovon manche ausschließlich bestimmte Muskelfasergruppen innervieren. Gleichzeitige Aufnahmen von Muskelaktivität und Mandibelbewegung ergeben, daß schnelle Bewegungen rasche Kontraktionen schneller Muskelfasern bedürfen. Langsame und präzise Bewegungen resultieren aus der Aktivierung langsamer Muskelfasern. Kraftvolle Bewegungen werden durch gleichzeitige Aktivierung aller Muskelfasertypen erzeugt. Für die Feinabstimmung können unterschiedliche Muskelfaserbündel unabhängig voneinander aktiviert werden. Retrograde Färbungsexperimente zeigen, daß die meisten dendritischen Verästelungen der verschiedenen Motoneuronen im gleichen Neuropil im Unterschlundganglion verlaufen. Darüberhinaus dringen einige Motoneuronen in jeweils spezifische Bereiche des Neuropils ein. Der Labiomaxillar-Komplex ist für die Nahrungsaufnahme der Ameisen essentiell. Ich untersuchte den Bauplan und die Bewegungsmechanismen des Labiomaxillar-Komplexes bei verschiedenen Ameisenarten. Das Herausklappen der Glossa beruht auf einer nicht durch Muskelkontraktion hervorgerufenen Bewegung. Bei Relaxation der Glossa-Rückziehmuskeln klappt die Glossa infolge elastischer Eigenschaften aus. Ein Vergleich des Bauplans des Labiomaxillar-Komplexes von Ameisen mit dem der Honigbiene legt nahe, daß die Glossa der Honigbiene ebenfalls mittels Elastizität in die exponierte Position gebracht wird. Um flüssige Nahrung aufzunehmen, nutzen Ameisen ihre Glossa entweder als passiven Kanal (Saugen) oder als eine sich auf- und abwärts bewegende Schaufel (Lecken). Während des Sammelns von Flüssigkeiten an ad libitum Futterquellen bedienen sich Arbeiterinnen einer Art stets nur einer von beiden Aufnahmetechniken. Die jeweils artspezifische Nahrungsaufnahmetechnik hängt von dem Vorhandensein eines gut ausgeprägten Kropfes sowie der daraus resultierenden Weise des Nahrungstransportes ab. Um die Leistung der Aufnahme flüssiger Nahrung zu beurteilen, bestimmte ich die Aufnahmeraten vier verschiedener Ameisenarten, die an unterschiedliche ökologische Nischen angepaßt sind. Die Aufnahmerate hängt von der Zuckerkonzentration und der damit verbundenen Viskosität ab, außerdem von der artspezifischen Aufnahmetechnik und dem Grad der Anpassung an das Sammeln flüssiger Nahrung. Darüberhinaus verglich ich die vier Ameisenarten bezüglich der Charakteristika der Glossaoberfläche sowie der relativen Volumina der am Lecken und Saugen beteiligten Muskeln. Beide spiegeln wahrscheinlich Anpassungen an die artspezifische ökologische Nische wieder und bestimmen die physiologischen Leistungen der Aufnahme flüssiger Nahrung. Trotz artspezifischer Unterschiede sind die einzelnen Komponenten des Systems entsprechend einer allgemeineren Regel fein aufeinander abgestimmt. KW - Ameisen KW - Mundgliedmassen KW - Ameisen KW - Insekten KW - Mundwerkzeuge KW - Verhaltensphysiologie KW - Biomechanik KW - Funktionsmorphologie KW - Neurobiologie KW - Muskelfasertypen KW - ants KW - insects KW - mouthparts KW - behavioral physiology KW - biomechanics KW - functional morphology KW - neurobiology KW - muscle fiber types KW - foraging Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1179130 ER -