TY - JOUR A1 - Prada, Juan Pablo A1 - Maag, Luca Estelle A1 - Siegmund, Laura A1 - Bencurova, Elena A1 - Liang, Chunguang A1 - Koutsilieri, Eleni A1 - Dandekar, Thomas A1 - Scheller, Carsten T1 - Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality JF - Scientific Reports N2 - For SARS-CoV-2, R0 calculations in the range of 2–3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95% CI 2.52–2.60) for Covid-19 cases and 2.03 (95% CI 1.96–2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95% CI 1.32–1.37). A sine-function-based adjustment for seasonal effects of 40% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations. KW - SARS-CoV-2 KW - R0 KW - mortality Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301415 VL - 12 IS - 1 ER - TY - JOUR A1 - Matthes, Niels A1 - Diers, Johannes A1 - Schlegel, Nicolas A1 - Hankir, Mohammed A1 - Haubitz, Imme A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - Validation of MTL30 as a quality indicator for colorectal surgery JF - PLoS One N2 - Background Valid indicators are required to measure surgical quality. These ideally should be sensitive and selective while being easy to understand and adjust. We propose here the MTL30 quality indicator which takes into account 30-day mortality, transfer within 30 days, and a length of stay of 30 days as composite markers of an uneventful operative/postoperative course. Methods Patients documented in the StuDoQ|Colon and StuDoQ|Rectal carcinoma register of the German Society for General and Visceral Surgery (DGAV) were analyzed with regard to the effects of patient and tumor-related risk factors as well as postoperative complications on the MTL30. Results In univariate analysis, the MTL30 correlated significantly with patient and tumor-related risk factors such as ASA score (p<0.001), age (p<0.001), or UICC stage (p<0.001). There was a high sensitivity for the postoperative occurrence of complications such as re-operations (p<0.001) or subsequent bleeding (p<0.001), as well as a significant correlation with the CDC classification (p<0.001). In multivariate analysis, patient-related risk factors and postoperative complications significantly increased the odds ratio for a positive MTL30. A negative MTL30 showed a high specify for an uneventful operative and postoperative course. Conclusion The MTL30 is a valid indicator of colorectal surgical quality. KW - surgical care KW - discharge definition KW - definition KW - mortality KW - pancreatectomy KW - complications KW - superior KW - capture Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230530 VL - 15 IS - 8 ER - TY - JOUR A1 - Hesselbach, Hannah A1 - Seeger, Johannes A1 - Schilcher, Felix A1 - Ankenbrand, Markus A1 - Scheiner, Ricarda T1 - Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera JF - Journal of Applied Ecology N2 - 1.Honeybees Apis mellifera and other pollinating insects suffer from pesticides in agricultural landscapes. Flupyradifurone is the active ingredient of a novel pesticide by the name of ‘Sivanto’, introduced by Bayer AG (Crop Science Division, Monheim am Rhein, Germany). It is recommended against sucking insects and marketed as ‘harmless’ to honeybees. Flupyradifurone binds to nicotinergic acetylcholine receptors like neonicotinoids, but it has a different mode of action. So far, little is known on how sublethal flupyradifurone doses affect honeybees. 2. We chronically applied a sublethal and field‐realistic concentration of flupyradifurone to test for long‐term effects on flight behaviour using radio‐frequency identification. We examined haematoxylin/eosin‐stained brains of flupyradifurone‐treated bees to investigate possible changes in brain morphology and brain damage. 3. A field‐realistic flupyradifurone dose of approximately 1.0 μg/bee/day significantly increased mortality. Pesticide‐treated bees initiated foraging earlier than control bees. No morphological damage in the brain was observed. 4. Synthesis and applications. The early onset of foraging induced by a chronical application of flupyradifurone could be disadvantageous for honeybee colonies, reducing the period of in‐hive tasks and life expectancy of individuals. Radio‐frequency identification technology is a valuable tool for studying pesticide effects on lifetime foraging behaviour of insects. KW - radiofrequency identification KW - flight behaviour KW - flupyradifurone KW - foraging KW - histology KW - honeybee KW - insecticide KW - mortality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212769 VL - 57 IS - 3 ER -