TY - JOUR A1 - Chaianunporn, Thotsapol A1 - Hovestadt, Thomas T1 - Emergence of spatially structured populations by area‐concentrated search JF - Ecology and Evolution N2 - The idea that populations are spatially structured has become a very powerful concept in ecology, raising interest in many research areas. However, despite dispersal being a core component of the concept, it typically does not consider the movement behavior underlying any dispersal. Using individual‐based simulations in continuous space, we explored the emergence of a spatially structured population in landscapes with spatially heterogeneous resource distribution and with organisms following simple area‐concentrated search (ACS); individuals do not, however, perceive or respond to any habitat attributes per se but only to their foraging success. We investigated the effects of different resource clustering pattern in landscapes (single large cluster vs. many small clusters) and different resource density on the spatial structure of populations and movement between resource clusters of individuals. As results, we found that foraging success increased with increasing resource density and decreasing number of resource clusters. In a wide parameter space, the system exhibited attributes of a spatially structured populations with individuals concentrated in areas of high resource density, searching within areas of resources, and “dispersing” in straight line between resource patches. “Emigration” was more likely from patches that were small or of low quality (low resource density), but we observed an interaction effect between these two parameters. With the ACS implemented, individuals tended to move deeper into a resource cluster in scenarios with moderate resource density than in scenarios with high resource density. “Looping” from patches was more likely if patches were large and of high quality. Our simulations demonstrate that spatial structure in populations may emerge if critical resources are heterogeneously distributed and if individuals follow simple movement rules (such as ACS). Neither the perception of habitat nor an explicit decision to emigrate from a patch on the side of acting individuals is necessary for the emergence of such spatial structure. KW - area‐concentrated search KW - individual‐based model KW - metapopulation KW - spatially structured population Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311939 VL - 12 IS - 12 ER - TY - JOUR A1 - Oervoessy, Noemi A1 - Koroesi, Adam A1 - Batary, Peter A1 - Vozar, Agnes A1 - Peregovits, Laszlo T1 - Habitat Requirements of the Protected Southern Festoon (Zerynthia Polysena); Adult, Egg and Larval Distribution in a Highly Degraded Habitat Complex JF - Acta Zoologica Academiae Scientiarum Hungaricae N2 - Habitat quality affects the presence and size of butterfly populations. Resources for all life stages must be found in a given or few habitat patches. Southern festoon (Zerynthia polyxena) is a vulnerable, but locally abundant species in Hungary. The larva requires birthwort (Aristolochia clematitis) as food plant. We examined the small scale habitat use of adults and distribution of eggs and larvae among different vegetation types to reveal the requirements of the species in all life stages. Transect counts were conducted in a tree plantation complex comprising four types of vegetation. Number (+/- SE) of adults, eggs and larvae were lowest in poplar plantation (adult 0.3 +/- 0.2, egg 1.1 +/- 1.1, larva 0.6 +/- 0.3). Medium amount of butterflies were observed in open (adult 8.3 +/- 2.9, egg 3.1 +/- 2.6, larva 3.1 +/- 1.9) and black-locust (adult 9.4 +/- 4.2, egg 12.7 +/- 4.9, larva 4.1 +/- 1.1) habitat. Number of butterflies was highest in hummocks (adult 13.5 +/- 1.5, egg 12.9 +/- 5.7, larva 8.4 +/- 2.1). Adults avoided bare ground. We encountered most eggs in dense food plant patches with high plants. Food plant height also positively influenced the occurrence of the larvae. Although distribution of adults and juvenile forms showed quite similar patterns, we could also reveal some differences that caused by different environmental conditions in distinct vegetation types. Our study stresses the importance of habitat quality, which affects population size of butterflies even in a highly degraded habitat complex. KW - habitat quality KW - resource use KW - life stage KW - butterfly euphydryas-aurinia KW - ecology KW - metapopulation KW - conservation KW - quality KW - management KW - population KW - nympahlidae KW - fragmented landscapes KW - lepidoptera KW - tree plantations KW - habitat patch Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117810 VL - 60 IS - 4 ER - TY - JOUR A1 - Gros, Andreas A1 - Poethke, Hans Joachim A1 - Hovestadt, Thomas T1 - Sex-specific spatio-temporal variability in reproductive success promotes the evolution of sex-biased dispersal N2 - Abstract: Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-parch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others. KW - sex-biased dispersal KW - demographic stochasticity KW - metapopulation KW - individual-based simulation KW - sex-specific competition Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48711 ER - TY - JOUR A1 - Heisswolf, Annette A1 - Reichmann, Stefanie A1 - Poethke, Hans-Joachim A1 - Schröder, Boris A1 - Obermaier, Elisabeth T1 - Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape N2 - Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important. KW - Fragmentierung KW - Pflanzenfressende Insekten KW - Eiparasitismus KW - Metapopulation KW - Habitat fragmentation KW - herbivore KW - host plant density KW - metapopulation KW - multitrophic Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47740 ER - TY - JOUR A1 - Poethke, Hans-Joachim A1 - Hovestadt, Thomas A1 - Mitesser, Oliver T1 - Local extinction and the evolution of dispersal rates: Causes and correlations N2 - We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates. KW - Ausbreitung KW - Evolution KW - Computersimulation KW - Metapopulation KW - dispersal KW - evolution KW - ESS KW - metapopulation KW - extinction KW - individual-based model Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47718 ER - TY - JOUR A1 - Poethke, Hans J. A1 - Hovestadt, Thomas T1 - Evolution of density-and patch-size-dependent dispersal rates N2 - Based on a marginal value approach, we derive a nonlinear expression for evolutionarily stable (ES) dispersal rates in a metapopulation with global dispersal. For the general case of density-dependent population growth, our analysis shows that individual dispersal rates should decrease with patch capacity and-beyond a certain threshold-increase with population density. We performed a number of spatially explicit, individual-based simulation experiments to test these predictions and to explore further the relevance of variation in the rate of population increase, density dependence, environmental fluctuations and dispersal mortality on the evolution of dispersal rates. They confirm the predictions of our analytical approach. In addition, they show that dispersal rates in metapopulations mostly depend on dispersal mortality and inter-patch variation in population density. The latter is dominantly driven by environmental fluctuations and the rate of population increase. These conclusions are not altered by the introduction of neighbourhood dispersal. With patch capacities in the order of 100 individuals, kin competition seems to be of negligible importance for ES dispersal rates except when overall dispersal rates are low. KW - Metapopulation KW - Dichte KW - Verteilung KW - density-dependent dispersal KW - metapopulation KW - patch size KW - ESS KW - dispersal rate KW - individual based model (IBM) Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49659 ER -