TY - THES A1 - Kaya-Zeeb, Sinan David T1 - Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis T1 - Octopaminerge Signalwege in der Flugmuskulatur der Honigbiene : Eine Voraussetzung für die Thermogenese N2 - For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology. N2 - Kälte stellt für alle Tiere eine lebensbedrohliche Situation dar. Erleiden sie einen schwerwiegenden Wärmeverlust, stellt sich der Zustand eines Kältekomas ein. Hält dieser Zustand über einen längeren Zeitraum an, folgt unweigerlich der Tod. Poikilotherme (z.B. Insekten) weisen ein schmaleres optimales Temperaturfenster als Homoiotherme (z.B. Säugetiere) auf, wodurch sie ihre kritische Körpertemperatur schneller erreichen. Dadurch waren Poikilotherme gezwungen entweder Überlebenstrategien zu entwickeln, abzuwandern oder zu sterben. Im Gegensatz zu den meisten anderen Insektenarten, ist die Westliche Honigbiene Apis mellifera in der Lage einen Superorganismus zu bilden, in dem Arbeiterbienen durch den koordinierten Einsatz ihrer Flugmuskeln für Erwärmung oder Abkühlung sorgen. In Analogie zur Körpertemperatur von Homoiothermen, ermöglicht dies die exakte Kontrolle der Kerntemperatur des Bienenstocks. Um unter den rauen Bedingungen in der nördlichen Hemisphäre bestehen zu können, muss eine ununterbrochene Einsatzbereitschaft des thermogenen Mechanismus der Honigbiene garantiert werden. Dabei ist die Honigbiene in der Lage durch Zittern der Flugmuskulatur Wärme zu erzeugen. In dieser Dissertation stelle ich die molekularen und neurochemischen Grundlagen des thermogenen Muskelzitterns bei Honigbienenarbeiterinnen vor. In diesem Zusammenhang habe ich die Signalwege von verschiedenen biogenen Aminen untersucht und konnte demonstrieren, dass eine Erschöpfung vesikulärer Monoamine den Prozess der Thermogenese beeinflusst und zu einem Absinken der Thoraxtemperatur führt. Unter Einbeziehung veschiedener biogener Amine, konnten Folgeuntersuchungen zeigen, dass dieser Effekt durch Octopamin rückgängig gemacht werden kann. Dies weist eindeutig auf eine Beteiligung des octopaminergen Systems hin. Auf Basis dieser Erkenntnisse folgte die Erforschung des thorakalen octopaminergen Systems der Honigbiene. Dabei erforderte es einen multidisziplinären Ansatz, um weitere Einblicke in die Funktion und Wirkung von Octopamin in der Flugmuskulatur zu gewinnen. Im Zuge dessen, konnten flugmuskelinnervierende octopaminerge Neuronen identifiziert werden, die mutmaßlich die Flugmuskeln mit Octopamin versorgen. Es sind höchstwahrscheinlich diese Neuronen, die für eine Stimulation von Octopamin-β-Rezeptoren verantwortlich sind und wordurch intrazelluläre glykolytische Prozesse eine ausreichende Muskelversorgung gewährleisten. In den darauffolgenden Experimenten habe ich das Ansprechen des thorakalen octopaminergen Systems auf Kältestress untersucht und konnte zeigen, dass dieses System nach einem Gleichgewichtszustand strebt. Dies trifft selbst nach einer starken initialen Stressantwort zu. Meine Ergebnisse verdeutlichen die Bedeutsamkeit des neuromuskulären octopaminergen Systems und zeigen seine erforderliche Resilienz gegenüber exogenen Faktoren. Es konnte die Kälteempfindlichkeit eines Transkriptes des Octopaminrezeptorgens AmOARβ2 nachgewiesen werden. Zusätzlich konnte ich zeigen, dass Honigbienen ohne den sozialen Kontext der Kolonie eine starke physiologische Störung innerhalb des untersuchten Systems und damit auch in Bezug auf ihre Kälteresilienz aufweisen. Meine Dissertation verdeutlicht die enorme Bedeutung des neuromuskulären octopaminergen Systems im Kontext der Thermogenese im Organismus Honigbiene. In diesem Rahmen konnte die bisher unerforschte neurochemische Modulation des Honigbienenthorax aufgeklärt werden. Darüber hinaus bietet meine Arbeit eine Grundlage für künftige Experimente zur Thermogenese und Muskelphysiologie der Honigbiene. KW - Octopamin KW - Biene KW - Octopamine KW - Thermogenesis KW - Honeybee KW - Octopaminergic signaling KW - Flight muscle Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-314089 ER - TY - THES A1 - Hoyer, Susanne Christine T1 - Neuronal Correlates of Aggression in Drosophila melanogaster T1 - Neuronale Korrelate der Aggression in Drosophila melanogaster N2 - Aggression ist ein facettenreiches Phänomen, das sowohl in Vertebraten als auch in Invertebraten auftritt. Trotz der weiten Verbreitung dieses Verhaltens sind die neuronalen Netzwerke, die der Aggression zugrunde liegen, noch kaum bekannt. Zahlreiche Studien weisen den biogenen Aminen eine prominente Rolle in der Modulation von Aggression zu. Das Ziel dieser Doktorarbeit war mit Hilfe des Modellorganismus Drosophila melanogaster zu der Aufschlüsselung der neuronalen Korrelate von Aggression beizutragen, insbesondere im Hinblick auf das biogene Amin Oktopamin. In Drosophila sind aggressive Interaktionen aus einer Vielzahl von offensiven und defensiven Verhaltensweisen zusammengesetzt, von denen einige bezüglich der Häufigkeit ihres Auftretens geschlechtsspezifisch sind. Um die Auswertung dieser vielseitigen Verhaltensweisen zu vereinfachen, wurde die Analyse auf einen einzigen Indikator für Aggression beschränkt: den „lunge“. Diese bemerkenswerte Verhaltensweise tritt nur im Kontext der Aggression auf und ist charakteristisch für Männchen. In Kooperation mit Andreas Eckart habe ich ein Computerprogramm entwickelt, das eine automatische Auszählung der lunges in einem vom Forscher gewählten Zeitraum durchführt. Zusätzlich erhält man u.a. Informationen über die Laufstrecke der einzelnen Tiere wie auch über ihre Größe. Dank eines weiteren von uns entwickelten Programms ist es möglich, Kämpfe zweier Drosophila Männchen unabhängig von deren Genotyp wahlweise automatisch oder halb-automatisch auszuwerten. Mit Hilfe dieser Programme wurde gezeigt, dass (1) die gemeinsame Laufaktivität der beiden Männchen mit der Anzahl aller aufgetretenen lunges korreliert und, dass (2) ein Größenunterschied von 8% ausreichend ist, um zu beeinflussen, welches Tier mehr lunges durchführt. Ebenfalls konnte festgestellt werden, dass (3) eine Nullmutation im ‚white’ Gen, welches einen ABC-Transporter kodiert, aggressives Verhalten fast vollständig unterdrückt, was teilweise auf eine visuelle Beeinträchtigung zurückzuführen ist. Außerdem führt (4) das Absenken des White-Levels in verschiedenen Bereichen des Zentralgehirns zu reduzierter Aggression; ein Effekt, der auch durch die chemische Entfernung der Pilzkörper, einer Struktur des zentralen Gehirns, hervorgerufen werden kann. Dies weist darauf hin, dass die Integrität verschiedener neuronaler Netzwerke/Gehirnbereiche erforderlich ist, um wildtypische Aggression zu ermöglichen. Zusätzlich konnte (5) anhand von Mutationen in zwei Genen der Oktopaminsynthese, die beide die Oktopamin-Konzentration zwar erniedrigen, die Tyramin-Konzentration jedoch heben bzw. senken, demonstriert werden, dass Oktopaminmangel Aggression fast vollständig zum Erliegen bringt. Wird ein lunge durchgeführt, so ist dessen Ausführung fast wildtypisch. Rettungsversuche, in denen Oktopamin- und/oder Tyramin-Konzentrationen wiederhergestellt werden, legen nahe, dass ein sehr spezifisches Muster von Oktopamin räumlich und zeitlich gewährleistet sein muss, um ein so komplexes und faszinierendes Verhalten wie die Aggression in Drosophila hervorzurufen. N2 - Aggression is a strikingly multi-faceted phenomenon occurring in vertebrates as well as in invertebrates. Despite its omnipresence, the neuronal basis of aggressive behaviours is yet barely understood. Many studies however, imply a role for biogenic amines in aggression. This PhD project aimed at contributing to the understanding of the neuronal correlates of aggression, with a main focus on the biogenic amine octopamine, using Drosophila melanogaster as the model system. In Drosophila, agonistic encounters of males and females are composed of a variety of both offensive and defensive components, some of which are displayed more often in one sex than in the other. To simplify analysis and to standardize evaluation, I chose to focus on a single indicator of aggression: the lunge, a striking feature unique to Drosophila male aggression. By evaluating the lunge I developed in cooperation with Andreas Eckart for the first time an automated, video-based analysis of Drosophila male aggression. The present software program gives the number of lunges for each fly in a certain time interval. In addition, it provides information such as the distance the fly walked and his size among others. In combination with a second software program that we developed, aggressive interactions between two male Drosophila melanogaster of a genotype of choice can now be registered either completely automatically or if preferred semi-automatically. Using these softwares, I demonstrate that (1) body size differences of 8% and higher influence the outcome of a fight in favour of the larger male; (2) walking activity alters lunge frequency with more lunges performed by more active pairs of males; (3) flies mutant for the white gene, one member of the ABC transporter family in Drosophila, are profoundly impaired in aggression, an effect that is partially due to reduced visual performance. (4) Either knocking-down white in various brain regions or chemically ablating the mushroom body located in the central brain by deleting its neuroblast precursors diminishes aggression, indicating that integrity of various neural circuits/brain regions is required for wild-type aggression to occur. Furthermore, I show that (5) flies lacking octopamine signalling but having altered tyramine signalling display hardly any lunge. A quantitative high-speed analysis revealed that lunge execution is almost indistinguishable from wild-type males. The results from the experiments in which octopamine levels and/or tyramine levels were restored suggest that an elaborate pattern of octopamine levels in time and space is required to enable flies to express wild-type aggressive behaviour. KW - Biogene Amine KW - Aggression KW - Octopamin KW - Tyramin KW - Drosophila KW - biogenic amine KW - aggression KW - octopamine KW - tyramine KW - Drosophila Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25871 ER -