TY - THES A1 - Stoy, Andreas T1 - Darstellung, Charakterisierung und Reaktivität von NHC-stabilisierten 1,2-Dihalogendiborenen T1 - Preparation, characterization and reactivity of NHC-stabilized 1,2-dihalodiborenes N2 - Im Rahmen der vorliegenden Arbeit konnte eine Reihe symmetrischer und asymmetrischer Tetrahalogendiboran(4)-Addukte realisiert werden. Die symmetrischen Brom-substituierten Vertreter 19 und 102–107 waren durch quantitativen Ligandenaustausch der schwach gebundenen Lewis-Base SMe2 von 101 zugänglich. Im Falle der IDip-stabilisierten Addukte 108 bzw. 109a/b gelang die Darstellung in sehr guten Ausbeuten durch direkte Umsetzung von freiem Carben mit den Tetrahalogendiboran(4)-Vorstufen 1 (X = Cl) bzw. 2 (X = I). Die asymme¬trischen Vertreter 113a–116b konnten durch sukzessive Adduktbildung ausgehend von 1 bzw. 6 mit cAAC und dem jeweiligen NHC bei tiefen Temperaturen (−78 °C) in moderaten bis guten Ausbeuten dargestellt werden. Nachfolgende Reduktionsversuche der asymmetrischen Addukte 113a/b und 114b–116b waren von mäßigem Erfolg geprägt. Als Reduktionsmittel wurden Alkali- bzw. Erdalkalimetalle, Interkallationsverbindungen und Übergangsmetallkomplexe eingesetzt. Zwar war in allen Fällen eine deutliche Farbänderung beobachtbar, die, zusammen mit den beobachteten Resonanzen in den 11B-NMR-Spektren, die Synthese von asymmetrischen Diborenen nahelegten, jedoch gelang die Isolierung der Diborene nicht. Hierbei gestaltete sich die Abtrennung der gebildeten Nebenprodukte als problematisch. Deutlich selektiver verliefen hingegen die Reduktionen der symmetrischen Tetrahalogen-diboran(4)-Bis(Addukte) mit NaNaph bei tiefen Temperaturen (−78 °C). Hierbei gelang es, das Portfolio der bereits bekannten Vertreter dieser Substanzklasse zu erweitern. So konnten die Brom-substituierten Diborene 126–128 erstmals vollständig charakterisiert werden. Der Einfluss der Halogenatome auf die chemischen und physikalischen Eigenschaften der Diborene wurde ferner an zwei Beispielen der IDip-stabilisierten Diborene 129 und 130 untersucht. Bei identischem NHC, aber unterschiedlichen Halogenen, konnten die Eigenschaften der Diborene 21, 129 und 130 näher untersucht und miteinander verglichen werden. Besonders deutlich werden die Redoxeigenschaften der Diborene von der Art des gebundenen Halogens beeinflusst, wie cyclovoltammetrische Untersuchungen belegen. Alle NHC-stabilisierten 1,2 Dihal¬ogen¬diborene konnten ferner anhand ihrer physikalischen Eigenschaften eingeordnet und miteinander verglichen werden. Neben der Synthese und Charakterisierung neuartiger Diborene wurden auch verschiedene Reaktivitätsstudien durchgeführt. So konnten die Diborene 21, 123, 126 und 129 mit CO2 unter milden Bedingungen umgesetzt werden, wobei verschiedene Reaktionsprodukte nachgewiesen wurden. Der initiale Schritt umfasste in allen Fällen eine [2+2]-Cycloaddition die zu den Dibora-β-Lactonen 131a–134a führte, von denen 131a und 132a vollständig charakterisiert werden konnten. Im weiteren Reaktionsverlauf wurden jedoch Isomerisierungsreaktionen von 132a–134a bei Raum¬temperatur beobachtet, wobei die 2,4 Diboraoxetan 3 one 132b–134b isoliert wurden. Bedingt durch die verhältnismäßig langsame Umsetzung von 21 zu 132a konnte die [2+2] Cyclo¬addition mittels 1H-VT-NMR-Spektroskopie verfolgt werden, wobei die Rückgrat¬protonen der NHCs als selektive Sonde dienten. Eine bemerkenswert hohe Stabilität konnte für 131a bei Raumtemperatur beobachtet werden, bei der keine Anzeichen einer Umlagerung nachweisbar waren. Die angefertigten quantenchemischen Untersuchungen zum Reaktions¬mechanismus legen eine höhere Energiebarriere des Schlüsselschrittes der Umlagerungs¬reaktion für 131a als für 132a nahe, womit die Stabilität von 131a erklärbar ist. Ferner konnten beim Erhitzen von 131a für 16 Stunden auf 60 °C kurzlebige Intermediate in Form eines Oxoborans und Borylens, die im Laufe der Isomerisierungsreaktion der Dibora-β-Lactonen zu den 2,4 Diboraoxetan 3 onen auftreten, 11B NMR-spektroskopisch nachgewiesen werden. Hierdurch wurde ein weiteres Indiz gewonnen, dass die Richtigkeit des postulierten Reaktionsmechanimus verdeutlicht. Die reduzierende Wirkung der Diborene konnte mit der Darstellung von Radikalkationen demonstriert werden. Hierbei erfolgte die Umsetzung der Diborene 21, 123–126 und 128 mit [C7H7][BArF4] zu 138–143 in guten bis sehr guten Ausbeuten. Die gebildeten Radikale konnten vollständig charakterisiert werden und sind wegen ihrer Eigen¬schaften gut mit bereits literaturbekannten Vertretern dieser Substanzklasse vergleichbar. Versuche die Radikalkationen durch Umsetzung der Diborene mit [C7H7][BF4] darzustellen scheiterten an der Zersetzung während der Aufarbeitung, wodurch die Wichtigkeit des schwach koordinierenden Anions verdeutlich wird. Entgegen der Erwartungen wurden beim Vergleich der ESR-Spektren der dargestellten Radikalkationen mit bekannten Analoga deutlich unterschiedliche giso-Werte ermittelt, die auf den starken Einfluss der Bromatome zurückzuführen sind. Des Weiteren war es möglich, eine Korrelation zwischen den Strukturparametern in der Festphase und den UV/Vis-Absorptionsmaxima in Lösung nachzuweisen, wonach für diejenigen Radikale die stärkste Blauverschiebung beobachtet wurde, die den größten Diederwinkel α, zwischen den B2Br2-Ebenen und den CN2C2-Carben-ebenen, aufwiesen. In weiteren Studien wurden die Redoxeigenschaften der Diborene durch Umsetzung von 21 und 123–125 mit elementaren Chalkogenen unter milden Reaktionsbedingungen untersucht. So konnten durch Umsetzung der Diborene mit elementarem Schwefel die Diborathiirane 144–147 in moderaten bis guten Ausbeuten erhalten werden. Trotz eines großen Überschusses an Schwefel wurde aber keine vollständige BB-Bindungsspaltung beobachtet. Auf analoge Weise wurden die Diboraselenirane 148, 150 und 151 durch Umsetzung mit rotem Selen in moderaten bis guten Ausbeuten synthetisiert. Deutliche Unterschiede zeigten sich aber beim IDep-stabilisierten Diboren 123, das ein radikalisches Seleniran ausbildete. Überschüs¬siges Selen begünstigt vermutlich eine Folgeoxidation des in situ gebildeten Diboraselenirans, die jedoch für die anderen Verbindungen dieser Substanzklasse nicht beobachtbar war. Interessanterweise wurde bei allen Dipp-substituierten Verbindungen (Diborathiirane 144 und 146 sowie Dibora¬selenirane 148 und 151) das Fehlen einer Dipp-Gruppe der stabilisierten NHC-Basen im 1H NMR-Spektrum nachgewiesen. Dieser Umstand konnte durch eine eingeschränkte Rotation um die BC-Bindungsachse mittels 1H-VT-NMR-Spektrum aufgeklärt werden, wobei die Rotationsbarriere exemplarisch für 144 13.9 ± 1 kcal/mol beträgt. Eine bemerkenswerte Reaktivität der 1,2-Dibromdiborene 21 und 123–126 wurde gegenüber hetero¬aroma¬tischer Stickstoffbasen beobachtet. Mit einem großen Überschuss an Pyridin konnte ein Bromidanion aus den Diborenen verdrängt werden, wodurch die Diborenkationen 154–158 in moderaten bis guten Ausbeuten erhalten wurden. Die Abtrennung der dabei unvermeidlich gebildeten NHC-Salze gestaltete sich als schwierig, allerdings gelang es, nach einer in situ Deprotonierung mit NaHMDS die freien NHCs zu entfernen. Versuche der Deri-vatisierung mit anderen aromatischen Basen wie 2- bzw. 4-Picolin, Chinolin oder 2,2’-und 4,4’-Bipyridin scheiterten. Erfolgreich konnte DMAP eingesetzt werden, wodurch es möglich war, die Diborenkationen 160–162 in guten bis sehr guten Ausbeuten zu erhalten. Interessanterweise zeigen 154–158 teils deutliche solvatochrome Absorptions¬eigenschaften in den UV/Vis-Spektren. Im Laufe der Umsetzung von 125 mit Pyridin konnte durch angepasste Reaktions¬bedingungen das Dikation 159 in moderaten Ausbeuten isoliert werden. Dessen bemerkenswerte Stabilität zeigte sich durch eine ausgeprägte Widerstands¬fähigkeit gegenüber Sauerstoff und Luftfeuchtigkeit über mehrere Wochen. Weiterführende Unter¬suchungen der Festkörperstruktur von 159 zeigen Bindungsparameter, die trotz der ionischen Natur der Verbindung, nur geringfügig von denen des neutralen Diborens 125 abweichen. Mittels Raman-Spektroskopie konnten des Weiteren die BB-Bindungsstärke in 159 näher bestimmt werden, die mit einer Kraftkonstante von 470 N/m nahezu identisch zu der des neutralen Dibores (465 N/m) ist, was Rückschlüsse auf die Lokalisierung der positiven Ladungen auf den Pyridinringen zulässt. Aus diesem Grund kann Verbindung 159 als bis dato einziges Beispiel eines luft- und feuchtigkeitsstabilen Diborens bezeichnet werden. N2 - Within the scope of this work, a series of symmetrical and unsymmetrical tetrahalodiborane(4) adducts were synthesized. The symmetrical, bromine-substituted compounds 19 and 102–107 were accessible by quantitative ligand exchange of the weakly-bound Lewis base SMe2 in 101. The IDip-stabilized adducts 108 and 109a/b, were prepared in excellent yields by direct addition of free carbene to the tetrahalodiborane(4) precursors 1 (X = Cl), and 2 (X = I), and respectively, the unsymmetrical adducts 113a–116b could be prepared in moderate to good yields by stepwise addition of cAAC and the corresponding NHC to 1 or 6 at low temperatures (−78 °C). Subsequent attempts to reduce the asymmetric adducts 113a/b and 114b–116b with reagents such as alkali, or alkaline earth metals, intercalation compounds, and transition metal complexes were moderately successful. Although a change in colour was observed in all cases, which, together with the observed resonances in the 11B-NMR spectra, suggested the synthesis of unsymmetrical diborenes, their isolation was unsuccessful. Here, the separation of the byproducts proved to be problematic. In contrast, the reductions of the symmetrical tetrahalodiborane(4) bis(adducts) with NaNaph at low temperatures (−78 °C) were much more selective. Here, we succeeded in expanding the scope of known representatives of this substance class. Thus, the bromine-substituted diborenes 126–128 could be fully characterized for the first time. The influence of the halides on the chemical and physical properties of the diborenes were further investigated using two examples of IDip-stabilized diborenes 129 and 130. The properties of 21, 129 and 130, which represent diborenes with identical NHCs but different halides, were studied in more detail and compared with each other. The redox properties of the diborenes are particularly influenced by the nature of the halide, as emphasized by cyclo¬voltammetric studies. All NHC-stabilized 1,2-dihalodiborenes were also classified and compared with each other based on their physical properties. In addition to the synthesis and characterization of novel diborenes, a range of reactivity studies were also performed. For example, when diborenes 21, 123, 126, and 129 were reacted with CO2 under mild conditions, a variety of products were obtained. In all cases the initial step involved a [2+2] cycloaddition leading to the dibora-β-lactones 131a–134a, of which 131a and 132a were fully characterized. However, in the further course of the reaction, isomerization of 132a–134a took place, leading to the formation of the 2,4-diboraoxetane-3-ones 132b–134b. Thanks to the relatively slow conversion of 21 to 132a, the [2+2] cycloaddition could be monitored by variable-temperature 1H-NMR spectroscopy, with the backbone protons of the NHCs serving as viable probes. A remarkably high stability at room temperature was observed for 131a with no evidence of rearrangement. Quantum chemical studies of the reaction mechanism suggested a higher energy barrier for the key step of the rearrangement reaction for 131a relative to that of 132a. Furthermore, heating of 131a to 60 °C for 16 h led to the formation of short-lived intermediates in the form of an oxoborane and borylene, which occur in the course of the isomerization reaction of the dibora-β-lactones to the 2,4-diboraoxetane-3-one, and were detected by 11B-NMR spectroscopy. This provided a further indication that the postulated reaction mechanism is correct. The reducing properties of the diborenes were demonstrated by the preparation of the radical cations. Here, diborenes 21, 123–126, and 128 reacted with [C7H7][BArF4] to form 138–143 in good to excellent yields. The isolated radicals were fully characterized, and their properties are readily comparable with previously-reported representatives of this substance class. Attempts to prepare the radical cations by reacting diborenes with [C7H7][BF4] were accompanied by decomposition during workup, thus highlighting the importance of the weakly coordinating anion. Contrary to expectations, significantly different giso values were obtained when comparing the EPR spectra of the presented radical cations with known analogues, which could be attributed to the strong influence of the bromide atoms. Furthermore, it was possible to find a correlation between the structural parameters in the solid state and the UV/Vis absorption maxima in solution. The strongest blue shift was observed for those radicals that exhibited the largest dihedral angle α between the B2Br2 plane and the CN2C2-carbene planes. In further studies, the redox properties of diborenes were investigated by reacting 21 and 123–125 with elemental chalcogens under mild reaction conditions. This way, reaction of diborenes with elemental sulphur led to the formation of diborathiiranes 144–147 in moderate to good yields. Despite a large excess of sulphur, complete BB bond cleavage was not observed for any of these products. Analogously, diboraseleniranes 148, 150, and 151 were synthesized by reaction with red selenium in moderate to good yields. However, apparent differences were seen for the IDep-stabilized diborene 123, which in contrast to 21, 124 and 125 formed a radical diboraselenirane. Excess selenium presumably favors a subsequent oxidation of the in-situ-formed diboraselenirane, which however, was not observed for the other compounds of this substance class. Interestingly, one Dipp-group of the stabilizing NHC bases was not detected in the proton NMR spectrum for all Dipp-substituted compounds (diborathiiranes 144 and 146, and also diboraseleniranes 148 and 151). This circumstance could be explained by an inhibited rotation around the BC axis as verified by means of variable-temperature 1H-NMR spectroscopy, the rotation barrier exemplified by that of 144, which was found to be 13.9 ± 1 kcal/mol. A remarkable reactivity of 1,2-dibromodiborenes 21 and 123–126 was observed towards hetero¬aromatic nitrogen bases. With a large excess of pyridine, a bromide anion could be displaced, giving the diborene cations 154–158 in moderate to good yields. Separation of the NHC salts inevitably formed during this process proved to be difficult, but after in situ deprotonation with NaHMDS, it was possible to remove the free NHCs due to their substantially different solubilities. Attempts at derivatization with other aromatic bases such as 2- or 4-picoline, quinolone, or 2,2'-and 4,4'-bipyridine failed. However, addition of DMAP le to a successful halide substitution, making it possible to obtain the diborene cations 160–162 in good to excellent yields. Interestingly, 154–158 furthermore show partly distinct solvatochromic absorption properties in their UV/Vis spectra. In the course of the reaction of 125 with pyridine, the dication 159 was isolated in moderate yields by employing adjusted reaction conditions. Its remarkable stability was demonstrated by a pronounced resistance to oxygen and atmospheric humidity over a period of several weeks. Further studies of the solid-state structure of 159 show binding parameters that deviate only slightly from those of the neutral diborene 125, despite the ionic nature of the compound. Furthermore, by use of Raman spectroscopy, it was possible to determine the BB bond strength in 159 in more detail, which, with a force constant of 470 N/m, is almost identical to that of the neutral diborene (465 N/m). This result allows us to draw conclusions about the localization of the positive charges on the pyridine rings. For this reason, compound 159 represents a rare example of an air- and moisture-stable diborene. KW - Bor KW - Mehrfachbindung KW - Synthese KW - Eigenschaften KW - Reaktivität KW - Diboren KW - Carben Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237818 ER - TY - THES A1 - Ritschel, Benedikt Tobias T1 - Lewis-Basen-stabilisierte Bor–Bor-Mehrfachbindungssysteme – Reaktivitätsstudien an Diboracumulenen und Dicyanodiborenen T1 - Lewis base-stabilized boron-boron multiple bonds - reactivity studies on diboracumulenes and dicyanodiborenes N2 - Die vorliegende Arbeit umfasst im Wesentlichen Studien über die Reaktivität von Diboracumulenen sowie Dicyanodiborenen gegenüber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und Übergangsmetallen. Auf diese Weise sollen zunächst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen ermöglicht sowie ein Verständnis für die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivität untersucht. Die aufgeführten Kapitel beziehen sich daher auf die Reaktivität der Diboracumulene wie auch die der Dicyanodiborene gegenüber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit möglich, miteinander verglichen. N2 - The present work mainly comprises studies on the reactivity of diboracumulenes as well as dicyanodiborenes towards diverse substrates of different substance classes, such as acetylenes, amines, azides, nitriles, isonitriles and transition metals. In this way, insights into the different reaction behavior of the low-valent boron compounds of the obtained, partly novel, binding modes and substance classes should be established. In this context, the respective MecAAC- and CycAAC-stabilized compounds were examined towards the influence of the steric requirement of the ligands with respect to the reactivity. Therefore, the chapters refer to the reactivity of the diboroacumulenes as well as that of the dicyanodiborenes towards compounds of a particular substance class in each case. Where possible, the products obtained are compared with each other. KW - Bor KW - Reaktivitätsstudien KW - reacitvity studies KW - Mehrfachbindung KW - Hauptgruppenelementverbindungen KW - Diboren KW - Diboracumulen KW - diborene KW - diboracumulene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243306 ER - TY - THES A1 - Dellermann, Theresa T1 - NHC-stabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivität T1 - NHC-stabilized Boron-Boron Multiple Bonds - Synthesis and Reactivity N2 - Im Rahmen dieser Arbeit war es möglich, eine Vielzahl NHC-stabilisierter Tetrabromdiboran-Addukte zu synthetisieren und mithilfe von zwei bzw. vier Reduktionsäquivalenten zu reduzieren. Dies führte zur Bildung neuartiger Dibromdiborene bzw. Diborin-Verbindungen, welche infolgedessen charakterisiert wurden. Der Einfluss des Carbens auf die jeweilige Struktur und Elektronik der synthetisierten Verbindungen war hierbei von besonderem Interesse. Im Fall der Diborine gelang es neben den beiden bereits literaturbekannten Verbindungen XXIII und XXXII drei neue Vertreter mit einer B≡B-Dreifachbindung (7, 8 und 9) darzustellen. Aufgrund der Verwendung von gesättigten Carbenen wurden die spektroskopischen und strukturellen Eigenschaften der Verbindungen soweit modifiziert, dass sie zwischen denen mit einer isolierten Dreifachbindung (B2IDip2 (XXIII) und B2IDep2 (XXXII)) und der mit Kumulencharakter (B2CAAC2 (XXXIV)) eingeordnet werden können. Neben der Charakterisierung neuartiger Verbindungen mit Bor–Bor-Dreifachbindungscharakter konnten auch zahlreiche Reaktivitätsstudien durchgeführt werden. So verdeutlichte sich der strukturelle und elektronische Unterschied der Diborine vor allem am Beispiel der Reaktivität gegenüber CO (Schema 42). Während für B2IDip2 (XXIII) der Reaktionsverlauf über das Intermediat XXV zum Bis(boralacton) XXVI reagierte, konnte für die Diborine 7 und 8 primär die Bildung des jeweiligen Bis(boraketens) (16 und 18) beobachtet werden. Die Bindungssituation dieser Zwischenstufen wird vor allem durch die π-Rückbindungen der Boratome in die CO-Bindung geprägt, welche zu einer Schwächung dieser führen und sowohl in den Festkörperstrukturen als auch in den Schwingungsspektren verdeutlicht wird. Die weitere Umsetzung zu den entsprechenden Bis(boralactonen) 17 und 19 erfolgte im Anschluss je nach Substituent bei Raumtemperatur (16) oder durch Heizen der Boraketen-Zwischenstufe (18). Mithilfe quantenmechanischer Betrachtung konnte die Ursache der unterschiedlichen Reaktionsverläufe näher erläutert werden, auch unter Einbeziehung des Diborakumulens XXXIV, welches mit Überschuss an CO auch bei hohen Temperaturen lediglich zur Bildung des Bis(boraketens) (XXXV) führt. Dies zeigt, dass aufgrund der unterschiedlichen Reaktionsbarrieren der jeweiligen Diborine bzw. des Diborakumulens mit CO die Bildung des Ketens bzw. anschließend des Bis(boralactons) verschieden stark bevorzugt wird. Für B2IDip2 (XXIII) wird deshalb aufgrund der hohen freien Gibbs-Energie, welche bei der Bildung des Bis(boralactons) entsteht, im ersten Schritt keine Bildung des IDip-stabilisierten Bis(boraketens) beobachtet und für B2CAAC2 (XXXIV) aufgrund von nahezu keiner Energiegewinnung im zweiten Schritt lediglich XXXV gebildet. Die freien Gibbs-Energien beider Reaktionsschritte der Umsetzungen von B2SIDip2 (7) und B2SIDep2 (8) mit CO ordnen sich zwischen den oben beschriebenen Extrema ein. Einen Einfluss des Carbens auf die Reaktivität zeigte auch die Umsetzung mit Wasserstoffgas. Während bei XXIII, XXXII und 7 keine Reaktionen beobachtet werden konnten, verlief diese bei 8 und XXXIV unter einer 1,2-Addition des H2-Moleküls an die B–B-Bindung und Bildung der jeweiligen Dihydrodiborene 21 (B2H2SIDep2) und XXXVIII (B2H2CAAC2). Neben der Reaktivität gegenüber CO und H2 wurden auch Reaktionen beschrieben, welche zu einer Insertion einer in-situ-gebildeten Borylen-Spezies führten. Diese sind die Umsetzungen von B2IDip2 (XXIII) mit CO-Quellen oder der Brønstedt-Säure Triethylammonium(tetraphenyl)borat. In beiden Fällen kam es im Laufe der Reaktion zur Insertion eines Borfragments in die CH-Bindung des Isopropylrestes und zur Bildung der Boracyclen 20 (B2IDip2CO) und 25 ([B2IDip2H][BPh4]). Daneben konnte eine ähnliche Beobachtung bei der Umsetzung des SIDep-stabilisierten Diborins 8 mit Isonitrilen gemacht werden. Hierbei insertierte bei der Reaktion mit Metyhlisonitril ein Borfragment in den benachbarten Imidazolring unter Ausbildung eines Sechsrings. Gleichzeitig konnte eine CH-Aktivierung des Ethylrestes des Dep-Substituenten beobachtet werden. Bei der analogen Umsetzung mit tert-Butylisonitril wurde neben der einfachen auch die zweifache Insertion beider Borzentren beobachtet. Die Reaktivität gegenüber Chalkogenen und Chalkogenverbindungen stellte einen weiteren, zentralen Aspekt dieser Arbeit dar. Die Umsetzung von B2IDip2 mit elementarem Schwefel und Selen führte dabei zur Spaltung der B≡B-Bindung durch reduktive Insertion von drei Chalkogenbrücken und Bildung der entsprechenden Pentachalkogenverbindungen 26 und 27. Die analogen Umsetzungen des Diborins 7 mit Selen führte ebenfalls zur Bildung einer Pentachalkogenverbindung (29). Da derartige Verbindung in der Literatur bislang nicht bekannt sind, sollte auch deren Reaktivität exemplarisch an 27 untersucht werden. Dabei zeigte sich, dass die Verbindung stabil unter photolytischen Bedingungen ist und sich bei thermischer Behandlung erst nach mehreren Tagen zersetzt. Die Umsetzung mit Triphenylphosphan oder elementarem Natrium zur Entfernung von Selenfragmenten oder mit Triphenylphosphanselenid zur Addition weiterer Seleneinheiten zeigten keine Reaktionen. Lediglich die Umsetzung mit zwei Äquivalenten Natriumnaphthalid führte zur erfolgreichen Darstellung des Dimers 28. Im Gegensatz dazu lieferte die Reaktion des Diborins 8 mit elementarem Selen bereits ein anderes Strukturmotiv (30), in welchem sechs Selenatome in Form von ein-, zwei und dreiatomigen Henkeln zwischen die Boratome insertierten. Durch Umsetzung mit Triphenylphosphan deuteten erste Reaktionsversuche darauf hin, dass es möglich ist, selektiv ein Selenfragment aus der dreiatomigen Selenbrücke zu entfernen und die entsprechende Pentachalkogenverbindung 31 zu generieren. Reaktivitätsstudien der Diborine XXIII, 7 und 8 gegenüber Diphenyldisulfid und -selenid als auch gegenüber Isopropylthiol führten in allen Fällen zur 1,2-Addition an die B≡B-Bindung unter Bildung der Diborene 32 bis 36 bzw. 42 und 43. Im Gegensatz dazu kam es bei der Reaktion von XXIII mit Diphenylditellurid zur Bildung eines salzartigen Komplexes 37, in welchem ein Phenyltellurireniumkation die B≡B-Bindung verbrückte und das entsprechende Phenyltellurid als Gegenion fungierte. Durch den Einsatz von para-substituierten Diphenylditelluriden konnten zwei weitere Verbindungen (38 und 39) dargestellt werden. Dabei zeigte der para-Substituent jedoch nur einen geringen Einfluss auf die elektronische Struktur der gebildeten Produkte. Die Reaktion von Diborin 8 mit Diphenylditellurid zeigte neben der Bildung des salzartigen Komplexes 40 auch die Entstehung des 1,2-Additionsproduktes 41, was vermutlich wie bereits bei der Reaktion mit elementarem Selen auf sterische Effekte zurückzuführen ist (Schema 45). Aufgrund der besonderen Bindungssituation in den Komplexen 37 bis 40 wurden diese eingehender untersucht. Die Auswertung der Röntgenstrukturanalyse, Raman-Spektroskopie, 11B-NMR-Spinkopplungsexperimente sowie der quantenmechanischen Rechnungen ergab dabei Hinweise auf eine Koordinationsverbindung nach dem Dewar-Chatt-Duncanson-Bindungsmodell. Weitere Reaktivitätsstudien v.a. des IDip-stabilisierten Diborins (XXIII) beschäftigten sich mit der Synthese von π-Komplexverbindungen durch Reaktionen von XXIII mit Alkalimetallkationen in der Ligandensphäre schwach koordinierender Anionen mit Kupfer(I)-Verbindungen. Die Bildung sogenannter Kation-π-Komplexe des Diborins mit Lithium bzw. Natrium gelang durch die Umsetzung von B2IDip2 (XXIII) mit je zwei Äquivalenten Lithium bzw. Natriumtetrakis(3,5-dichlorphenyl)borat quantitativ unter Bildung von 46 und 47 als unlösliche, violette Feststoffe. Die in der Kristallstruktur ersichtliche Bindungssituation zeigt die Einkapselung der jeweiligen Kationen durch das B2-Fragment des Diborins sowie der Arylreste der Ligandensphäre, die sich infolgeder Komplexierung ekliptisch zueinander anordnen. Aufgrund der ungewöhnlichen Bindungssituation wurden theoretische Studien aufbauend auf den aus den Kristallstrukturen und den aus spektroskopischen Messungen erhaltenen Daten angefertigt. Diese beweisen eine rein elektrostatische Wechselwirkung der Kationen mit der noch intakten B≡B-Bindung des Diborins. Auch für die Diborine 7 und 8 konnten am Beispiel des Natriumtetrakis(3,5-dichlorphenyl)borats die Komplexe 48 ([B2SIDip2Na2][BArCl4]) und 49 ([B2SIDep2Na2][BArCl4]) erfolgreich dargestellt werden. Dies beweist, dass in den SIDip- und SIDep-substituierten Diborinen noch genügend Elektronendichte auf der B–B-Bindung lokalisiert ist, um derartige π-Wechselwirkungen auszubilden. Die Reaktivität des Diborins XXIII gegenüber Kupfer(I)-Verbindungen wurde bereits von Dr. Jan Mies im Zuge seiner Dissertation untersucht. In dieser Arbeit ist es nun gelungen, weitere Komplexe mit Kupfer(I)-alkinylen (50 und 51) darzustellen. Darüber hinaus war es möglich, eine alternative Syntheseroute zur Darstellung des dreikernigen Kupfer(I)-chlorid-Komplexes XXVII zu entwickeln sowie den entsprechenden Zweikerner 52 darzustellen. Die Verbindungen XXVII, 52 und XXVIII wurden im Anschluss in Kooperation mit der Gruppe um Dr. Andreas Steffen auf ihre photophysikalischen Eigenschaften hin untersucht.Dabei zeigte sich, dass alle drei Verbindungen aufgrund der langen Lebenszeiten ihrer angeregten Zustände phosphoreszieren, die Quantenausbeute der Phosphoreszenz jedoch stark von der Verbindung abhängig ist. Während der dreikernige Kupfer(I)-Komplex XXVII bereits in Lösung eine Quantenausbeute von 29 % aufwies, war eine Bestimmung der Quantenausbeute in Lösung für B2IDip2(CuC2TMS)2 (XXVIII) aufgrund der schwachen Emission nicht möglich. Die Ursache des unterschiedlichen Emissionsverhaltens konnte mittels Betrachtung von Absorptions- und Anregungsspektren erklärt werden. Für B2IDip2(CuCl)3 sind die beiden Spektren in Lösung nahezu identisch. Im Gegensatz dazu weisen die beiden Zweikerner 52 und XXVIII ein vom Absorptionsspektrum verschiedenes Anregungsspektrum auf, was darauf schließen lässt, dass es zu Konformationsänderungen im angeregten Zustand kommt, welche die Emission auslöscht. TheoretischeStudien bestätigen für 52, dass die Barriere zwischen zwei Konformeren, in denen die Kupferfragmente linear bzw. orthogonal angeordnet sind, lediglich 4.77 kcal/mol beträgt und bekräftigen damit die vermutete Ursache der schwachen Emission. Ein zweites Thema dieser Arbeit beschäftigte sich mit der Darstellung und Untersuchung neuartiger Dibromdiborene, welche im Zuge der Diborin-Synthese beobachtet werden konnten. Dabei gelang es neben dem bereits literaturbekannten IDip-stabilisierten Dibromdiboren (XXIV) noch sechs weitere Vertreter dieser Verbindungsklasse darzustellen (10–15). Auch hier konnte ein Einfluss der Carbenliganden auf die strukturellen und elektronischen Eigenschaften beobachtet werden. Die Reaktivität der Dibromdiborene wurde in einigen Testreaktionen untersucht. Dabei zeigte sich, dass im Hinblick auf ihr Oxidationsverhalten die literaturbekannte Darstellung von Monokationen (53 [B2Br2IDip2][BArF4] und 54 [B2Br2IDep2][BArF4]) nachempfunden werden konnte. Versuche zur Bromsubstitution zeigten durch Umsetzung mit BuLi den Austausch der Bromid-Liganden durch Butylgruppen, jedoch bildeten sich aufgrund von Umlagerungen anstelle der erwarteten Diborene die kondensierten Ringsysteme 56–58. N2 - Within the scope of this work, a variety of NHC stabilized tetrabromodiborane adducts were synthesized. The subsequent two- or four-electron reduction of the latter yielded the novel diborene and diboryne molecules, which were fully characterized. The influence of the carbene ligand on the electronic structure of the final molecule was therefore of particular interest. ... KW - Bor KW - Mehrfachbindung KW - Reaktivität KW - NHC KW - Diborin KW - Diboren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146345 ER - TY - THES A1 - Böhnke, Julian T1 - Reaktivität niedervalenter, Carben-stabilisierter Bor-Bor-Mehrfachbindungssysteme T1 - Reactivity of low-valent, carbene-stabilized boron-boron multiple bonds N2 - Im Rahmen dieser Arbeit war es möglich, vielfältige Reaktivitäten des Diborakumulens (7) und davon abgeleiteter Verbindungen zu untersuchen. Häufig begründet in den bemerkenswerten elektronischen Eigenschaften der verwendeten CAAC-Liganden, konnten neuartige und teilweise ungewöhnliche Bindungsmodi an niedervalenten Borspezies beobachtet werden. Der Einfluss der starken σ-Donor-Fähigkeiten und der hohen π-Acidität der cyclischen (Alkyl)(amino)carbene spiegeln sich hierbei in vergleichenden Reaktivitätsstudien mit den entsprechenden NHC-stabilisierten Bor–Bor-Mehrfachbindungssystemen wider. Zunächst wurde jedoch auf die Synthese weiterer Diborakumulene eingegangen und am Beispiel der Bis(CAACCy)-stabilisierten B2-Einheit (12) erfolgreich durchgeführt. Mit vergleichbaren 11B-NMR-Verschiebungen und Bindungslängen unterscheidet sich die Verbindung in ihren elektronischen Eigenschaften kaum von B2(CAAC)2 (7), welches aufgrund der besseren Zugänglichkeit für die Reaktivitätsstudien eingesetzt wurde. Grundlegende Studien zum Redoxverhalten des Diborakumulens zeigten die vollständige, oxidative Spaltung der Bor–Bor-Bindung mit Chlorgas unter Ausbildung eines CAAC-stabilisierten Bortrichlorid-Fragments. Die Arbeiten zum Bis(boraketen) 17 und die Darstellung des Bis(boraketenimins) 18 durch die Umsetzung des Diborakumulens mit Kohlenstoffmonoxid bzw. geeigneten Isocyaniden, stellte einen ersten größeren Teilbereich dieser Arbeit dar. Durch die enorme π-Rückbindung in die CAAC-Liganden und die CO-Liganden aus der elektronenreichen B2-Einheit kommt es in 17 zu einer Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Im weiteren Verlauf konnte ein Mechanismus für die Addition von CO an B2(CAAC)2 gefunden werden, in dem aufgrund hoher energetischer Barrieren eine Umsetzung zum Bis(boralacton) – einer Spezies, die für die Reaktion von Kohlenstoffmonoxid mit NHC-stabilisierten Diborinen gefunden wurde – unterbunden wird. Die elektronischen und strukturellen Unterschiede zwischen Diborinen und dem Diborakumulen 7 konnten so erstmals anhand definierter Reaktionsbedingungen evaluiert werden. Die Reaktion von 7 mit zwei Äquivalenten tert-Butylisocyanid führte zur Bildung eines Bis(boraketenimins). Ähnlich wie im Bis(boraketen) 17 kommt es auch hier unter anderem zu einer starken π-Rückbindung in den Isocyanidliganden einhergehend mit der Aufweitung der B–B-Bindung und orthogonal zueinander stehenden Molekülhälften. Die Thermolyse der Verbindung führte zu einer Abspaltung zweier tert-Butylradikale und zur Bildung des ersten, strukturell charakterisierten Dicyanodiborens 20. Das Dicyanodiboren zeigte hier eine strukturelle Besonderheit: Während ein CAAC-Ligand in Konjugation mit dem π-System der B2-Einheit steht, zeigt der zweite CAAC-Ligand eine orthogonale Orientierung zu diesem, was vermutlich zu einer Polarisierung der B=B-Doppelbindung führt und potentiell hochinteressante Reaktivitäten ermöglicht. So führte die Umsetzung von 20 mit Kohlenstoffmonoxid zur Spaltung der B–B-Bindung und Insertion eines µ2-gebundenen CO-Moleküls in die BB-Einheit. Die Tatsache, dass ein ähnliches Reaktionsverhalten bisher nur vom ebenfalls CAAC-stabilisierten Dihydrodiboren 22 bekannt war (vide infra), demonstrierte an diesem Beispiel eindeutig die bemerkenswerten Fähigkeiten von CAACs reaktive, niedervalente Hauptgruppenelementverbindungen zu stabilisieren. Die Reaktivität des Diborakumulens 7 gegenüber Diwasserstoff stellte einen weiteren, großen Teilaspekt dieser Arbeit dar. Das Rühren von 7 unter einer H2-Atmosphäre führte zur 1,2-Addition des H2-Moleküls an die B2-Einheit unter Ausbildung eines trans-ständigen, Basen-stabilisierten Dihydrodiborens 22. Im Gegensatz zum Dicyanodiboren (20) handelt es sich bei 22 um eine C2-symmetrische Verbindung, dessen π-System im HOMO aufgrund der π-Acidität der CAAC-Liganden über das gesamte C–B–B–C-Grundgerüst delokalisiert ist. Die Hydrierung wurde ebenfalls mit hochreinem D2 durchgeführt, um eine Hydridabstraktion aus dem Lösungsmittel auszuschließen. DFT-Berechnungen konnten zudem die Bor-gebundenen Wasserstoffatome als Hydride klassifizieren und den Mechanismus der Addition von Diwasserstoff an die B2-Einheit ermitteln. Mit einem berechneten, exothermen Reaktionsverlauf stellt die Umsetzung von 7 zu 22 auf diesem Weg das erste Beispiel einer nicht katalysierten Hydrierung einer homodinuklearen Mehrfachbindung der 2. Periode dar. Das CAAC-stabilisierte Dihydrodiboren 22 zeigte im Verlauf dieser Arbeit vielfältige Bindungsmodi aus der Umsetzung mit Kohlenstoffmonoxid. Unter anderem die Eigenschaft von CAACs, eine 1,2-Wasserstoffwanderung von angrenzenden BH-Einheiten auf das Carbenkohlenstoffatom zu begünstigen, führte zur Ausbildung verschiedener Tautomere. Während das Produkt aus der formalen Addition und Insertion von zwei CO-Molekülen (24) lediglich unter CO-Atmosphäre stabil war, konnte unter Argonatmosphäre ein Tautomerengemisch von 25 mit intakter Bor–Bor-Bindung und einer Boraketeneinheit isoliert werden. Während dieser Prozess vollständig reversibel war, führte das Erhitzen von 25 zur Bildung eines Alkylidenborans (26), welches ebenfalls in zwei tautomeren Formen vorlag. Darüber hinaus konnte die Bildung einer weiteren Spezies (27) in geringen Ausbeuten beobachtet werden, die aus der vollständigen Spaltung eines CO-Fragments und der Bildung einer intramolekularen C≡C-Dreifachbindung resultierte. VT-NMR- und Korrelationsexperimente, Kristallisationen unter verschiedenen Atmosphären, Schwingungsspektroskopie sowie die mechanistische Analyse der Umsetzungen basierend auf DFT-Berechnungen ermöglichten hier einen tiefen und detaillierten Einblick in die zugrunde liegenden Prozesse. Die thermische Umsetzung des Dihydrodiborens 22 mit Acetylen führte wider Erwarten nicht zur Cycloaddition an die B=B-Doppelbindung, sondern zur Insertion in diese. Das erhaltene Produkt 28 zeigte eine C2-symmetrische Struktur und durchgängig sp2-hybridisierte Kohlenstoff- und Borzentren entlang der Hauptachse. Eine DFT-Studie ergab ein konjugiertes π-System, dass dem 1,3,5-Hexatrien stark ähnelte. Eine weitere Umsetzung von 22 mit zwei Äquivalenten Diphenyldisulfid führte ebenfalls zur Spaltung der B=B-Doppelbindung und zur Ausbildung eines CAAC-stabilisierten, sp3-hybridisierten Monoborans. Das Diborakumulen 7 konnte in zwei weiteren Reaktivitätsstudien selektiv mit Kohlenstoffdioxid und Aceton umgesetzt werden. Die Reaktion von B2(CAAC)2 mit zwei CO2-Molekülen führte zur Ausbildung einer Spezies mit einer Boraketenfunktionalität und einem Borsäureesterderivat (30). Für die Aktivierung von Kohlenstoffdioxid an unpolaren Mehrfachbindungen gab es bisher kein Beispiel in der Literatur, sodass diese mechanistisch untersucht wurde. Hier erfolgte die Reaktion über eine ungewöhnliche, sukzessive [2+1]-Cycloaddition an die koordinativ ungesättigten Boratome mit einem insgesamt stark exergonen Verlauf. Die Umsetzung von 7 mit Aceton führte zur Ausbildung eines fünfgliedrigen Heterocyclus mit einer C=C-Doppelbindung und asymmetrisch verbrückter Bor–Bor-Bindung mit einem orthogonal zum Heterocyclus stehenden μ2-Hydrid. Interessanterweise zeigte hier eine vergleichende Studie von Tobias Brückner an einem SIDep-stabilisierten Diborin bei einer analogen Reaktionsführung ein 1,2-Enol-Additionsprodukt, sodass der zugrunde liegende Reaktionsmechanismus ebenfalls untersucht wurde. Während das 1,2-Enol-Additionsprodukt als Intermediat zur Bildung von 31 beschrieben werden konnte, führten moderate Energiebarrieren und ein deutlich exergoner Reaktionsverlauf im Fall des Diborakumulens zu einer doppelten Acetonaktivierung. Für 31 konnte darüber hinaus ein Isomerengemisch beobachtet werden, das nach der Bildung nicht mehr ineinander überführt werden konnte. Die Reaktion des Diborakumulens mit Münzmetallhalogeniden ergab für die Umsetzung von 7 mit drei Äquivalenten Kupfer-(I)-chlorid-Dimethylsulfidaddukt eine T-förmige Koordination von drei CuCl-Fragmenten an die B2-Einheit (33). Setzte man das Diborakumulen 7 mit einem Äquivalent IMeMe um, bildete sich das heteroleptisch substituierte Mono-Basenaddukt 34. Dieses zeigte eine thermische Labilität, sodass sich nach einem Zeitraum von 24 Stunden bei erhöhter Temperatur selektiv das Produkt einer CH-Aktivierung isolieren ließ. Das gleiche Produkt (35) konnte ebenfalls durch die Zugabe einer Lewis-Säure (Galliumtrichlorid) zu 34 nach kurzer Zeit bei Raumtemperatur erhalten werden. Setzte man 34 mit einem weiteren Äquivalent IMeMe um, so bildete sich das Bis(IMeMe)-Addukt des Diborakumulens 36, das zunächst an das Bis(CO)-Addukt 17 erinnerte und durch die hohe sterische Spannung im System eine stark aufgeweitete Bor–Bor-Bindung besitzt. Die Reaktion von 34 gegenüber Kohlenstoffmonoxid lieferte das heteroleptisch substituierte Basenaddukt 37. Das elektronenreiche Boratom des Boraketenstrukturfragments führt hier zu einer erheblichen π-Rückbindung in den CO-Liganden, der die niedrigsten, zu diesem Zeitpunkt jemals beobachteten Wellenzahlen für die CO-Schwingung in einer derartigen Funktionalität aufweist. Eine abschließende Umsetzung des Mono-Basenaddukts 34 mit Diwasserstoff führte zur spontanen Hydrierung beider Boratome und zur Spaltung der Bor–Bor-Bindung. Die Reaktionsmischung zeigte nach erfolgter Reaktion ein 1:1-Verhältnis aus einem CAAC-stabilisierten BH3-Fragment 39 und einem zweifach Basen-stabilisierten BH-Borylen 38. Die Spaltung einer Bor–Bor-(Mehrfach)-Bindung zur Synthese von heteroleptisch Lewis-Basen-stabilisierten Borylenen stellte dabei einen bisher nicht bekannten Zugang zu dieser Verbindungsklasse dar. Ein sehr großer Teilbereich dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität von Diborabenzol-Derivaten. Setzte man das Diborakumulen 7 mit Acetylen um, so konnte die Bildung eines CAAC-stabilisierten 1,4-Diborabenzols beobachtet werden. Das planare Grundgerüst, C–C- und B–C-Bindungen im Bereich von (partiellen) Doppelbindungen, stark entschirmte Protonen des zentralen B2C4H4-Heterocyclus, Grenzorbitale, die denen des Benzols ähneln, sowie negative NICS-Werte stellen 42 als einen 6π-Aromaten dar, der mit seinem energetisch stark destabilisierten HOMO als elektronenreicher Ligand in der Übergangsmetallchemie eingesetzt werden konnte (vide infra). Die Reaktion von B2(CAAC)2 mit Propin bzw. 2-Butin lieferte hingegen 2π-aromatische, paramagnetische Verbindungen mit Schmetterlingsgeometrie aus der [2+2]-Cycloaddition an die Bor–Bor-Bindung und anschließender Umlagerung zu den thermodynamisch stabileren 1,3-Diboreten. Die weitere, thermisch induzierte Umsetzung von 40 und 41 mit Acetylen ermöglichte die Darstellung der Methyl-substituierten 1,4-Diborabenzol-Derivate 43 und 44. Um die Eigenschaften des CAAC-stabilisierten 1,4-Diborabenzols zu analysieren, wurde sowohl die Redoxchemie von 42 als auch dessen potentieller Einsatz als η6-Ligand an Übergangsmetalle der Chromtriade untersucht. Es zeigte sich, dass durch die Reduktion mit Lithium die Darstellung des zweifach reduzierten Diborabenzols 45 möglich war. Die Ausbildung eines quinoiden Systems führte hier zu einem Isomerengemisch aus cis/trans-konfigurierten CAAC-Liganden. Die Umsetzung der isolierten Verbindung mit 0.5 Äquivalenten Zirkoniumtetrachlorid führte quantitativ zur Bildung von 42 und demonstrierte somit das hohe Reduktionspotential der dilithiierten Spezies. Durch die Reaktion von 42 mit [(MeCN)3M(CO)3] (M = Cr, Mo, W) gelang darüber hinaus die Darstellung von 18-Valenzelektronen-Halbsandwichkomplexen. Die Koordination des elektronenreichen Heteroarens an die Metalltricarbonyl-Segmente lieferte die niedrigsten, zu diesem Zeitpunkt je beobachteten Carbonylschwingungen für [(η6-aren)M(CO)3]-Komplexe, die durch den starken, elektronendonierenden Einfluss des Liganden auf das Metall und die daraus resultierende erhebliche Rückbindung in die antibindenden π*-Orbitale der CO-Liganden hervorgerufen werden. DFT-Analysen der Verbindungen zeigten zudem im Vergleich zu [(η6-C6H6)Cr(CO)3] signifikant höhere Bindungsenergien zwischen dem Metallfragment und dem 1,4-Diborabenzol und unterstreichten zusammen mit weiteren spektroskopischen und theoretischen Analysen die bemerkenswerten Eigenschaften von 42 als überaus stark elektronendonierender Ligand. Letztlich gelang in einer Reaktivitätsstudie am Wolframkomplex 48 die Darstellung eines Mono-Radikalanions (49), das vermutlich das erste Beispiel eines monoanionischen Aren-Metalltricarbonyl-Komplexes der Gruppe 6 darstellt. Ein abschließendes, großes Thema dieser Arbeit beschäftigte sich mit der Synthese von Biradikalen aus verdrehten Doppelbindungen und dem Vergleich mit den verwandten, diamagnetischen Diborenen. Die Reaktion des Diborakumulens mit verschieden substituierten Disulfiden und einem Diselenid führte zur Ausbildung von persistenten, paramagnetischen, biradikalischen Spezies durch die 1,2-Addition an die Bor–Bor-Mehrfachbindung. Während die Addition der Substrate an das IDip-stabilisierte Diborin 5 geschlossenschalige, diamagnetische Diborene mit coplanarer Anordnung der Substituenten lieferte, konnte nach der Addition der Substrate an das Diborakumulen 7 stets eine Bor–Bor-Einfachbindung mit orthogonaler Ligandenorientierung festgestellt werden. ESR-spektroskopische und magnetische Messungen der Proben ergaben für 51e einen Triplett-Grundzustand bei Raumtemperatur und durch den captodativen-Effekt der π-Donor Stickstoffatome und der π-Akzeptor Boratome eine erhebliche Delokalisierung der ungepaarten Elektronen in die Liganden. Detaillierte theoretische Studien konnten darüber hinaus zeigen, dass die Singulett-Zustände der synthetisierten Diborene stabiler als die Triplett-Zustände sind und dass die Triplett-Zustände der paramagnetischen Verbindungen 51a,b,e stabiler als die entsprechenden Singulett-Zustände sind. Die Verbindungen liegen stets in ihrem Grundzustand vor und lieferten somit hochinteressante Modellsysteme zum tieferen Verständnis dieser Verbindungsklasse. N2 - Within the scope of this work, various reactivities of the diboracumulene 7 and derivatives thereof were investigated. Induced by the exceptional electronic properties of the applied CAAC ligands, unprecedented and exceptional binding modes of low-valent boron species have been observed. The influence of the strong σ-donor properties and the pronounced π-acidity of the cyclic (alkyl)(amino)carbenes is reflected in comparative reactivity studies with the respective NHC-stabilized boron–boron multiple bonded systems. Initially the synthesis of further diboracumulenes was attempted and realized with a bis(CAACCy)-stabilized B2 unit (12). With comparable 11B NMR shifts and similar bond lengths, the compound does not significantly differ in terms of its electronic properties from B2(CAAC)2 (7), which was used in the reactivity studies due to its superior accessibility. Fundamental studies on the redox properties of B2(CAAC)2 showed the complete oxidative cleavage of the boron–boron bond with chlorine gas while forming a CAAC-stabilized boron trichloride fragment. Research on the bis(boraketene) 17 and the synthesis of the bis(boraketeneimine) 18 through the treatment of the diboracumulene 7 with carbon monoxide and suitable isocyanides represents the first major section of this work. Due to the strong π-backbonding into the CAAC ligands and the CO ligands from the electron rich B2 unit, the B–B bond of 17 is significantly elongated and the π-frameworks are mutually orthogonal. By means of DFT calculations the reaction pathway could be investigated, which shows high energetic barriers for the conversion of 17 to the bis(boralactone), a species that was observed for the NHC-stabilized boron–boron multiple bonds. In this way the electronic and structural differences between diborynes and the diboracumulene 7 could be evaluated under defined reaction conditions for the first time. The reaction of 7 with two equivalents of tert-butyl isocyanide led to the formation of a bis(boraketeneimine). Comparable to the bis(boraketene), 18 shows strong π-backbonding into the isocyanide ligands, which is concomitant with an elongated B–B bond and orthogonally oriented boraketeneimine moieties. Thermolysis of the compound led to the elimination of two tert-butyl radicals and formation of the first structurally characterized dicyanodiborene (20). The dicyanodiborene shows a structural peculiarity: While one CAAC ligand is in conjugation with the π-system of the B2 unit, the second one shows an orthogonal orientation to the π-framework, which presumably results in polarization of the B=B double bond and potentially enables highly interesting reactivity. Thus, the addition of carbon monoxide to 20 led to the splitting of the B–B bond and the insertion of a µ2-bound CO molecule into the B2 unit. The fact that similar reactivity is only known from the CAAC-stabilized dihydrodiborene 22 (vide infra) clearly demonstrates the exceptional properties of CAACs to stabilize highly reactive, low-valent main group compounds. The reactivity of the diboracumulene 7 towards dihydrogen represents another major section of this work. When 7 was stirred under a H2 atmosphere the H2 molecule was added across the B2 unit in a 1,2-addition, leading to the formation of a base-stabilized trans dihydrodiborene. In contrast to the dicyanodiborene, 22 is C2 symmetric and the π-system in the HOMO is delocalized over the whole C–B–B–C framework due to the π-acidity of the CAAC ligands. The hydrogenation was also carried out with pure D2 to rule out hydrogen abstraction from the solvent. DFT calculations also classified the boron-bound hydrogens as hydrides and determined the mechanism of the dihydrogen addition to the B2 unit. With a calculated exothermic reaction pathway, the reaction from 7 to 22 represents the first example of an uncatalyzed hydrogenation of a homodinuclear multiple bond of the second row. In this work the CAAC-stabilized dihydrodiborene 22 showed diverse binding modes when treated with carbon monoxide. Among other outcomes, the propensity to promote 1,2-hydrogen shifts from adjacent BH-moieties to the carbene carbon atom led to the formation of various tautomers. While the product of the formal addition and insertion of two CO molecules was only stable under a CO atmosphere (24), under argon atmosphere two tautomers of 25 with a boron–boron bond and boraketene unit could be isolated. This process was found to be completely reversible. However, heating of 25 led to the formation of an alkylidene borane 26 which also exists in two tautomers. Furthermore, the formation of another species in low yields from the complete splitting of a CO fragment and the formation of an intramolecular C≡C triple bond could be observed. VT-NMR and correlation experiments, crystallizations under different atmospheres, vibrational spectroscopy, as well as determination of the reaction pathway by means of DFT calculations, enabled a deep and detailed insight into the underlying processes. The reaction of the dihydrodiborene 22 with acetylene under thermal conditions did not lead to the expected cycloaddition across the B=B double bond but to the insertion of acetylene into it. The obtained product 28 showed a C2 symmetric structure with sp2-hybridized carbon and boron centers along the major axis. A DFT study showed a conjugated π-system which closely resembles the of 1,3,5-hexatriene. Another reaction of 22 with two equivalents of diphenyl disulfide yielded the splitting of the B=B double bond and the formation of a CAAC-stabilized sp3-hybridized monoborane. In two other reactivity studies the diboracumulene could be selectively reacted with carbon dioxide and acetone. The reaction of B2(CAAC)2 with two CO2 molecules led to the formation of a species with a boraketene functionality and a boronic ester group (30). There are no reported examples of the activation of carbon dioxide with apolar multiple bonds, which is why the reaction pathway was investigated by DFT calculations. The reaction proceeds via an unusual successive [2+1] cycloaddition to the coordinatively unsaturated boron atoms with the whole process being strongly exergonic. The reaction of 7 with acetone led to the formation of a five-membered heterocycle with a C=C double bond and an unsymmetrically bridged boron–boron bond with a µ2 hydride orthogonal to the heterocycle. Interestingly, a comparative study from Tobias Brückner with a SIDep-stabilized diboryne and analogous reactions conditions resulted in the 1,2-enol addition product so that the underlying reaction pathway was also investigated. While the 1,2-enol addition product can be described as an intermediate on the way towards 31, moderate energetic barriers and a noticeably exergonic reaction pathway led to a double acetone activation when using the diboracumulene. 31 also showed a mixture of two isomers that could not be interconverted after formation. The reaction of B2(CAAC)2 with (Me2S)CuCl led to a T-shaped coordination of three CuCl fragments to the B2 unit. If treated with one equivalent IMeMe, the diboracumulene showed the formation of the heteroleptic substituted mono base adduct 34. Due to its thermal lability, after 24 hours at elevated temperature the selective formation of a C–H activation product was observed. The same product (35) could be obtained within minutes after addition of a Lewis acid (gallium trichloride) to 34 at room temperature. The addition of another equivalent of IMeMe to 34 led to the formation of the bis(IMeMe) adduct of the diboracumulene 36, which was reminiscent of the bis(CO) adduct 17 and features a strongly elongated B–B bond due to the steric strain in the system. The reaction of 34 towards carbon monoxide resulted in the formation of the heteroleptic base adduct 37. The electron rich boron atom of the boraketene fragment induces strong π-backdonation into the CO ligand, resulting in the lowest observed CO stretch for such a functionality. A final reactivity test of the monobase adduct 34 was carried out with dihydrogen, which led to the spontaneous hydrogenation of both boron atoms and the splitting of the boron–boron bond. The reaction mixture showed two species in a 1:1 ratio: a CAAC-stabilized BH3 fragment 39 and a twofold base-stabilized BH-borylene 38. The splitting of a boron–boron (multiple) bond to access heteroleptic Lewis-base-stabilized borylenes provides a novel approach towards this class of compounds. A large part of this work concerns with the synthesis and reactivity of diborabenzene derivatives. When treating the diboracumulene 7 with acetylene, the formation of a CAAC-stabilized 1,4-diborabenzene could be observed. The planar framework, C–C and B–C bonds within the area of (partial) double bonds, strongly deshielded protons of the central B2C4H4 heterocycle, frontier orbitals that resemble those of benzene as well as negative NICS values represent 42 as a 6π-aromatic system. Due to its tremendously energetically destabilized HOMO, the compound was capable to be used as an electron rich ligand in transition metal chemistry (vide infra). The reactions of B2(CAAC)2 with propyne and 2-butyne led to the formation of 2π-aromatic, paramagnetic compounds with a butterfly shape from the [2+2] cycloaddition to the boron–boron-bond followed by a rearrangement to the thermodynamically more stable 1,3-diboretes. The thermally induced reaction of 40 and 41 with acetylene enabled the formation of the methyl-substituted 1,4-diborabenzene derivatives 43 and 44. To evaluate the properties of the CAAC-stabilized 1,4-diborabenzene 42, the redox properties as well as the potential application as a η6-ligand for transition metals of the chromium triad, were investigated. The reduction of 42 with elemental lithium led to the formation of the two-electron reduction product 45. The formation of a quinoidal system led to an isomeric mixture of cis/trans configured CAAC ligands. Treatment of the compound with 0.5 equivalents of zirconium tetrachloride led to the quantitative formation of 42 and thereby demonstrating the high reduction potential of the dilithiated species. Furthermore, the reaction of 42 with [(MeCN)3M(CO)3] (M = Cr, Mo, W) enabled the synthesis of 18-valence-electron half-sandwich complexes. The coordination of the electron rich heteroarene to the metal tricarbonyl fragments resulted in the lowest ever observed carbonyl stretches for [(η6-arene)M(CO)3] complexes due to the strong electron donation of the ligand to the metal and the resulting backdonation into the antibonding π*-orbitals of the CO ligands. DFT calculations revealed (in contrast to [(η6-C6H6)Cr(CO)3]) significantly higher binding energies between the metal fragment and the 1,4-diborabenzene and together with further spectroscopic and theoretical analyses underline the remarkable ability of 42 to act as an exceedingly electron donating ligand. Ultimately in a reactivity study with the tungsten complex 48, it was possible to obtain the radical monoanion 49, which is the first example of a monoanionic arene metal tricarbonyl complex of group 6 metals. A final topic of this work concerned the synthesis of biradicals from twisted double bonds and the comparison with their diamagnetic congeners, diborenes. The reaction of the diboracumulene with differently substituted disulfides and one diselenide led to the formation of persistent, paramagnetic biradicals through 1,2 additions across the boron–boron multiple bond. While the addition of the reagents to the IDip-stabilized diboryne provided closed-shell, diamagnetic diborenes with a coplanar orientation of the substituents, the addition to the diboracumulene 7 led to the formation of a boron–boron single bond with mutually orthogonal ligands. EPR spectroscopy as well as magnetic measurements of the samples showed a triplet ground state for 51e at room temperature with a strong delocalization of the unpaired electrons into the ligands due to the captodative effect of the π-donor nitrogen atoms and π-acceptor boron atoms. Furthermore, detailed theoretical studies showed that the singlet states of the synthesized diborenes are always more stable than the triplet states and that the triplet states of the paramagnetic compounds 51a,b,e are always more stable than the respective singlet states. All compounds exist in their ground states and therefore represent highly interesting model systems for a deeper understanding of this class of compounds. KW - Bor KW - Mehrfachbindung KW - Reaktivität KW - CAAC KW - Diborakumulen KW - Diborin KW - Diboren KW - Carben Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163335 ER - TY - THES A1 - Damme, Alexander T1 - Reaktivität von Diboranen(4) gegenüber metallischen und nicht-metallischen Lewis-Basen T1 - Reactivity of Diboranes(4) towards metal and non-metal Lewis-Bases N2 - Die Reaktivität von Diboranen(4) (1,2-Dihalogendiboranen(4)) gegenüber von metallischen und nicht-metallischen Lewis-Basen wurde untersucht. Die Ergebnisse zeigen, dass die oxidative Addition einer Bor-Halogen-Bindung an ein Platin(0)-Komplex selektiv verläuft und in trans-Diboran(4)yl-Bisphosphan-Platin-Komplexen resultiert. Bei Verwendung von 1,2-Dihalogen-1,2-diaryldiboranen(4) findet sich in den korrespondierenden trans-Diboran(4)yl-Platin-Komplexen eine dative Bindung des Platin-Zentralatoms zum entfernten zweiten Bor-Atom, welche sowohl in Lösung als auch im Festkörper beobachtet wird. Die erhaltenen trans-Diboran(4)yl-Komplexe wurden auf ihre Reaktivität untersucht, hierbei konnte erstmals durch Reduktion ein Diboren-Platin-Komplex synthetisiert werden. Die Untersuchung der Reaktivität von nicht-metallischen Lewis-Basen ergab eine Reihe von sp2-sp3-Diboranen an die entweder PEt3 oder PMeCy2 koordiniert ist. In Abhängigkeit des sterischen Anspruches finden sich zwei Isomere mit 1,2- und 1,1'-Anordnung der Halogene. Die 1,2-Isomere zeigen hierbei im Festkörper eine Bor-Halogen-Bor-Brücke mit einer dativen Halogen-Bor-Bindung zwischen dem Halogen und dem sp2-Borzentrum. N2 - The reactivity of diboranes(4) (1,2-dihalodiboranes(4)) towards metal and non-metal Lewis-Bases was examined. The results have shown that the oxidative addition of the boron-halide bond to a platinum center results exclusively in the corresponding trans-diboran(4)yl-bisphosphane-platinum complexes. Using 1,2-dihalo-1,2-diaryldiboranes(4) for the oxidative addition to platinum(0) reveals the corresponding trans-diboran(4)yl platinum complexes with a dative platinum boron bond to the remoted boron atom of the diboran(4)yl ligand. This structural motive can be found in solution as well as in the solid state. The reactivity of the obtained trans-diboran(4)yl-platinum complexes were investigated. Here a diborene-platinum complex was synthesized for the first time by reduction chemistry. The investigation of the reactivity of diboranes(4) toward non-metal Lewis-Bases, such as PEt3 or PMeCy2, lead to sequence of sp2–sp3 phosphine adducts of diboranes. Depending on the steric demand of the used phosphanes two isomers were identified and characterized. The isomers distinguish between the 1,2- and 1,1’-substitutions pattern of the halides, which are formed by a 1,2-rearrengment, which is favoured for the bulky PMeCy2. In the solid state the 1,2-isomers are showing a boron-halide-boron bridge and a rare dative boron-halide bonding interaction to the sp2 boron center. KW - Diborane KW - Übergangsmetallkomplexe KW - Lewis-Base KW - Diboran(4) KW - Diboren KW - Diboran(4)yl-Platin-Komplex KW - Übergangsmetallkomplexe KW - sp2-sp3 Diborane KW - Bor KW - Platin KW - Anorganische Chemie KW - Übergangsmetall KW - diborane(4) KW - diboren KW - diboran(4)yl platinum complex KW - transition metal complex KW - sp2-sp3 diboranes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77750 ER - TY - THES A1 - Ullrich, Stefan T1 - Synthese und Reaktivität NHC-stabilisierter Diborene T1 - Synthesis and reactivity of NHC-stabilized diborenes N2 - In der vorliegenden Arbeit wurde der Fokus auf die Synthese neuer Diborene mit unterschiedlichem Substitutionsmuster gerichtet. Ein Ziel bestand darin, die Gruppe der heteroaromatisch substituierten Diborene, die sich bisher aus den literaturbekannten Thienyl-substituierten Diborenen 59 und 60 zusammensetzt, um weitere Vertreter zu bereichern. In diesem Kontext konnte das Furanyl-substituierte Diboren 85 synthetisiert und charakterisiert werden (Schema 59). Die Festkörperstruktur von 85 zeigt eine koplanare Anordnung zwischen der B=B-Doppelbindung und den Furanylsubstituenten, was als Hinweis auf eine Konjugation zwischen der B=B-Doppelbindung und den Heteroaromaten gewertet werden kann und damit Parallelen zu den Thienyl-substituierten Diborenen 59 und 60 erkennen lässt. Analog dazu weist 85 drei Banden im UV-Vis-Absorptionsspektrum auf, die anhand von quantenchemischen Rechnungen den entsprechenden elektronischen Anregungen zugeordnet werden können. Demzufolge sind die HOMOs ausschließlich an der B=B-Doppelbindung und die LUMOs an den Furanylringen, sowie den NHCs lokalisiert. Cyclovoltammetrische Messungen legen zudem den Elektronenreichtum des Furanyl-substituierten Diborens 85 offen und sprechen für dessen Eignung als starkes, neutrales nichtmetallisches Oxidationsmittel. Darüber hinaus zeigen sie eine teilweise reversible Oxidation zu dem entsprechenden Monoradikalkation auf. Zur Realisierung weiterer heteroaromatisch substituierter Diborene wurden Versuche unternommen die Pyrrolylgruppe als Substituent zu etablieren, die noch elektronenreicher verglichen zu Furanyl- und Thienylgruppen ist. Die erfolgreiche Darstellung des NHC-stabilisierten Diborens 88 konnte mittels NMR-Spektroskopie verifiziert werden, jedoch gelang die weitere Charakterisierung aufgrund der extremen Empfindlichkeit von 88 nicht (Schema 59). Der Einsatz von vergleichsweise großen NHCs wie IMes zur kinetischen Stabilisierung der B=B-Doppelbindung eines Pyrrolyl-substituierten Diborens war nicht erfolgreich. Schema 59: Synthese der NHC-stabilisierten heteroaromatisch substituierten Diborene (85, 88) durch Reduktion der korrespondierenden NHC-Boran-Addukte (84, 87). In unmittelbarer Fortführung der aussichtsreichen Arbeiten von Dr. Philipp Bissinger wurde an geeigneten Syntheserouten zu den NHC-stabilisierten Diborenen 95 und 99 mit derivatisierten Thiophensubstituenten gearbeitet. Ausgehend von den BMes2- und B(FMes)2-funktionalisierten Thiophensubstituenten konnten über mehrere Reaktionssequenzen die korrespondierenden NHC-Boran-Addukte synthetisiert und charakterisiert werden. Die Reduktion dieser NHC-Boran-Addukte erzeugt intensiv gefärbte Lösungen, deren 11B-NMR-spektroskopische Untersuchungen Hinweise auf die Generierung der Diborene 95 und 99 lieferten (Schema 60). Darüber hinaus wird die erfolgreiche Darstellung des Diborens 95 durch Röntgenstrukturanalyse an Einkristallen gestützt. Schema 60: Synthese der Diborene 95 und 99 mit derivatisierten Thiophensubstituenten. Die Isolierung größerer Mengen der Diborene 95 und 99 in analytisch reiner Form gelang jedoch bislang nicht. UV-Vis Absorptionsspektroskopie, Cyclovoltammetrie und TD-DFT-Rechnungen offenbaren die drastische Einflussnahme der BMes2- bzw. der B(FMes)2-Gruppe auf die Eigenschaften der resultierenden Diborene 95 und 99. Vor allem die elektronenziehende B(FMes)2-Gruppe senkt die Grenzorbitale energetisch erheblich ab und verringert das HOMO-LUMO-gap signifikant. Die Hauptabsorptionsbande im UV-Vis-Absorptionsspektrum findet sich im nahinfraroten Bereich (NIR) und ist damit gegenüber jener des Thienyl-substituierten Diborens 59 stark bathochrom verschoben. Ziel anknüpfender Arbeiten der Gruppe um Braunschweig ist die Optimierung der Synthese der Diborene 95 und 99, sowie die weitere Charakterisierung der physikalischen Eigenschaften und die Erforschung der Reaktivitäten. Ein weiteres Ziel dieser Arbeit war die Synthese von Vinyl-substituierten Diborenen. Das NHC-Boran-Addukt 102 konnte, ausgehend von 1,1-Diphenylethen, erfolgreich dargestellt werden. Die Reduktion mit KC8 erzeugte eine intensiv gefärbte Reaktionslösung, deren 11B-NMR-spektroskopische Untersuchung eine gegenüber bekannten Diborenen leicht tieffeldverschobene Resonanz im 11B-NMR-Spektrum zeigt. Die Isolierung und zweifelsfreie Identifizierung des Reaktionsprodukts gelang aufgrund der hohen Empfindlichkeit bislang nicht. Weitere Versuche ein Diboren mit vinylogem Substitutionsmuster zu synthetisieren, in dem die alpha-Position des Vinyl-Substituenten durch eine Phenylgruppe besetzt ist, waren nicht zielführend (Schema 61). Anknüpfend an die Arbeiten von Thomas Steffenhagen, dem die Darstellung des ersten [2]Diboraferrocenophans mit Diborenbrücke 109 und dessen Identifizierung mittels NMR-Spektroskopie gelang, wurden Versuche unternommen, 109 zu kristallisieren. Dabei konnten geeignete Einkristalle zur röntgenstrukturanalytischen Charakterisierung erhalten werden und das Strukturmotiv im Festkörper bestätigt werden (Schema 62). Zentraler Gegenstand dieser Arbeit war neben der Synthese und Charakterisierung von neuen Diborenen die Untersuchung der Chemie der reaktiven B=B-Doppelbindung. Dazu wurden unter anderem Reaktivitätsstudien mit Münzmetallkomplexen durchgeführt, um die Koordinationschemie der heteroaromatisch substituierten Diborene 59 und 85, sowie des Diboren-verbrückten [2]Diboraferrocenophans 109 zu erforschen. Die Umsetzungen von 59, 85 und 109 mit CuCl führten zu den entsprechenden Münzmetall π-Diboren-Komplexen 111-113 (Schema 63). Röntgenstrukturanalytische Untersuchungen zeigen die T-förmige Geometrie der Komplexe, die aus der side-on Koordination des jeweiligen Diborens an das Metallzentrum resultiert. Das erhaltene Strukturmotiv entspricht damit dem der literaturbekannten Münzmetall-π-Diboren-Komplexe 71 und 72. Aufgrund der hohen Empfindlichkeit konnten allerdings weder die Ausbeute bestimmt noch eine detaillierte NMR-spektroskopische Charakterisierung durchgeführt werden. Das photophysikalische Potential dieser Verbindungsklasse wird dennoch in qualitativen Tests durch Bestrahlung mit UV-Licht erkennbar. Die Koordination von Kupferalkinen an die B=B-Doppelbindung der Verbindungen 59, 85 und 109 verläuft demgegenüber selektiv (Schema 63). Die ebenfalls T-förmigen Komplexe (114-116) erweisen sich als deutlich stabiler als die CuCl-Analoga und konnten demzufolge in analysenreiner Form isoliert werden. Allerdings zeigen diese in qualitativen Tests kein Lumineszenzverhalten. Eine genauere Analyse dieser Befunde erfolgte bislang nicht, ist aber aktueller Bestandteil der Forschung der Arbeitsgruppe um Braunschweig. Da die heteroaromatisch substituierten Diborene wegen ihres energetisch hoch liegenden HOMO bereitwillig zur Abgabe von Elektronen tendieren, wie in cyclovoltammetrischen Messungen gezeigt werden konnte, wurde deren potentielle Verwendung als Reduktionsmittel untersucht. Die Diborene 59, 60, 85 und 88 wurden dazu mit dem milden Oxidationsmittel (C7H7)BArf4 oxidiert und die Monoradikalkationen 117-120 mittels EPR-Spektroskopie nachgewiesen (Schema 64). Aufgrund der hohen Empfindlichkeit der Radikale (117-120) konnte keine weitere Charakterisierung erfolgen. Durch Oxidation des Diborens 85 mit Iod konnte Verbindung 121 erhalten werden (Schema 65). Die Festkörperstruktur zeigt einen dreigliedrigen Heterocyclus, bestehend aus einem positiv polarisierten Iodatom, das eine B2-Einheit verbrückt und damit die gleichwertige Beschreibung als Iodoniumion in Analogie zu den gleichnamigen Intermediaten, die bei der Addition von Halogenen an Alkene entstehen, rechtfertigt. Die Hydroborierungsreaktion ist eine bekannte Additionsreaktion von H-B-Bindungen an C=C-Doppelbindungen und konnte in dieser Arbeit erfolgreich auf die alkenanalogen Diborene übertragen werden. Die Reaktion des heteroaromatisch substituierten Diborens 85 mit Catecholboran ergibt das Triboran 122, das strukturell den klassischen Hydroborierungsprodukten von Alkenen gleicht. In Analogie dazu wird von einer syn-Addition der H-B-Bindung an die B=B-Doppelbindung des Diborens ausgegangen. Wird hingegen das Hydroborierungsreagenz Durylboran eingesetzt, so findet eine nicht-klassische Addition der H-B-Fragmente an die B=B-Doppelbindung statt. Der genaue Mechanismus, der zur Bildung des Triborans 124 führt, ist bisher nicht aufgeklärt (Schema 66). Wird das [2]Diboraferrocenophan 109, das ein cyclisches, cis-konfiguriertes Diboren als Brücke beinhaltet, mit Catecholboran bzw. Durylboran umgesetzt, so werden ebenfalls Triborane (123 und 125) generiert, die sich jedoch von den Triboranen 122 und 124 in ihrer Struktur grundlegend unterscheiden (Schema 67). Ein Erklärungsansatz hierfür könnte in der hohen Ringspannung im cyclischen Diboren-verbrückten [2]Diboraferrocenophan 109 verglichen mit dem acyclischen heteroaromatisch substituierten Diboren 85 liegen. Ein Schritt zur Bildung des Triborans 123 aus der Umsetzung von 109 mit Catecholboran findet offenbar, wie die Festkörperstruktur von 123 nahe legt, durch eine Ringerweiterung des Fünfringes des Catecholborans zu einem Sechsring durch Insertion eines Boratoms der Diborenbrücke statt. Um genauere Aussagen zur Bildung von 123 wie auch 125 treffen zu können, sind quantenchemische Studien zu diesem Thema aktuelles Arbeitsgebiet der Arbeitsgruppe um Braunschweig. Die Reaktivität der elektronenreichen B=B-Doppelbindung der heteroaromatisch substituierten Diborene wurde in der vorliegenden Arbeit gegenüber der Substanzklasse der Chalkogene überprüft. Dabei stellte sich heraus, dass die Reaktionen der Diborene 60 und 85 mit elementarem Schwefel durch reduktive Insertion von Schwefel in die B=B-Doppelbindung zur Bildung von Produktgemischen aus Trithiadiborolanen und Diborathiiranen führen. Es zeigte sich, dass die gezielte Darstellung der Trithiadiborolane 126 und 127 durch Einwirkung von Ultraschall gelingt, wohingegen das Thiadiborolan 128 selektiv durch Reaktion des Diborens 85 mit Ethylensulfid oder einem Überschuss an Triphenylphosphansulfid zugänglich gemacht werden kann (Schema 68). Die Reaktion der Diborene 60 und 85 mit elementarem Selen bzw. elementarem Tellur ergibt die entsprechenden Diboraselenirane (129 und 130) bzw. Diboratellurirane (131 und 132), die durch reduktive Insertion des entsprechenden Chalkogens in die B=B-Doppelbindung entstehen (Schema 69). Eine vollständige Spaltung der B=B-Bindung durch Insertion weiterer Äquivalente Selen bzw. Tellur ist auch unter Behandlung mit Ultraschall nicht zu beobachten. Das Furanyl-substituierte Diboren 85 konnte zudem mit chalkogenhaltigen Verbindungen erfolgreich umgesetzt werden. 85 reagiert mit Diphenyldisulfid und Diphenyldiselenid selektiv durch Addition der E-E-Bindung an die B=B Doppelbindung (Schema 70). Die diaseteroselektiven, analysenreinen 1,2-Additionsprodukte (133, 137) lassen auf einen Mechanismus, der in Analogie zu den Additionen von Disulfiden bzw. Diseleniden an Alkene über die Zwischenstufe entsprechender Sulfonium- bzw. Seleniumionen verläuft, folgern. Alternativ dazu muss eine konzertierte syn-Addition der E-E-Bindung in Erwägung gezogen werden. Demgegenüber konnten aus den Umsetzungen des Thienyl-substituierten Diborens 60 mit Diphenyldisulfid, Diphenyldiselenid und isoPropylthiol keine analysenreinen Produkte isoliert werden. Das Diboren-verbrückte [2]Diboraferrocenophan 109 reagiert mit Diphenyldisulfid in einer 1,2-Addition der S-S-Bindung an die B=B-Doppelbindung, wobei ein sp2-sp3-Diboran durch Abspaltung eines NHCs gebildet wird. Die verkürzte Fe-Bsp2-Bindungslänge lässt auf eine Stabilisierung des sp2-Boratoms durch das Fe-Zentrum schließen. In einer vergleichbaren Reaktion mit Dimethyldisulfid konnte das identische Strukturmotiv, ein sp2-sp3-Diboran, erhalten werden (Schema 71). Die Reaktion des [2]Diboraferrocenophans 109 mit Diphenyldiselenid führt zur vollständigen Spaltung der B=B-Doppelbindung unter Addition zweier Se-Se-Bindungen von zwei Äquivalenten Diphenyldiselenid und der damit einhergehenden Bildung der acyclischen bisborylierten Ferrocenspezies 139 (Schema 72). Die Bildung des einfachen Additionsprodukts, was wahrscheinlich intermediär auftritt, wurde auch bei Umsetzung mit nur einem Äquivalent Diphenyldiselenid nicht beobachtet. Die Umsetzung des Furanyl-substituierten Diborens 85 mit isoPropylthiol verläuft unter Addition der H-S-Bindung an die B=B-Doppelbindung, wobei in allen Fällen das syn-Additionsprodukt 142 erhalten wurde (Schema 72). Die von Thomas Steffenhagen beschriebene Addition der H-S-Bindung von isoPropylthiol an die B=B-Doppelbindung des [2]Diboraferrocenophans 109 ergibt dagegen selektiv ein anti-Additionsprodukt. In einer vergleichbaren Reaktion des [2]Diboraferrocenophans 109 mit tert-Butylthiol wurden anhand von NMR-Spektroskopie Indizien für die Bildung eines 1,2-Additionsproduktes erhalten. Allerdings gelang die Isolierung eines analysenreinen Produktes bislang nicht. N2 - Initially the focus of this work was the synthesis and characterization of novel diborenes bearing a variety of boron substituents. Of particular interest was the introduction of new heterocyclic functionalized diborenes synthesized in a manner akin to two literature-known thienyl functionalized diborenes (59 and 60). Through these studies, the synthesis and charaterization of the furanyl-functionalized diborene 85 has been achieved (scheme 1). The solid-state structure of 85 displays coplanarity between the respective B2 unit and the furanyl rings, indicating some degree of pi-conjugation between the heterocyclic substituents and the central B2 unit. This structural feature closely parallels the thienyl-functionalized diborenes, which also exhibit coplanarity between the central B2 unit and the peripheral heterocycles as well. Similar to 59 and 60, the furanyl-functionalized diborene 85 reveals three absorption bands in the UV-vis spectrum. According to TD-DFT calculations the excitations can be assigned to transitions between the frontier orbitals. The HOMOs are exclusively located at the central B=B double bond, whereas the LUMOs are predominantly delocalized over the furanyl substituents and the NHCs. Cyclovoltammetry measurements prove that the diborene 85 is extraordinarily electron rich, which is in accordance with previous data taken from the characterization of the thienyl-substituted diborenes (59, 60). Therefore the heterocyclic-functionalized diborenes can be considered strong electron donors. Respectively, these species rank among the class of strong, neutral non-metallic reducing agents. Moreover the partial reversible reduction wave suggests the formation of a stable monoradical cation, which was also observed in similar cyclovoltametry measurements of the related diborenes 59 and 60. A synthetic approach to establish a pyrrolyl-functionalized diborene was also investigated. The successful synthesis of the IMe-stabilized diborene 88 was verified by NMR spectroscopy (scheme 1). Further charaterization of 88 failed because of the instability of the compound in both the solid state and in solution. The application of a more sterically demanding NHC (IMes) led only to the respective NHC-borane adduct 89, which could not be reductively coupled to the desired diborene. In a continuation of the promising work of Dr. Philipp Bissinger, the search for a reliable synthesis route to the heterocyclic-substituted diborenes 95 and 99 was examined (scheme 2). These species consisted of thiophene-derived heterocyclics substituted with BMes2 and B(FMes)2 groups, respectively. Starting from the BMes2- and B(FMes)2-functionalized thiophene precursors, the synthesis of the respective NHC-borane adducts was first accomplished over several reaction steps. The reduction of these adducts produced intensely colored solutions of the respective diborenes 95 and 99 as confirmed by 11B NMR spectroscopic investigations. The diborene 95 was structurally confirmed by X-ray diffraction studies of suitable crystals, however, isolation of the pure compounds (95, 99) in larger amounts for detailed NMR spectroscopic studies could not be achieved. Investigations via UV-vis spectroscopy, cyclovoltammetry and TD-DFT-calculations revealed the significant influence of the BMes2 and the B(FMes)2 groups on the chemical and photophysical properties of both diborenes 95 and 99. The strong electron withdrawing B(FMes)2 group was found to lower the energy of the LUMO, subsequently decreasing the HOMO-LUMO energetic gap dramatically. The main absorption band in the UV-vis spectrum of 99 is detected in the near infrared (NIR) range, bathochromically shifted in comparison to the parent thienyl-substituted diborene 59. A following prospective study in the Braunschweig group could be the optimization of the synthesis of these diborenes, accompanied by the characterization and exploration of their reactivity patterns. Another part of this thesis dealt with the synthesis of diborenes bearing vinyl-group functionalized boron precursors. Based on the 1,1-diphenylethene starting material, the corresponding NHC-borane adduct was generated through several sequential reactions. Reduction with KC8 afforded an intensely colored reaction mixture that upon filtration had a 11B NMR resonance slightly downfield shifted with respect to the literature-known diborenes. However, isolation of the product and its identification were unsuccessful. Further attempts to prepare a diborene bearing a vinyl substituent with a phenyl group in the alpha-position were attempted but were ultimately unrewarding (scheme 3). Extending the work of Thomas Steffenhagen on the synthesis of the first diborene-bridged [2]diboraferrocenophane 109, experiments aimed at crystallizing 109 were successfully performed. Single crystal X-ray diffraction experiments confirmed the highly strained structure [2]diboraferrocenophane 109 bearing a cis-configured bridging diborene (scheme 4). Besides the synthesis and characterization of new diborenes, exploration of the chemistry of the reactive B=B double bond was also a major interest in this thesis. Therefore diborene reactivity studies with coinage metal complexes were carried out in order to evaluate the ability of the heterocyclic-substituted species 59, 85 and the diborene-bridged [2]diboraferrocenophane (109) to interact with these metal species. The reactions of 59, 85 and 109 with CuCl led to the formation of the corresponding copper complexes 111-113 (scheme 5). Single X-ray crystallographic analysis of 111 and 112 revealed a T-shaped geometry for these complexes. This geometry results through side-on coordination of the diborene to the metal center. The structural motif is equivalent to those of literature known diborene CuCl pi-complexes. Due to their instability, further characterization of the complexes 111-113 could not be achieved. In addition, the potential of the diborene CuCl pi-complexes was realized qualitatively via irradiation with UV light, indicating strong luminescence. The coordination of copper alkyne complexes at the B=B double bond of 59, 85 and 109 proceeded selectively and resulted in the formation of T-shaped complexes 114-116, which are structurally similar to the CuCl complexes 111 and 112 (scheme 5). Remarkably, 114 and 116 display enhanced stability compared with the CuCl complexes 111 and 112 and could be characterized via NMR spectroscopy. However contrary to the CuCl complexes, the diborene Cu alkynyl  complexes 114-116 showed no signs of luminescence while under UV irradiation. A concurrent detailled study of these findings is underway in the Braunschweig group. Owing to their energetically high-lying HOMOs, diborenes can easily be oxidized as shown in CV measurements. Therefore their application as reducing agent was explored in this thesis. The diborenes were utilized in redox reactions with (C7H7)BArf4 to yield the monoradical cations 117-120 (scheme 6). These species could be subsequently be verified by EPR spectroscopic measurements. Due to the instability of the radical species 117-120, further characterization could not be accomplished. Upon oxidation with elemental iodine (I2), the diborene 85 could be succcessfully converted to the dicationic species 121. This species can be considered an iodonium ion analogous to the compounds generated in reactions of alkenes with iodine (scheme 7). The solid state structure shows a three-membered heterocyclic ring in which the positively charged iodine atom symmetrically bridges the two boron atoms. The diborene species were tested for hydroboration reactivity in a manner analogous to the well-known hydroboration reaction between borane B-H bonds and C=C double bonds. This work utilized the B=B double bonds of diborenes to serve as alkene mimics. The reaction of the furanyl-substituted diborene 85 with catecholborane afforded the triborane 122. This product is presumably formed via syn-addition of the borane B-H bond to the diborene B=B double bond. Treatment of the same diborene 85 with durylborane led to the formation of a non-classical species in contrast to known alkene hydroboration reactivity. As can be seen in Scheme 8, the species formed seemingly arises upon cleavage of a B-Cfuryl bond (scheme 8). The detailled mechanism for this reaction has thus far not been elucidated. In reactions of 109 with catecholborane or durylborane, the triboranes 123 and 125 were generated, respectively (scheme 9). The structural motifs of both species show the ring expansion of the diboraferrocenophane that likely occurs through the insertion of the BDur and BCat fragments into the diborene B=B double bond. Additionally, in the case of the reaction with catecholborane, one boron atom must insert into the B-O bond to yield compound 123. The reaction patterns between the heterocycle-substitued diborene 85 and the [2]diboraferocenophane 109 towards hydroboration reagents have been shown to differ dramatically. One reason for this divergent reactivity could be the tendency of the diborene-bridged [2]diboraferrocenophane 109 to alleviate some of its ring strain. To gain further knowledge into this reactivity, theoretical studies are currently underway in the Braunschweig group. The electron rich B=B double bond of diborenes was further exploited in reactivity studies with elemental chalcogen reagents as well as chalcogen-containing reagents. The reaction products of the heterocycle-substituted diborenes 60 and 85 with elemental sulfur proved to be dependent upon the reaction conditions. Reactions performed at room temperature were observed to generate a mixture of diborathiiranes and trithiadiborolanes, whereas the selective formation of the trithiadiborolanes (126, 127) has been accomplished by ultrasonification of the reaction mixture. The trithiadiborolanes 126 and 127 are formed by the reductive insertion of three sulfur atoms into the B=B double bond while the partial insertion of one sulfur atom affords the diborathiirane 128. Further reactivity studies were conducted with triphenylphosphine sulfide and ethylene sulfide reagents in order to probe the application of sulfur-atom-donor compounds. These test reactions yielded successful transfer of the sulfur atom to the B=B double bonds of the diborene 85 (scheme 10). The reactions of diborenes 60 and 85 with elemental selenium or tellurium exclusively afforded the heterocyclic three-membered diboraseleniranes 129 and 130 and diboratelluriranes 131 and 132, respectively (scheme 11). The formation of similar five-membered heterocyclic compounds relative to the trithiadiborolanes was not observed under ultrasonification of the reaction mixtures. Besides the reactions with elemental chalcogens, the heterocyclic-substituted diborene 85 was succesfully reacted with diorganyldichalcogens (diphenyl disulfide and diphenyl diselenide), whereby 1,2-addition of the E-E single bond of the dichalcogens to the B=B double bond was observed (scheme 12). In contrast, the reaction of the thienyl-substituted diborene with diphenyl diselenide led to the formation of the desired compound 138, however isolation of the pure product was not successful. The structural motifs of 133 and 137 are indicative of either a syn-addition mechanism or a thiol-ene Michael-addition-type mechanism. A radical mechanism can be ruled out, since only one stereoisomer was generated through these studies. In order to validate these proposed mechanisms, ongoing theoretical studies are being performed by the Braunschweig group. The reaction of diborene-bridged [2]diboraferrocenophane 109 with diphenyl disulfide resulted in the formation of a sp2-sp3 diborane through cleavage of one B-CNHC bond. The short Fe-Bsp2 distance indicates some interaction between the Fe core and the Bsp2 atom. In a similar reaction the [2]diboraferrocenophane 109 formed an identical sp2-sp3 diborane when reacted with dimethyl disulfide (scheme 13). The B=B double bond of [2]diboraferrocenophane 109 was completely cleaved upon addition of two equivalents of diphenyl diselenide, yielding compound 139 (scheme 14). The simple 1,2-addition product of one Se-Se bond to the B=B double bond could not be detected or isolated as an intermediate, even if only one equivalent of diphenyl dislenide was applied. The reactions of the heterocycle-substituted diborenes 85 and 60 with isopropyl mercaptan result in addition of one H-S bond to the B=B double bonds to yield the syn-addition products 142 and 143 (scheme 14). In constrast, the anti-addition product 110 of the reaction of [2]diboraferrocenophane 109 with isopropyl mercaptan has been recently isolated by Thomas Steffenhagen. The reaction of 109 with a tert-butyl-mercaptan was also attempted. NMR spectroscopic investigations indicated the successful formation of the 1,2-addition product. Since attempts to crystallize 144 did not succeed, the structure of 144 could not be confirmed. KW - Mehrfachbindung KW - Bor KW - Ferrocenophane KW - Diboren KW - NHC KW - Heterocyclische Carbene <-N> Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140485 ER - TY - THES A1 - Englert, Lukas T1 - Synthese und Reaktivität Phosphan-stabilisierter Diborene T1 - Synthesis and Reactivity of Phosphine-stabilised Diborenes N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweizähnigen (84a–87c) und einzähnigen Phosphanen (43a–c; 88a–89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen Fällen gelang es mithilfe der Molekülstrukturen im Festkörper die Verbindungen näher zu untersuchen. Dabei konnten erstmalig Phosphan-verbrückte Diboran(6)-Verbindungen 86a–87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zurückzuführen ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise für die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur für 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-Übergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend für eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der räumliche Anspruch der Phosphane einen entscheidenden Stabilitätsfaktor für das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a–98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbrückten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen für diese Verbindungsklasse typische NMR-spektroskopische und röntgenkristallographische Messdaten. Zusätzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden näher analysiert. Das Hauptaugenmerk der durchgeführten Forschungsarbeiten lag auf der Untersuchung der Reaktivität des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels für ein strukturell aufgeklärtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollständige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festkörper und quantenchemisch näher untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizität. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). Während für die Umsetzungen mit diversen Silanen nur über die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufklärung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallröntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112–113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zusätzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H–1H-NOESY-NMR-Experimenten bestätigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivitätsverhalten gegenüber kleinen Molekülen. Nach dem Austausch der Schutzgasatmosphäre gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. Gänzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molekülen und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festkörperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da für alle drei Strukturvorschläge experimentelle Hinweise gefunden werden können. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erhöhtem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen führten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. Für beide Reaktivitäten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schlüsselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich für eine Vielzahl an Reaktivitäten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen ungesättigten Substraten. Die Reaktivität gegenüber Aziden konnte hierbei nicht vollständig aufgeklärt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a–c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abhängig war. Das Azadiboretidin 123a konnte im Festkörper näher untersucht werden und stellt ein seltenes Beispiel für einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollständig aufgeklärtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-Rückgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen für 124a ähnliche Bindungsparameter wie für ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen führte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a–d. In Lösung konnten für 126c/d zusätzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10% NMR-spektroskopisch beobachtet werden. Im Festkörper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen bestätigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabständen innerhalb der BCsp2B-Einheiten von 126a–c und 127d unterstützt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten lässt. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festkörper gibt einen Hinweis auf eine anfängliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die über eine 1,3-Umlagerung zur Bildung der 1,3-Diborete führt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4‐Diethinylbenzol die Darstellung der Mono‐ und Bis(1,3‐dihydro‐1,3‐diborete) 128 und 129, wobei 129 nur im Festkörper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5‐Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3−n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen für das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen über den zentralen Benzolring voraus, was die Ursache für die beobachtete Fluoreszenz sein könnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a–e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem räumlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen Löslichkeit in gängigen Lösungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abhängig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilität der Diborane(4) 132b/c gegenüber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gewählten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivität wurde jedoch im Rahmen dieser Arbeit nicht durchgeführt. Die Schlüsselschritte des Reaktionsmechanismus zur Bildung von 133 führen höchstwahrscheinlich wieder über das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse über die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane eröffnen diesen Diborenen eine einzigartige Reaktivität, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft könnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. Wünschenswert wäre es die Diboren-Monomere miteinander zu Ketten zu verknüpfen. N2 - The present work deals with the synthesis and reactivity of phosphine-stabilised diborenes. The first section describes the preparation of tetrabromodiborane(4) adducts with bidentate (84a–87c) and monodentate phosphines (43a–c; 88a–89b). These were obtained from B2Br4(SMe2)2 (83) in a substitution reaction in very good yields. In almost all cases, it was possible to investigate the compounds more closely based on their solid-state molecular structures. For the first time, the structures of phosphine-bridged di¬bo¬rane(6) compounds 86a–87a were determined. A special feature in this context is the PBBP torsion angle α, which indicates the angular deflection between the phosphine ligands. Contrary to expectations, the angle α decreases with increasing steric demand, which is probably due to attractive dispersion interactions between the organic residues. The adducts 84a/b, 135a/c, 87a, 88a/c/d and 136a were experimentally investigated for their redox behaviour. Although diborene-type NMR signals were observed in some reduction experiments, most of the products are so unstable that no further evidence for the successful preparation of the respective diborenes was obtained. Therefore, only 88c was successfully reduced to the diborene 93c. However, the isolation of 93c was not successful, thus it was instead reacted in situ with ZnBr2 to form the side-on transition metal diborene complex 94. Quantum-chemical investigations of the frontier orbitals showed that the energy level of the MOs with lobs corresponding to the σ* orbitals of the B‒Br bonds is most likely decisive for the successful reduction of bisphosphine adducts to diborenes. However, the steric demand of the phosphines is also a crucial stabilising factor for the resulting phosphine-stabilised diborene. Furthermore, the portfolio of phosphine-stabilised 1,2-diaryldiborenes was expanded with compounds 97a–98b and the synthesis of these diborenes was optimised in a one-pot synthesis. In addition, phosphine-stabilised diborenes with duryl substituents (98a/b) were synthesised for the first time, which, together with their bromine bridged monoadduct precursors 96a/b, proved to be unexpectedly labile. The prepared diborenes provided NMR spectroscopic and X-ray crystallographic data which are typical for this class of compounds. Moreover, 97a/b was analysed in more detail using UV/vis spectroscopy and quantum-chemical methods. The main focus of this research lies in the investigation of the reactivity of the diborene 48a. Its B=B bond order was reduced in two reactions with different oxidizing agents forming the radical cation [100]∙+. An oxidation of the B=B bond was also achieved with the reaction of 48a with chalcogens and chalcogen-containing reagents. Furthermore, with the preparation of 1,2-dimesityl-1,2-di(phenylseleno)diborane(4) (104), the synthesis of a rare example of a structurally elucidated selenium containing diborane(4) was achieved. In addition, the complete release of both Lewis bases from a diborene with simultaneous reduction of the B=B bond order was observed for the first time. Furthermore, 48a was reacted with nitrogen containing heteroaromatics. The spectroscopic and quantitative chemical data indicate a pyridine-stabilised diborene 105. Further experiments were aimed at exploring the reactivity of 48a towards 2,2'-bipyridine and the monoborane 107d and the 1,4-diaza-2,3-diborinine 106 were obtained. The solid-state structure of 106 and quantum-chemical investigations suggested a bonding situation comparable to that of carbon analogues. In addition, a NICS analysis confirmed that the central B2N2C2 ring of diborane(4) 106 has an extraordinary degree of aromaticity. Compound 48a was also able to activate element-hydrogen bonds (E = B, Si, N, S). While for the reactions with various silanes the reaction composition could only be speculated upon, the structure of two products of the reaction with HBCat (110 and 111) were elucidated by means of single crystal X-ray structure analysis. In this context, the sp2-sp3 diboranes(5) 112–113b were obtained in good yields in reactions of 48a with a thiol and with aniline derivatives, respectively. The NMR spectroscopic and crystallographic data of the products are comparable and lie within the expected range of such compounds. In addition, the trans configuration of the B=N double bond in the nitrogenous products 113a/b was confirmed by 1H‒1H-NOESY NMR experiments. The diborene 48a also shows a rich reactivity towards small molecules. After replacing the inert gas atmosphere with N2O or CO2, the oxidative decomposition of 48a to the literature-known boroxine derivative 114 was detected. The reaction of 48a with CO was completely different, whereby an interesting, eight-membered heterocycle 115 was formed, which formally consists of two cleaved CO molecules and two diborenes. Based on the solid-state structure of 115 and DFT calculations, the exact description of the bonding situation within the BC(P)B unit can be compared with literature-known α-borylated phosphorus ylides. It is highly probable that a mixed form of the mesomeric structures 115-A, 115-B and 115-C is present since experimental evidence can be found for all three proposed structures. The diborene 48a reacted with H2 without the need for a catalyst, with heating, high pressure and long reaction times leading to different products. Initial reactions led to the product 118a, which could not be reproduced in subsequent hydrogenations. Instead, the selective formation of the monoboranes 119a/b was observed. One reaction mechanism was computationally determined for each of the reactivities. The key intermediate in each case is the highly reactive intermediate Int3, which is presumably responsible for a large number of the reactivity patterns of 48a. The last chapter is devoted to different cycloadditions of 48a with different unsaturated substrates. The reactivity towards azides could not be fully elucidated. However, it was possible to detect a PMe3 stabilised phosphazene 122 as a byproduct, which could be independently synthesised via a Staudinger reaction. The diborene 48a reacted with carbodiimides under photolytic conditions to give the 1,2,3 azadiboretidines 123a–c, whereby the reaction rate was strongly dependent on the steric demand of the carbodiimide. The solid-state structure of azadiboretidine 123a was determined and represents a rare example of such a heterocycle. The thermal reaction of 48a with carbodiimides, on the other hand, yielded a product that has not yet been fully elucidated. Based on the spectroscopic data, the preparation of a NHC with a diborane(4) backbone of the type B2Mes2(NiPr)2C: (124a) is suspected. Quantum-chemical investigations predicted similar bonding parameters for 124a as for a literature known π-acidic NHC. The reaction of 48a with terminal alkynes led to PMe3-stabilised 1,3-dihydro-1,3-diboretes 126a–d. For 126c/d the respective constitutional isomers 127c/d with proportions of less than 10% could additionally be observed via solution NMR spectroscopy. In the solid state, on the other hand, not the diborete 126d but exclusively the constitutional isomer 127d was observed. The Lewis formulas of the diboretes suggest that an electron-deficient, tricoordinate carbon atom is present in the BCB unit, which is confirmed by its 13C{1H} NMR spectrum, which contains corresponding signals. The electronic delocalisation is supported by the experimentally derived B‒C atomic distances within the BCsp2B units of 126a–c and 127d. The P‒Csp2 bond in 127d is short, suggesting a high degree of π-character. The unique description of the C‒H activation product 131 in the solid state suggests an initial [2+2] cycloaddition between the B=B double bond and the terminal alkyne, which leads to the formation of the 1,3-diboretes via a 1,3 rearrangement. Using the identical reaction conditions as the reaction between 48a and 1,4-diethylbenzene, the preparation of the mono- and bis(1,3-dihydro-1,3-diboretes) 128 and 129 was achieved, whereby 129 could only be structurally authenticated. The reaction of 48a with 1,3,5-triethynylbenzene gave a mixture of products of the type (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), which provided evidence for the two- and threefold diborete formation, respectively. DFT calculations predict some degree of communication between the two heterocycles via the central benzene ring in the bisdiborete 129, which could be the cause of the observed fluorescence. The diborene 48a also reacted with diazabutadienes under thermal conditions in inverse Diels-Alder reactions to give 1,2,3,4-tetraaryl-1,4-diaza-2,3-diborinines 132a–e. This represents a new approach to this substance class. Thereby, a direct correlation between the reaction time and the steric demand of the diazabutadienes was observed. The successful work-up of the 1,4-diaza-2,3-diborinines is essentially dependent on the crystallisation behaviour of the products due to their high solubility in common solvents. The analogous conversion under photochemical conditions indicated that this reaction follows the mechanism of an inverse electron demand [4+2] cycloaddition. The high stability of the diborane(4) 132b/c against air and water is remarkable, which is probably due to the kinetic stabilisation by the ortho-methyl groups of the nitrogen-bound aryl groups. In contrast, the reaction between 48a and the diazabutadiene (MesN)2C2Mes2 gave the 1,2,3,4-tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinine 132e, but only in small amounts. Instead, compound 133 was formed under the chosen conditions. However, the systematic, experimental investigation of this reactivity was not carried out within the scope of this work. The key intermadiate of the reaction mechanism for the formation of 133 is most probably again the intermediate Int3. After a 1,2-migration of a mesityl substituent, the monophosphine-stabilised zwitterion Int13a is formed, which can be described as a borylene in its mesomeric structure Int13b. A subsequent intramolecular C‒H activation results in the diborane(5) 133. This work provides new insights into the chemistry of phosphine-stabilised diborenes. The labile phosphine groups provide a unique reactivity to the diborenes that is not found in the NHC-bound derivatives. In the future, new concepts could be developed to further exploit this reaction behaviour. Along these lines, it would be desirable to link diborenes with each other to create chains. KW - Bor KW - Synthese KW - Doppelbindung KW - Phosphin KW - Reaktivität KW - Diboren KW - Phosphan-stabilisiert KW - Diborene KW - Phosphine-stabilised Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241365 ER - TY - THES A1 - Auerhammer, Dominic T1 - Synthese und Reaktivität von niedervalenten Bor(I)-Verbindungen T1 - Synthesis and Reactivity of Low-valent Boron(I) Compounds N2 - Kapitel 1 Darstellung und Reaktivität des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische“ Metallborylen- Vorstufe benötigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erfährt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = −0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen führen könnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollständig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivität von [(cAAC)B(CN)]4 (3) gegenüber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abhängigkeit von der Basenstärke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu führten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zurückzuführen ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. Während [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zugänglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden In weiterführenden Studien wurde zudem die Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden Stöchiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivität des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch stöchiometrische Reaktionsführung dargestellt werden (Schema 68), welche nachfolgend in die bereits erwähnten Verbindungen 9 und 10 überführt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zugänglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen ähnliche Reaktivitäten gegenüber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivität des Borylanions (19) Ein weiterer Aspekt dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht möglich ist und nur für zwei weitere Systeme beschrieben ist. Hierzu zählen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst ermöglicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgeführt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: –0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivitätsstudien untersucht. So führte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). Während die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den höheren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am härteren Cyanostickstoffatom. Demzufolge wurden hierbei zunächst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb kürzester Zeit in 27 übergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverhältnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn–Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter über die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter über die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. Während die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsvermögen verdeutlichte, führte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), während bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivität von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivität von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivität auf 29 zu übertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivität gegenüber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung führt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabhängig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: −29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 über (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungewöhnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivität von [(cAAC)BH3] (29) gegenüber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell bestätigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu überführen (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollständig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festkörper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) Å (51) und 1.603(4) Å (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) Å).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abhängigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich verändert. So führte die Einführung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarität der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarität konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. Während die Einführung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, führt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X). N2 - Chapter 1 Synthesis and reactivity of cyanoborylene 3 In the context of this work, a successful high-yielding three-step synthesis of the first basestabilised cyanoborylene [(cAAC)B(CN)]4 (3) was developed (Scheme 1). It should be emphasized that this approach does not involve a „classical“ metal borylene precursor, which is why fewer synthetic steps and better yields could be achieved. Scheme 1. Synthesis of the tetrameric borylene [(cAAC)B(CN)]4 (3). The first notable feature of borylene 3 is its unique self-stabilising nature via oligomerization, which means that it does not have to be generated in situ. The electronic properties of 3 were investigated by cyclic voltammetry, showing an oxidation wave at E1/2 = −0.83 V, implying that chemical oxidation could lead to new compounds. This was demonstrated by the reaction with AgCN (Scheme 2) which yielded [(cAAC)B(CN)3] (4). Compound 4 is only the second structurally characterized base-stabilized tricyanoborane. Additionally, the reactivity of 3 with different Lewis bases was investigated. The aim was to break up the tetrameric structural motif and obtain mixed base-stabilized borylenes. This study demonstrated dependence on the strength and steric demands of the Lewis base. Weak Lewis bases such as THF, MeCN, pyridine and PEt3 proved too weak to break up the tetrameric structure. Similarly, the reaction of 3 with strong Lewis bases such as cAAC or IPr remained unsuccessful, probably due to a too large steric hindrance. In contrast, the reaction of 3 with the strong and sterically non-demanding base IMeMe successfully yielded the mixed base borylene [(cAAC)B(CN)(IMeMe)] (5) in high yields (Scheme 2). Scheme 2. Reactions of [(cAAC)B(CN)]4 (3) with AgCN and IMeMe. While [(cAAC)B(CN)(PEt3)] (6) could not obtained by reaction of 3 with PEt3, this could be achieved by reducing [(cAAC)BBr2(CN)] (2) in the presence of excess PEt3 (Scheme 3). [(cAAC)B(CN)(PEt3)] (6) represents the first known phosphine-stabilized borylene. Scheme 3. Synthesis of [(cAAC)B(CN)(PEt3)] 6. Chapter 2 Reactivity of 3 toward chalcogens and chalcogenides In further studies, the reactivity of 3 towards elemental chalcogens was investigated in detail. By using the appropriate stoichiometry, 3 could be selectively converted to the four-, five- or six-membered diborachalcogen heterocycles 9, 10, 13-15 (Scheme 4). Scheme 4. Synthesis of 9, 10, 13-15 from 3. These results were then compared with the reactivity of the constitutional isomer of 3, diborene LII towards elemental chalcogens. In this context, the 3-membered B2E heterocycles 11 and 12 could be prepared by stoichiometric reaction (Scheme 5). These could subsequently be converted into the four-membered B2E2 heterocycles 9 and 10 already mentioned (Scheme 6). Scheme 5. Synthesis of 11 und 12 from diborene LII. Scheme 6. Synthesis of 9 and 10 by ring-expansion of 11 or 12. Furthermore, borylene 3 was successfully converted to the boron dichalcogenides 16-18 with Ph2Se2, Me2Se2, and Ph2S2 (Scheme 7). 16 and 18 were also accessible by reaction of diborene LII with Ph2Se2 and Ph2S2, respectively (Scheme 7). Scheme 7. Synthesis of dichalcogenides 16-18 from borylene 3 and diborene LII. The tetrameric borylene 3 and the diborene LII show similar reactivities towards elemental chalcogens and dichalcogenides. Only the synthesis of the 3-membered B2E heterocycles 11 and 12 succeeds exclusively from LII. Chapter 3 Synthesis and reactivity of the boryl anion (19) Another aspect of this work was the synthesis and reactivity of the (cyano)hydroboryl anion 19, a rare example of a nucleophilic boron species. The access to 19 by deprotonation of the (dihydro)cyanoborane 1 (Scheme 8) is particularly noteworthy, since boron-bonded hydrogen atoms are usually hydridic in nature and not amenable to deprotonation. Only two other systems allowing the deprotonation of a borane have been described. The tricyano-boryl dianion XLVII[6a, 6b] and the synthesis of the dicyanoboryl anion XLVIII[45]. A common feature of these three species is the presence of electron-withdrawing cyanide substituents, which cause an Umpolung of the B−H bond, thus enabling deprotonation. Scheme 8. Synthesis and solid state structure of the boryl anion 19. To investigate this peculiary more closely, calculations were carried out on the BP86/def2-SVPLevel and the partial charges (NBO) of boron-bound hydrogen at BH3, [(cAAC)BH3] and 1 calculated (Figure 1). Figure 1. Partial charges (NBO) of BH3, [(cAAC)BH3] and 1 (BP86/def2-SVP). By replacing one of the hydrides in [(cAAC)BH3] by a cyano group, the boron-bound hydrogens in 1 become significantly more protic (+0.038, +0.080). Even coordination of the cAAC ligand to BH3 results in two of the previously hydridic hydrogens (BH3: partial charge: –0.101) to became much more positive (+0.050). The nucleophilic character of 19 was then examined by reactivity studies. For example, the reaction of 19 with [(PPh3)AuCl] led to the formation of the gold boryl complex [(cAAC)BH(CN)(AuPPh3)] (20) (Scheme 9). While the reaction of 19 with trityl derivatives did not yield any isolable compound, reactions with the heavier group 14 homologues R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) yielded a series of triorganotetrel boranes, compounds 21-24 (Schema 9). Scheme 9. Synthesis of 20-24 from boryl anion 19. The reaction of the corresponding silyl derivatives R3SiCl with 19, however, provided a different course of reaction (Scheme 10). Scheme 10. Synthesis of 25-28 from boryl anion 19. In contrast to the higher homologues, the reaction of 19 with the silyl derivatives occurs not at the soft, nucleophilic boron center but at the harder cyano nitrogen atom. The silylisonitrile compounds 25 and 26 were initially formed as the kinetic products. However, 25 was labile and transformed rapidly into the silylborane 27. In contrast, the silylborane 28 could only be obtained by irradiation of 26. In addition, the bonding situation in 26 were examined by DFT calculations at the BP86/def2-SVP level. The Kohn–Sham MO analysis revealed a HOMO with π-character over the entire CcAAC‒B‒CCN unit with contiguous π-antibonding character across the C‒N units of both donor ligands (Figure 2). Figure 2. X-ray crystallographic (left) and calculated (center) structure and HOMO (right) of 26 (BP86/def2-SVP). The electronic nature of 26 was also investigated experimentally. While the reaction of 26 with Cu(I)Cl, which yielded Cu(0), demonstrated its high reducing power, the reaction with elemental lithium in THF led to the formation of the boryl anion 19 and LiSiPh3. In contrast, the reaction of 26 with BH3∙SMe2 quantitatively gave [(cAAC)BH3] (29), while the (triphenyltin)borane 22 was quantitatively formed upon reaction with Ph3SnCl (Scheme 11). This divergent reaction behavior justifies a description of 26 as both a silylisonitrile borylene and a zwitterionic silylium boryl species. Scheme 11. Ambiphilic reactivity of 26 as a neutral silylisonitrile borylene (A) or as a zwitterionic silylium boryl species (B). Chapter 4 Synthesis and reactivity of [(cAAC)BH3] (29) Since [(cAAC)BH2(CN)] 1 can be selectively deprotonated and [(cAAC)BH3] (29) also dispays slightly protic boron-bound hydrogens (see Figure 1), attempts were made to deprotonate 29. For this purpose [(cAAC)BH3] (29) was synthesized and its reactivity towards anionic (Scheme 12) and neutral (Scheme 13) nucleophiles was investigated. Instead of a deprotonation, the reaction of [(cAAC)BH3] (29) with organolithium compounds leads tot he formation of lithium borates 30, 32 and 34, in which a hydrogen has migrated from boron to cAAC and the organic residue is bound to the boroncenter. This reactivity is applicable to sp3-, sp2- and sp-hybridized organolithium compounds. The reaction mechanism was also examined by DFT-calculations. These clearly show that [(cAAC)BH3] (29) is in equilibrium with the tautomeric borane [(cAAC‒H)BH2] by migration of one hydrogen from boron to cAAC. The strongly exergonic nucleophilic addition of the LiR bases with [(cAAC‒H)BH2] (30: ‒29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) directly leads to the formation of the lithium borates 30 and 32. The latter then react with Me3SiCl under elimination of LiCl and Me3SiH to form the cAAC-borane adducts 31, 33 and 35 (Scheme 12). Scheme 12. Synthesis of 30-35 by direct nucleophilic substitution at sp3-boron. This two-step synthesis is remarkable because it is effectively an unusual substitution at a sp3-borane. Furthermore, the reactivity of [(cAAC)BH3] (29) towards neutral Lewis bases was investigated. Thus, [(cAAC−H)BH2(cAAC)] 36 was obtained from the reaction with cAAC and [cAAC−H)BH2(pyr)] 37 from the reaction with pyridine (Scheme 13). Scheme 13. Synthesis of 36 and 37 from 29. The mechanism of formation of 36 and 37 was also investigated by DFT calculations, which suggest reversible formation of the pyridine adduct 37. This was also confirmed experimentally in solution by a Van´t Hoff equilibrium analysis and in the solid state by removal of pyridine from 37 to yield pure 29. In contrast, the formation of 36 is irreversible. Chapter 5 Synthesis and comparison of new diborenes In the context of this work, a series of new NHC thienylborane adducts (42-50) was also synthesized and successfully reduced to the corresponding diborenes (51-58) in the majority of cases (Scheme 14). Scheme 14. Synthesis of NHC thienylborane adducts 42-50 and the rediction to the corresponding diborenes 51-58. Most of the compounds were completely characterized, enabling comparison of NMR spectroscopic and structural data. The 11B NMR resonances of 51-58 were observed within a narrow range (20.2 to 22.5 ppm), which was consistent with that of previously reported analogues X and XI (21.3 and 22.4 ppm).[17] In the solid state, the diborenes displayed a B−B distance of 1.576(4) Å (51) to 1.603(4) Å (54), with no apparent trend, depending on their substitution. These bond lenghts are almost identical to already known IMe-stabilized 1,2-diaryldiborenes (1.585(4) to 1.593(5) Å).[16-17] Some of these diborenes were not stable in solution depending on the substitution pattern, and therefore could not be isolated. Nevertheless, UV-vis spectroscopic data of 51, 52, 57 and 58 were obtained (Figure 3). Figure 3. UV-vis-absorption spectra of 51, 52, 57 and 58. Careful analysis of the UV-vis spectra of 51, 52, 57 and 58 revealed some dependence of the absorption maxima upon the substitution patter of the thienyl substituents and the NHC ligands. The comparison of diborene 51-58 showed that the substitution pattern has a decisive influence on the position of the frontier orbitals, which significantly alters the properties of the diborene. Thus, the introduction of a diphenylamino group on the thienyl residue prevents the coplanarity of the thiophenes with the diborene plane, which is why these species are very unstable due to the lack of π-conjugation. This influence on coplanarity and stability was also observed, albeit to a lesser extent, in the Me3Si-substituted thiophene derivatives. The influence of different NHCs was also investigated. While the introduction of IMeMe has nearly no influence on the absorption maxima, the use of IPr leads to a significant shift. Within this study the most stable diborene proved to be [(IMe)BTh]2 (X). KW - Borylene KW - Borylene KW - Diboren KW - Borylanion KW - cAAC KW - niedervalent KW - Diborene KW - low-valent Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158866 ER - TY - THES A1 - Müssig, Jonas Heinrich T1 - Synthese und Reaktvität von Gruppe 13 Elementhalogeniden gegenüber metallischen und nicht-metallischen Lewis-Basen T1 - Synthesis and Reactivity of Group 13 Elemental halides towards Metal and Nonmetal Lewis-Bases N2 - Im Rahmen der vorliegenden Arbeit wurden Dibortetrahalogenide dargestellt, deren Eigenschaften strukturell sowie spektroskopisch analysiert und deren Reaktivität gegenüber Lewis-basischen Hauptgruppenelementverbindungen untersucht. Durch anschließende Reaktivitätsstudien konnten unter anderem neuartige Diborene dargestellt und analysiert werden. Weiterhin wurde die Verbindungsklasse der Elementhalogenide der Gruppe 13 in der Oxidationsstufe +2 (B, Ga, In) und +3 (In) bezüglich ihrer Reaktivität gegenüber Übergangsmetall Lewis-Basen untersucht. Die gebildeten, neuartigen Bindungsmodi der Gruppe 13 Elemente am Übergangsmetall wurden strukturell, spektroskopisch sowie quantenchemisch analysiert. N2 - As a part of the present work diborontetrahalides were synthesized, analyzed and their reactivity was investigated towards Lewis-basic main group compounds. Subsequent reactivity studies were performed and novel Diborenes were synthesized and analyzed. Furthermore the reactivity of group 13 elemental halides in the oxidation state +2 (B, Ga, In) and +3 (In) was investigated towards Lewis-basic transition metal complexes. The novel bonding motifs of the group 13 elements at the metal center were investigated structurally, spectroscopically and by quantum chemical calculations. KW - Übergangsmetallkomplex KW - Bor KW - Lewis-Base KW - Gallium KW - Indium KW - Gruppe 13 element KW - Diboren Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179831 ER - TY - JOUR A1 - Schmidt, Uwe A1 - Werner, Luis A1 - Arrowsmith, Merle A1 - Deissenberger, Andrea A1 - Hermann, Alexander A1 - Hofmann, Alexander A1 - Ullrich, Stefan A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Trans‐selektive Dihydroborierung eines cis‐Diborens durch Insertion: Synthese eines linearen sp\(^3\)‐sp\(^2\)‐sp\(^3\)‐Triborans und anschließende Kationisierung JF - Angewandte Chemie N2 - Die Reaktion zwischen Aryl‐ und Amino(dihydro)boranen und Dibora[2]ferrocenophan 1 führt zur Bildung von 1,3‐trans‐Dihydrotriboranen durch formale Hydrierung und Insertion eines Borylens in die B=B Doppelbindung. Die Aryltriboran‐Derivate unterliegen einer reversiblen Photoisomerisierung zugunsten eines cis‐1,2‐μ‐H‐3‐Hydrotriborans, während eine Hydridabstraktion zu kationischen Triboranen führt, welche die ersten doppelt basenstabilisierten B\(_3\)H\(_4\)\(^+\)‐Analoga darstellen. KW - Diboren KW - Hydroborierung KW - Kation KW - Photoisomerisierung KW - Triboran Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219713 VL - 132 IS - 1 ER -