TY - THES A1 - Projahn, Holger T1 - Synthese, Stereochemie und pharmakologische Charakterisierung von 3,7-Diazabicyclo[3.3.1]nonan Derivaten als selektive kappa-Agonisten T1 - Synthesis, stereochemistry and pharmacological characterization of 3,7-diazabicyclo[3.3.1]nonane derivates as selective kappa-agonists N2 - In der vorliegenden Arbeit wird die Synthese von verschiedenen bicyclischen Substanzklassen gemäß des folgenden Syntheseschemas beschrieben. Es wurden verschiedene 2,4-di-(2-pyridyl)- oder 2,4-di-(3-fluorphenyl)-substituierte 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäurediester (9-Oxo-BNDS: 21-25, 27-55) synthetisiert, welche 1. teilweise als Vorstufen zur Synthese von 1,5-Di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-olen (Triole: 56-65) eingesetzt wurden, 2. teilweise als Vorstufen zur Synthese von 9-Hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OH-BNDS: 66-69) verwendet wurden, die ihrerseits zu 9-O-Acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OAc-BNDS: 70-76) umgesetzt wurden oder 3. als Vorstufe zur Synthese der 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäure 26 dienten. Die 9-Oxo-BNDS wurden aus den kommerziell erhältlichen Aceton-1,3-dicarbonsäuredimethyl- (ADS-Me), -ethylester (ADS-Et) oder den ADS 1-3 synthetisiert, die ihrerseits ausgehend von ADS-Me und den entsprechenden Alkoholen durch Umesterung hervorgehen. Die ADS wurden durch eine Mannich-Kondensation mit zwei Äquivalenten eines aromatischen Aldehyds und einem Äquivalent eines primären Amins in MeOH zu den entsprechenden 4-Piperidon-3,5-dicarbonsäureestern (PDS: 4-20) umgesetzt, die wiederum ebenfalls durch eine Mannich-Kondensation mit zwei Äquivalenten Formaldehyd und einem Äquivalent eines primären Amins in THF oder Aceton zu den entsprechenden 9-Oxo-BNDS reagieren. Dieser Syntheseschritt wurde hinsichtlich Ausbeute, Vereinfachung und Beschleunigung der Aufarbeitung optimiert. Die Stereochemie der so erhaltenen 9-Oxo-BNDS, die in Abhängigkeit vom Substitutionsmuster als cis- oder trans-Isomere entstehen, konnte mittels NMR-Spektroskopie aufgeklärt werden. Der 1,5-Dibenzylester 25 konnte durch katalytische Hydrierung mit Pd/C als Katalysator in EtOAc zur freien 1,5-Dicarbonsäure 26 umgesetzt werden. Die Triole 56-62 wurden ausgehend von den 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in einer Eintopfsynthese mittels NaBH4 in THF/MeOH durch Reduktion hergestellt. Die N3- und/oder N7-benzyl-substituierten Triole 57-59 wurden mittels katalytischer Hydrierung mit Pd/C als Katalysator in MeOH zu den entsprechenden NH-substituierten Triolen 63-65 umgesetzt. Mit Hilfe von selektiven 1D-NOESY-Messungen konnte die Stereochemie der Triole bezüglich der Stellung der Hydroxygruppe an C9 zugeordnet werden. Die 9-OH-BNDS 66-69 wurden durch Reduktion der entsprechenden 9-Oxo-BNDS HZ2, 3FLB, 32, 33 mit Na(CN)BH3 in MeOH synthetisiert. Die Reduktion verläuft nicht stereoselektiv, sodass die dabei entstehenden 9-OH-BNDS als Diastereomerengemische durch syn/anti-Isomerie der C9-OH-Gruppe anfallen. Das Diastereomerengemisch 66 konnte durch präparative Säulenchromatographie in die beiden reinen Isomere 66a (anti) und 66b (syn) getrennt werden. Das Gemisch 67 konnte durch Entwicklung einer HPLC-Methode und anschließender Übertragung auf ein Flashchromatographiesystem präparativ in die diastereomerenreinen Isomere 67a (anti) und 67b (syn) getrennt werden. Die stereochemische Zuordnung der Konfiguration an C9 wurde durch selektive 1D-NOESY-Messungen erreicht. Die Synthese der 9-OAc-BNDS 70-76 erfolgte durch Umsetzen des entsprechenden 9-OH-BNDS 66a, 67a, 67-69 mit einer äquimolaren Menge eines entsprechenden Carbonsäurechlorids und DBU als Hilfsbase in CHCl3. Im Fall der Synthese von Verbindung 76 musste das eingesetzte Decanoylchlorid mit Zinkstaub aktiviert werden. Die Zuordnung der Stereochemie der so erhaltenen Verbindungen basiert auf selektiven 1D-NOESY-Messungen. Die Verbindungen 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a wurden auf pharmakologische Affinität zum kappa-Opioidrezeptor (OR) untersucht. Dadurch konnten die Verbindungen 71, 71a und 67a/b als hochaffine Liganden des kappa-OR identifizert werden. Durch die qualitative Analyse der Struktur-Wirkungs-Beziehungen, die auf dem Vergleich der pharmakologischen Daten dieser Arbeit und vorangegangener Arbeiten basiert, konnten folgende Anforderungen an selektive Liganden des kappa-OR mit 3,7-Diazabicyclo[3.3.1]nonan-Grundgerüst ermittelt werden: 1. Das Grundgerüst sollte an Position 2/4 mit 2-Pyridylresten substituiert sein. 2. An Position N3 und N7 dürfen keine Substituenten angebracht sein, die größer als ein Methylrest sind. 3. Das Molekül sollte an Position 1/5 mit Methylestergruppen versehen sein. 4. Der 3,7-Diazabicyclus kann an Position 9 eine -OH, -OAc oder möglicher-weise auch entsprechende, sterisch anspruchsvollere Funktionen besitzen. 5. Die Stellung des Substituenten an Position 9 sollte vorzugsweise anti-konfiguriert sein, bezogen auf den höher substituierten Piperidinring. N2 - The aim of the present work was the synthesis of several bicyclic compound classes as described in the following synthetic pathway. Various 2,4-di-(2-pyridyl)- or 2,4-di-(3-fluorphenyl)-substituted 9-oxo-3,7-diazabicyclo[3.3.1]-nonan-1,5-dicarboxylates (9-Oxo-BNDS: 21-25, 27-55) have been synthesized, which 1. were partially used as templates for the synthesis of 1,5-di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-oles (trioles: 56-65), 2. were partially used as starting compounds for the synthesis of dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OH-BNDS: 66-69), which in turn were used for the preparation of dimethyl-9-O-acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OAc-BNDS: 70-76), 3. served as starting compound for the synthesis of the 9-oxo-3,7-diazabicyclo-[3.3.1]nonan-1,5-dicarboxylic acid 26. The 9-Oxo-BNDS were prepared starting from the commercially available di-methyl- (ADS-Me) or diethylacetone-1,3-dicarboxylate (ADS-Et) or the ADS 1-3, which themselves were synthesized by transesterification of ADS-ME with the corresponding alcohols. The ADS were converted to the respective 4-piperidon-3,5-dicarboxylates (PDS: 4-20) by means of a Mannich-condensation with two equivalents of an aromatic aldehyde and one equivalent of a primary amine in MeOH as a solvent. The PDS were subjected to a second Mannich-condensation with two equivalents of formaldehyde and one equivalent of a primary amine in THF or acetone to form the corresponding 9-Oxo-BNDS. This step was optimized with respect to the yields, simplification and acceleration of the refurbishment. The stereochemistry of the so achieved 9-Oxo-BNDS, which can emerge as cis- or trans-isomers dependent on their substitution pattern, was elucidated by means of NMR-spectroscopy. The dibenzylcarboxylate 25 could be converted to the free dicarboxylic acid 26 by means of catalytic hydrogenation with Pd/C as catalyst in EtOAc as solvent. The trioles 56-62 were synthesized starting from the the 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in a one-pot-reduction-step by means of NaBH4 in THF/MeOH. The N3- and/or N7-benzyl-substituted trioles 57-59 were converted to the respective NH-substituted trioles 63-65 by catalytic hydrogenation with Pd/C in MeOH. The assignment of the hydroxy-group at C9 was achieved via selective 1D-NOESY measurements. The 9-OH-BNDS 66-69 were perpared by reduction of of the appropriate 9-Oxo-BNDS HZ2, 3FLB, 32, 33 with Na(CN)BH3 in MeOH. The reduction does not proceed in a stereoselective manner, which in consequence leads to the isolation of syn/anti-isomers with respect to the hydroxygroup at C9. The isomeric mixture 66 could be resolved into both pure isomers 66a (anti) and 66b (syn) by means of preparative column chromatography. The isomeric mixture 67 was separated in order to obtain the pure isomers 67a (anti) and 67b (syn) by preparative flash-chromatography. The stereochemical assignment of the hydroxygroup at C9 was accomplished by selective 1D-NOESY measurements. The synthesis of the 9-OAc-BNDS 70-76 was carried out by reaction of the respective 9-OH-BNDS 66a, 67a, 67-69 with an equimolar amount of the congruent acylchloride and DBU as an auxilary base in CHCl3. In the case of compound 76 the deployed decanoylchloride had to be activated with zinc dust. The stereochemical assignment of the so obtained compounds is based on selective 1D-NOESY measurements. The compounds 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a were investigated with respect to their pharmacological affinity to the kappa-opioid receptor (OR). Compounds 71, 71a and 67a/b were identified to be highly affine ligands to the kappa-OR. By means of the analysis of structure-affinity-relationships, which are based upon the comparison of the pharmacological data of the present work and previous findings, the following prerequisites for high affinity towards the kappa-OR were derived for compounds bearing the 3,7-diazabicyclo[3.3.1]nonan-skeleton: 1. The skeleton at position 2/4 should be substituted by 2-pyridyl moieties. 2. No substituents being larger than a methyl-group should be attached to the nitrogens N3 and N7. 3. The molecule should carry a methyl carboxylate at positions 1/5. 4. The 3,7-diazabicycle may possess a -OH, -OAc or probably a respective, even sterically larger substituent at position 9. 5. The orientation of the substituent at position 9 should be preferably of anti-configuration according to the higher substituted piperidine ring. KW - Opioide KW - Rezeptor KW - Diazabicyclononanone KW - Chemische Synthese KW - Stereochemie KW - Synthese KW - Pharmakologie KW - Opioide KW - Kappa KW - Diazabicyclononan KW - Synthesis KW - Pharmacology KW - Opioids KW - Kappa KW - Diazabicyclononane Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14072 ER - TY - THES A1 - Kalb, Stefanie T1 - Wilhelm Neumann (1898 - 1965) - Leben und Werk unter besonderer Berücksichtigung seiner Rolle in der Kampfstoff-Forschung T1 - Wilhelm Neumann (1898-1965) - His life and his work with special regard to his role in the research of chemical warfare agents N2 - Gegenstand der vorliegenden Untersuchung ist das Leben und Werk des deutschen Pharmakologen und Toxikologen Wilhelm Neumann (11. Februar 1898 - 15. April 1965). Wesentliche Erkenntnisse hierzu konnten aus Aktenbeständen des Bundesarchivs der Bundesrepublik Deutschland in Berlin-Lichterfelde, Freiburg im Breisgau, und Koblenz, des Dekanatsarchiv der Medizinischen Fakultät der Bayerischen Julius-Maximilians-Universität Würzburg, des Archivs der „Deutschen Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie“ in Mainz, des Scheringianums, dem Archiv der Schering AG in Berlin, des Staatsarchivs Würzburg und des Universitätsarchivs der Bayerischen Julius-Maximilians-Universität Würzburg gewonnen werden. Von 1919 bis 1923 studierte Wilhelm Neumann in Berlin Chemie und promovierte in der chemischen Abteilung des Preußischen Instituts für Infektionskrankheiten „Robert Koch“ zum Dr. phil. Im Jahr 1924 trat er eine Stelle als Privatassistent am Pharmakologischen Institut der Universität Würzburg unter der Leitung Ferdinand Flurys an. Parallel zu seiner Arbeit am Pharmakologischen Institut studierte er von 1929 bis 1934 an der Universität Würzburg Humanmedizin und promovierte zum Dr. med. 1937 folgte seine Habilitation und die Ernennung zum Dozenten. Weitere Stationen seiner wissenschaftlichen Laufbahn am Pharmakologischen Institut waren die Ernennungen zum planmäßigen Assistenten 1939, zum Konservator 1941 und zum außerplanmäßigen Professor 1942. Im Jahr 1937 nahm Wilhelm Neumann als Arzt der Reserve seine militärische Karriere im Sanitätsdienst der Wehrmacht auf. Während des Zweiten Weltkrieges war er als „beratender Arzt“ und als Wissenschaftler für die Wehrmacht tätig. Neumanns politischer Werdegang begann im Juli 1933 mit seinem Beitritt zur Veteranenorganisation Stahlhelm. Im Februar 1934 wurde er Mitglied der SA, und ab dem 1. Mai 1937 gehörte er der NSDAP an. Nach Ende des Zweiten Weltkrieges wurde Neumann im Zuge des Entnazifizierungsprozesses 1946 aus dem Staatsdienst entlassen. Das 1947 ergangene Spruchkammerurteil reihte ihn in die Gruppe der „Mitläufer“ ein. Infolgedessen konnte er 1948 wieder von der Universität Würzburg eingestellt werden. Im Jahr 1949 wurde er dort zum ordentlichen Professor für Pharmakologie und Toxikologie berufen. Von 1954 bis 1955 übte er das Amt des Dekans der Medizinischen Fakultät der Universität Würzburg aus. Am Pharmakologischen Institut der Universität Würzburg untersuchte Neumann zunächst die Chemie und Pharmakologie der herzwirksamen Glykoside. Ihm gelang auf diesem Gebiet die Reindarstellung eines neuen Wirkstoffs, der 1935 von der Firma Schering im Herzinsuffizienztherapeutikum Folinerin auf den Markt gebracht wurde. Auf toxikologischem Gebiet arbeitete er von 1925 bis 1945 mit Ferdinand Flury an gewerbetoxikologischen Projekten und in der chemischen Kampfstoff-Forschung. Als ordentlicher Professor widmete sich Wilhelm Neumann dann neben eigenen toxikologischen Arbeiten der Förderung der Toxikologie als Fachrichtung. Zu Beginn der 1950er Jahre befasste er sich mit tierischen Giften und erforschte die Toxikologie der Reizgase und der Luftverschmutzung. Von 1955 bis 1965 war Wilhelm Neumann Vorsitzender der DFG-Kommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. N2 - The present investigation deals with the life and work of the German pharmacologist and toxicologist Wilhelm Neumann (11th February 1898 to 15th April 1965). Relevant findings to this subject were gathered from files of the ”Bundesarchiv” of the Federal Republic of Germany in Berlin-Lichterfelde, Freiburg im Breisgau and Koblenz, of the Dean’s Archives of the Faculty of Medicine of the Bavarian Julius-Maximilians-University in Würzburg, of the Archives of the “Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie” in Mainz, of the Scheringianum, the archives of Schering AG in Berlin, of the “Staatsarchiv Würzburg” and of the University Archives of the Julius- Maximilians- University Würzburg. Wilhelm Neumann studied chemistry in Berlin from 1919 to 1923 and did a doctor’s degree in the chemical department of the “Preußisches Institut für Infektionskrankheiten <>”. In 1924 he accepted a post as a private assistant at the Pharmacological Institute of Würzburg University led by Ferdinand Flury. Parallel to his work at the Pharmacological Institute Neumann studied human medicine at Würzburg University from 1929 to 1934, ending with a doctor’s degree. In 1937 he qualified as a university lecturer and then as an assistant professor. Further stages of his scientific career at the Pharmacological Institute were the appointment to regular assistant in 1939, to curator in 1941 and to associate professor in 1942. In 1937 Wilhelm Neumann had started upon his military career as a reserve doctor in the medical corps of the “Wehrmacht”. During World War II he worked as a consultant doctor and as a scientist for the “Wehrmacht”. His political career had started in July 1933 with his joining the veterans’ organization “Stahlhelm”. In February 1934 he became a member of the “SA” and from 1st May 1937 he belonged to the “NSDAP”. After World War II Neumann was dismissed as a civil servant in the course of de-Nazification. In 1947 the court ruled that he was to be ranked with “Mitläufer”. Consequently he could be re-employed by the University of Würzburg. Here he was appointed full professsor for pharmacology and toxicology in 1949. From 1954 to 1955 he held the office of the Dean of the Faculty of Medicine at Würzburg University. At the Institute of Pharmacology of Würzburg University Neumann first investigated into the chemistry and pharmacology of glycosids. In this field he succeeded in the pure preparation of a new active substance, which in 1935 was put on the market by Schering Firm as the cardiac insufficiency therapeutics “Folinerin”. It is in the field of toxicology that he had co-operated with Ferdinand Flury from 1925 to 1945, dealing with projects of occupational toxicology and with chemical research of chemical warfare agents. As a professor Wilhelm Neumann then applied himself to the promotion of toxicology as a subject area, besides his own toxicological works. At the beginning of the 1950es he dealt with animal poisons and researched into the toxicology of irritant gases and of air pollution. From 1955 to 1965 Wilhelm Neumann was the chairman of the “DFG-Kommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe“. KW - Geschichte der Medizin KW - Pharmakologie KW - Toxikologie KW - history of medicine KW - pharmacology KW - toxicology Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16124 ER -