TY - THES A1 - Pfau, Anja T1 - Modulation der Aldosteron-induzierten Transaktivierungsaktivität des Mineralokortikoidrezeptors - Rolle von Calcium, Proteinkinase C, PI-3-Kinase sowie H2O2 T1 - Modulation of the aldosterone-induced transactivation activity of the mineralocorticoid receptor – role of calcium, protein kinase C, phosphoinositide-3-kinase and H2O2 N2 - Aldosteron ist ein Steroidhormon, das eine zentrale Rolle in der Regulation der Salz- und Wasserhomöostase des menschlichen Körpers spielt. In den letzten Jahren konnte gezeigt werden, dass Aldosteron außderdem fibrotische Vorgänge im Herz-Kreislaufsystem begünstigt, indem es beteiligt ist an endothelialer Dsyfunktion oder das sog „cardia redmodelling“ negativ beeinflusst. Aldosteron enthüllte aber noch ein anderes Geheimnis: Bisher wusste man, dass Aldosteron an den Mineralokortikoidrezeptor bindet, der als Liganden-abhängiger Transkriptionsfaktor fungiert; auf diese Art und Weise beeinflusste Aldosteron die Proteinsynthese; nun konnte aber gezeigt werden, dass Aldosteron unabhängig von seinem Rezeptor und unabhängig von der Proteinsynthese zu schnellen Reaktionen führen kann, z.B. zu einer Erhöhung der intrazellulären Calcium-Konzentration oder zu einer Veränderung des intrazellulären pH-Wertes. Die Interaktionen zwischen Aldosteron, dem Mineralokortikoidrezeptor und anderen Signalwegen scheinen komplexer zu sein als bisher angenommen. In der vorliegenden Arbeit wurde gezielt der Einfluss von Calcium, Proteinkinase C, der PI-3-Kinase sowie von H2O2 auf die Aldosteron-induzierte Transaktivierungsaktivität des Mineralokortikoidrezeptors untersucht. Im Rahmen der Zellkultur wurden HEK-Zellen (human embryonic kidney cells) benutzt; als Techniken kamen hauptsächlich Reportergen-Assay, ELISA, Fluoreszenzmessungen und Fluoreszenzmikroskopie zum Einsatz. Folgende Erkenntnisse konnten hierbei gewonnen werden: 1. Calcium ist an der Aldosteron-induzierten Transaktivierungsaktivität des Mineralokortikoidrezeptors beteiligt: die Erhöhung der intrazellulären Calcium-Konzentration führt zu einer Abnahme der Aktivität des Mineralokortikoidrezeptors. Da Aldosteron selbst zu einer Erhöhung der intrazellulären Calcium-Konzentration führt, könnte Calcium im Sinne eines negativen Feedback-Mechanismus im Rahmen der Aldosteron-induzierten Transaktivierungsaktivität des Mineralokortikoidrezeptors fungieren. 2. Die Proteinkinase C übte in den hier durchgeführten Experimenten keinen Einfluss aus auf die Aldosteron-induzierte Transaktivierungsaktivität des Mineralokortikoidrezeptors. Weder Inhibierung noch Aktivierung der Proteinkinase C zeigten Wirkung. 3. Einen klaren oder direkten Einfluss auf die Aldosteron-induzierte Transaktivierungsaktivität des Mineralokortikoidrezeptors zeigte sich auch bei der PI-3-Kinase nicht. 4. H2O2 führt – ab einer Konzentration > 500 µmol/l – zu einer deutlichen Herunterregulierung der Aktivität des Mineralokortikoidrezeptors. Diese Herunterregulierung ist unabhängig von Aldosteron, und findet z.B. auch in Gegenwart von anderen Steroidhormonen statt bzw. auch in völliger Abwesenheit eines Mineralokortikoidrezeptor-aktivierenden Hormons. Daher ist anzunehmen, dass H2O2 nicht direkt die Interaktion des Mineralokortikoidrezeptors mit seinem Hormon Aldosteron stört, sondern dass die Einflussnahme von H2O2 auf die Aktivität des Mineralokortikoidrezeptors an einem anderen Punkt der Regulierung der Aktivität des Mineralokortikoidrezeptors stattfinden muss. N2 - Aldosterone is known as a hormone involved in the regulation of the water and salt homeostasis of the human body. In the last years, it could be shown that aldosterone promotes cardiovascular and renal fibrosis due to tissue remodeling and endothelial dysfunction. Furthermore, aldosterone revealed another secret: it is known that aldosterone binds to the mineralocorticoid receptor that acts as a ligand-dependent transcription factor; in this way, aldosterone and its receptor can influence protein synthesis; then it was revealed that aldosterone can also lead to quick reactions – independently of its receptor – e.g. to a rise of intracellular calcium concentration or to changes of intracellular pH. Interactions between aldosterone, the mineralocorticoid receptor and other signalling pathways seem to be more complex than it has been assumed so far. In this study, we tried to find out in which way calcium, protein kinase C, phosphoinositide-3-kinase and H2O2 can influence the aldosterone induced transactivation activity of the mineralocorticoid receptor. We used HEK cells (human embryonic kidney cells) and techniques like reporter gene assay, ELISA and fluorescence microscopy. Finally, we found the following results: 1. Calcium modulates aldosterone-induced transactivation of the mineralocorticoid receptor: rise of intracellular calcium concentration leads to a decrease of the mineralocorticoid receptor. As aldosterone itself is able to lead to an increase of the intracellular calcium level, calcium could function as a negative feedback co-signal during aldosterone-induced activation of the human mineralocorticoid receptor. 2. Aldosteron-induced activation of the mineralocorticoid receptor was not affected by protein kinase C. 3. No direct and clear correlation between phosphoinositide-3-kinase and aldosterone-induced activation of mineralocorticoid receptor could be revealed. 4. H2O2 leads - in concentration > 500 µmol/l – to a downregulation of the activity of mineralocorticoid receptor. This downregulation takes place independently of aldosterone. Consequently H2O2 does not seem to influence the interaction of aldosterone and its receptor, but seems to exert its effects on the mineralocorticoid receptor at another level of activity of the mineralocorticoid receptor. KW - Aldosteron KW - Calcium KW - Wasserstoffperoxid KW - Mineralokortikoidrezeptor KW - Proteinkinase C KW - PI-3-Kinase KW - Signalwege KW - Transaktivierung KW - mineralocorticoid receptor KW - protein kinase C KW - signalling pathways KW - transactivation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47491 ER - TY - THES A1 - Büchler, Nicole T1 - Welche Rolle spielt Lipidperoxidation bei der durch oxidativen Stress vermittelten akuten Lungenschädigung? T1 - The role of lipid peroxidation in oxidative stress-induced acute lung injury N2 - Die Lungenschädigung im Rahmen eines akuten Atemnotsyndroms (ARDS) ist gekennzeichnet durch ein nicht-kardiogenes Lungenödem, verursacht durch eine erhöhte Kapillarpermeabilität sowie einen Anstieg des pulmonalarteriellen Druckes, an deren Pathogenese verschiedene Mechanismen und Mediatoren beteiligt sind. Obwohl eine akute Lungenschädigung auch bei neutropenischen Patienten und in Leukozyten-freien Tiermodellen beobachtet wurde, spielen neutrophile Granulozyten hierbei eine entscheidende Rolle. Dies schlägt sich in der hohen Granulozytenzahl sowie in der erhöhten MPO-Aktivität der bronchoalveolären Lavage von ARDS-Patienten nieder. Stimulierte neutrophile Granulozyten verfügen über mehrere Mechanismen zur Schädigung des umgebenden Gewebes: proteolytische Enzyme, Produkte des Prostanoidstoffwechsels sowie reaktive Sauerstoffmetabolite. Diese Arbeit beschäftigt sich mit den durch neutrophile Granulozyten produzierten reaktiven Sauerstoffmetaboliten Hypochlorsäure und Wasserstoffperoxid, die zu den nichtradikalischen Oxidantien zählen. Ziel dieser Arbeit ist die Charakterisierung der Effekte einzelner Oxidantien, wie von Hypochlorsäure und Wasserstoffperoxid, auf die pulmonale Mikrozirkulation. Weiterhin soll das Ablaufen von Lipidperoxidationsprozessen im Rahmen von oxidativem Stress anhand von Endprodukten der Lipidperoxidation im Gewebe nachgewiesen werden. Schließlich soll die Gegenüberstellung von Parametern der akuten Lungenschädigung mit dem Ausmaß der Lipidperoxidation im Gewebe Aufschluss geben über einen eventuellen kausalen Zusammenhang zwischen Lipidperoxidation und Schädigung der Zirkulation. Am Modell der isolierten ventilierten und perfundierten Kaninchenlunge werden die Effekte von oxidativem Stress auf den pulmonalarteriellen Druck und die Gefäßpermeabilität charakterisiert. Hierzu werden die zu untersuchenden Oxidantien Hypochlorsäure, Wasserstoffperoxid bzw. das System aus Myeloperoxidase und Wasserstoffperoxid kontinuierlich in den pulmonalarteriellen Schenkel infundiert. Pulmonalarterieller Druck, pulmonalvenöser Druck und Flüssigkeitsretention werden kontinuierlich registriert, während der kapilläre Filtrationskoeffizient zu bestimmten Zeitpunkten gravimetrisch ermittelt wird. Dabei zeigt sich, dass die isolierte Applikation von HOCl, H2O2 bzw. des Systems MPO/H2O2 in der pulmonalen Strombahn eine Erhöhung des pulmonalarteriellen Druckes und der Gefäßpermeabilität bewirkt, wie es für die akute Lungenschädigung charakteristisch ist. Allerdings unterscheiden sich die Schädigungsmuster der einzelnen Oxidantien im zeitlichen Ablauf der Veränderungen von Gefäßpermeabilität und PAP. In jeder einzelnen Versuchsgruppe konnte eine Anreicherung von Lipidperoxidationsprodukten im Gewebe nachgewiesen werden. Es besteht jedoch keine Korrelation zwischen dem Ausmaß der Anreicherung der Lipidperoxidationsprodukte und dem Ausmaß der Veränderungen der Zirkulation. Es muss also vermutet werden, dass die Bildung von Lipidperoxidationsprodukten durch oxidativen Stress im Rahmen einer akuten Lungenschädigung eher ein Epiphänomen darstellt. Als Pathomechanismus ließe sich die spezifische Modifikation freier funktioneller Gruppen durch die nicht-radikalischen Oxidantien postulieren. N2 - Lung injury during acute respiratory distress syndrome (ARDS) is characterized by non-cardiogenic pulmonary edema due to increased vascular permeability and pulmonary artery pressure. A great variety of mechanisms and mediators are involved in the pathogenesis of lung injury during ARDS. Although acute lung injury is observed in neutropenic patients and leukocyte-free animal models, polymorphonuclear leukocytes (PMN) play a crucial role in the pathogenesis of acute lung injury. This is reflected by the high number of PMN as well as by the increased myeloperoxidase (MPO) activity in the broncho-alveolar lavage (BAL) fluid of ARDS patients. Stimulated neutrophils may affect the surrounding lung tissue via several mechanisms: the release of proteolytic enzymes, the production of prostanoids as well as the generation of highly reactive oxygen species. This study focuses on the neutrophil-derived non-radical oxygen metabolites hypochloride (HOCl) and hydrogen peroxide (H2O2). The aim of this study is the characterization of the effect of single oxidants, like hypochlorite and hydrogen peroxide, on the pulmonary circulation. Furthermore, the involvement of lipid peroxidation (LPO) during oxidative stress is investigated by the accumulation of LPO products in the tissue. Finally, indicators of acute lung injury are correlated with the content of tissue LPO products to test the hypothesis of a possible causal relation between LPO and the injury of lung microvasculature. Using a model of an isolated ventilated and perfused rabbit lung, the effects of oxidative stress on the pulmonary artery pressure and the vascular permeability are characterized. The oxidants hypochlorite, hydrogen peroxide respectively the system of myeloperoxidase and hydrogen peroxide are administered continuously into the arterial line. Pulmonary arterial pressure, pulmonary venous pressure and fluid retention are continuously recorded, whereas the capillary filtration coefficient is determined gravimetrically. Isolated application of hypochlorite, hydrogen peroxide respectively the system of myeloperoxidase and hydrogen peroxide induce a rise in pulmonary artery pressure and vascular permeability which is characteristic of acute lung injury. The pattern of changes in vascular permeability and pulmonary artery pressure of the single oxidants differ though in their chronological development. In each experimental group an accumulation of tissue LPO products was found, whereas no correlation of the content of tissue LPO products with the extent of changes in pulmonary microvasculature could be proved. Thus the generation of tissue lipid peroxidation products during oxidative stress in acute lung injury seems to be rather concomitant than causal. The thesis of specific modification of free functional groups by the non-radical oxidants as possible mechanism in oxidative stress-induced acute lung injury could be established. KW - ARDS KW - oxidativer Stress KW - Hypochlorsäure KW - Wasserstoffperoxid KW - Myeloperoxidase KW - Lipidperoxidation KW - ARDS KW - oxidative stress KW - hypochlorite KW - hydrogen peroxide KW - myeloperoxidase KW - lipid peroxidation Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3409 ER -