TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126558 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 22.10.2005 ER - TY - THES A1 - Grabs, Peter T1 - Herstellung von Bauelementen für Spininjektionsexperimente mit semimagnetischen Halbleitern T1 - Fabrication of devices for spin injection experiments using dilute magnetic semiconductors N2 - Im Rahmen dieser Arbeit sollten Halbleiterheterostrukturen mit semimagnetischen II-VI-Halbleitern hergestellt werden, mit denen Experimente zum Nachweis und der Erforschung der Spininjektion in Halbleiter durchgeführt werden. Hierzu sollten optische und Transportexperimente dienen. Zur Polarisation der Elektronenspins werden semimagnetische II-VI-Halbleiter verwendet, bei denen in einem von außen angelegten magnetischen Feld bei tiefen Temperaturen durch den riesigen Zeemaneffekt die Spinentartung der Energiebänder aufgehoben ist. Da diese Aufspaltung sehr viel größer als die thermische Energie der Ladungsträger ist, sind diese nahezu vollständig spinpolarisiert. Für die vorgestellten Experimente wurden (Be,Zn,Mn)Se und (Cd,Mn)Se als Injektormaterialien verwendet. Durch die Verwendung von (Be,Zn,Mn)Se als Injektor konnte die Spinjektion in eine GaAs-Leuchtdiode nachgewiesen werden. Hierzu wurde der Grad der zirkularen Polarisation des von der Leuchtdiode emittierten Lichts gemessen, welches ein direktes Maß für die Spinpolarisation der injizierten Elektronen ist. Durch diverse Referenzmessungen konnte die Polarisation des Lichts eindeutig der Spininjektion in die Leuchtdiode zugeordnet werden. So konnten eventuell denkbare andere Ursachen, wie ein zirkularer Dichroismus des Injektormaterials oder die Geometrie des Experiments ausgeschlossen werden. Um die physikalischen Prozesse in der Spin-LED näher zu untersuchen, wurde eine Vielzahl von Experimenten durchgeführt. So wurde unter anderem die Abhängigkeit der Effizienz der Spininjektion von der Dicke der semimagnetischen (Be,Zn,Mn)Se-Schicht erforscht. Hieraus wurde eine magnetfeldabhängige Spin-Flip-Länge im semimagnetischen Halbleiter ermittelt, die kleiner als 20 nm ist. Im Zuge dieser Experimente wurde auch die magnetooptischen Eigenschaften dieser hochdotierten (Be,Zn,Mn)Se-Schichten untersucht. Die große Zeemanaufspaltung bleibt zwar erhalten, wird allerdings insbesondere unter Stromfluß durch eine isolierte Aufheizung der Manganionen in der Schicht reduziert. Die Spin-LEDs wurden auf eine eventuelle Eignung zur Detektion der Spininjektion in Seitenemission, wie es für Experimente mit anderen spinpolarisierenden Materialien nötig ist, getestet. Obwohl die Effizienz der Spininjektion in diesen LEDs nachweislich sehr hoch ist, konnte in Seitenemission keine Polarisation des emittierten Lichts nachgewiesen werden. In dieser Konfiguration sind (Al,Ga)As-LEDs als Detektor also nicht zu verwenden. Der Nachweis der Injektion spinpolarisierter Elektronen in einen Halbleiter sollte auch in Transportexperimenten erfolgen. Hierfür wurden (Be,Zn,Mn)Se/(Be,Zn)Se-Heterostrukturen hergestellt, die wie erwartet einen deutlichen positiven Magnetowiderstand zeigen, der nicht auf die verwendeten Materialien oder die Geometrie der Proben zurückzuführen ist. Der beobachtete Effekt scheint durch ein Zusammenspiel des semimagnetischen Halbleiters mit dem Metall-Halbleiter-Kontakt aufzutreten. Aus diesen Experimenten konnte eine Abschätzung der Spin-Flip-Länge in hochdotierten ZnSe-Schichten getroffen werden. Sie liegt zwischen 10 und 100 nm. Weiterhin sollten Spininjektionsexperimente an InAs durchgeführt werden. Zur Polarisation der Elektronenspins in diesen Experimenten sollte als semimagnetischer Halbleiter (Cd,Mn)Se verwendet werden, da es gitterangepasst zu InAs gewachsen werden kann. Anders als bei (Be,Zn,Mn)Se konnte jedoch auf nahezu keine Erfahrungen auf dem Gebiet der (Cd,Mn)Se-Epitaxie zurückgegriffen werden. Durch die Verwendung eines ZnTe-Puffers ist es gelungen (Cd,Mn)Se-Schichten auf InAs in sehr hoher struktureller Qualität herzustellen. Die Untersuchung der magnetooptischen Eigenschaften dieser Schichten bestätigte die Eignung von (Cd,Mn)Se als Injektor für die geplanten Spininjektionsexperimente. Für die elektrische Charakterisierung ist es nötig, (Cd,Mn)Se auf einem elektrisch isolierenden GaAs-Substrat mit einer (Al,Ga)Sb-Pufferschicht zu epitaxieren. Das monokristalline Wachstum von (Cd,Mn)Se-Schichten hierauf wurde nur durch die Verwendung eines ZnTe-Puffers möglich, der bei sehr niedrigen Substrattemperaturen im ALE-Modus gewachsen wird. Insbesondere die Dotierbarkeit der (Cd,Mn)Se-Schichten ist für die Spininjektionsexperimente wichtig. Es zeigte sich, dass sich die maximal erreichbare n-Dotierung mit Iod durch den Einbau von Mangan drastisch reduziert. Trotzdem ist es gelungen, (Cd,Mn)Se -Schichten herzustellen, die einen negativen Magnetowiderstand zeigen, was eine Voraussetzung für Spininjektionsexperimente ist. Für Transportexperimente sollen die spinpolarisierten Elektronen direkt in ein zweidimensionales Elektronengas injiziert werden. Hierfür wurden Heterostrukturen mit einem InAs-Quantentrog, in dem sich ein solches 2DEG ausbildet, hergestellt und in Hall-Messungen charakterisiert. Für die Realisierung dieser Experimente wurde ein Konzept erstellt und erste Versuche zu dessen Umsetzung durchgeführt. Ein zu lösendes Problem bleibt hierbei die Diffusion auf der freigelegten InAs-Oberfläche bei den für das (Cd,Mn)Se-Wachstum nötigen Substrattemperaturen. Leuchtdioden mit einem InAs-Quantentrog wurden für den Nachweis der Spininjektion in InAs auf optischem Wege hergestellt. Für die Realisierung einer solchen Leuchtdiode war es nötig, auf ein asymmetrisches Designs mit einer n-Barriere aus (Cd,Mn)Se und einer p-Barriere aus (Al,Ga)(Sb,As) zurückzugreifen. Es wurden sowohl magnetische als auch unmagnetische Referenzproben hergestellt und vermessen. Die Ergebnisse deuten auf einen experimentellen Nachweis der Spininjektion hin. N2 - The goal of this thesis was the fabrication of semiconductor heterostructures utilizing II-VI diluted magnetic semiconductors for optical and electrical spin injection experiments into semiconductors. To polarize the electron spins, II-VI diluted magnetic semiconductors were used, where, at low temperatures in an external magnetic field, the spin degeneracy of the energy bands is lifted by the Giant Zeeman Effect. The energy splitting is larger than the thermal energy of the carriers, leading to a nearly completely spin polarized electron population. For the discussed experiments, (Be,Zn,Mn)Se and (Cd,Mn)Se were used as spin aligner material. Spin injection into a GaAs-LED was demonstrated by using a (Be,Zn,Mn)Se injector. For this, the degree of circular polarization of the light emitted by the LED was measured, as a direct measure of the degree of polarization of the injected electrons. A huge effort was made to clearly prove that the origin of this optical polarization is indeed the injection of spin polarized electrons into the LED. By these experiments other spurious origins like a possible circular dichroism of the spin aligner or the geometry of the experiment could be excluded. A multitude of experiments was performed to investigate the physical processes playing a role in the Spin-LED. Inter alia the dependence of the efficiency of the spin injection on the thickness of the (Be,Zn,Mn)Se injector layer was examined and a magnetic field dependent spin flip length in the DMS was found which is smaller than 20 nm. During these experiments the magneto-optical properties of the doped (Be,Zn,Mn)Se layers were investigated. Although the Giant Zeeman Splitting is preserved it is reduced by a heating of the manganese ions especially when an electrical current is flowing. The usability of the Spin-LEDs for detection of spin injection in side emission, as it will be necessary for spin injection experiments with different spin aligners, was tested. Despite the evidenced highly efficient spin injection in these (Al,Ga)As Spin-LEDs, no optical polarization could be detected in side emission making them unemployable in this configuration. The evidence of the injection of spin polarized electrons into a semiconductor was also to be provided by electrical transport experiments. To do so (Be,Zn,Mn)Se/(Be,Zn)Se heterostructures were fabricated which show an expected increase of the resistance with increasing magnetic field, which is not associated with the used materials themselves, nor with the sample geometry. The observed effect seems to be due to the interplay between the diluted magnetic semiconductor and the semiconductor-metal-contact. These experiments lead to an estimate for the spin flip length in highly doped ZnSe between 10 and 100 nm. Furthermore, spin injection experiments into InAs were to be done. For this (Cd,Mn)Se was used as aligner of the electron spins because it can be grown lattice matched to InAs. Unlike to (Be,Zn,Mn)Se, there were nearly no previous experiences on the epitaxial growth of (Cd,Mn)Se. The growth of layers with very high structural quality was made possible by the introduction of a thin ZnTe buffer layer. Magnetooptical investigations showed the usability of this material as an injector material for the planned spin injection experiments. For further experiments it is necessary to grow (Cd,Mn)Se on an electrical insulating GaAs substrate with an (Al,Ga)Sb buffer layer. The monocrystalline growth of (Cd,Mn)Se could only be obtained by using a ZnTe buffer grown at very low substrate temperatures in an ALE mode. The dopability of the (Cd,Mn)Se layers is very important for the spin injection experiments. The maximum value of achievable n-type doping with iodine is drastically reduced by the incorporation of manganese. Nevertheless, we succeeded in fabricating highly doped (Cd,Mn)Se layers with negative magnetoresistance, a requirement for their use in spin injection experiments. To perform transport experiments the spin polarized electrons shall be injected directly into a two-dimensional electron gas. For this purpose heterostructures with an InAs quantum well containing such a 2DEG were produced and characterized by Hall measurements. A concept for the realization of these experiments was introduced and first steps for its implementation were made. The diffusion on the free InAs surface at the high substrate temperatures necessary for the (Cd,Mn)Se growth remains a problem to be solved. LEDs with an InAs quantum well were fabricated for the optical detection of spin injection into InAs. In order to realize such an LED, the use of an asymmetric design with an (Al,Ga)(Sb,As) p-type and a (Cd,Mn)Se n-type barrier was essential. Both magnetic and non-magnetic LEDs were grown and characterized. First results indicate evidence of spin injection in these LEDs. KW - Semimagnetischer Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - MBE KW - II-VI-Halbleiter KW - Spininjektion KW - MBE KW - II-VI-semiconductors KW - spin injection Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16048 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors KW - gallium nitride KW - ferromagnets KW - photoluminescence Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15188 N1 - Aus datenschutzrechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. Eine inhaltlich identische neue Version ist erhältlich unter: http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558 ER -