TY - THES A1 - Beetz, Johannes T1 - Herstellung und Charakterisierung von Halbleiterbauelementen für die integrierte Quantenphotonik T1 - Fabrication and characterization of semiconductor devices for integrated quantum photonics N2 - Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung quantenphotonischer Komponenten, welche für eine monolithische Integration auf einem Halbleiter-Chip geeignet sind. Das GaAs-Materialsystem stellt für solch einen optischen Schaltkreis die ideale Plattform dar, weil es flexible Einzelphotonenquellen bereithält und mittels ausgereifter Technologien auf vielfältige Weise prozessiert werden kann. Als Photonenemitter werden Quantenpunkte genutzt. Man kann sie mit komplexen Bauelementen kombinieren, um ihre optischen Eigenschaften weiter zu verbessern. Im Rahmen dieser Arbeit konnte eine erhöhte Effizienz der Photonenemission beobachtet werden, wenn Quantenpunkte in Wellenleiter eingebaut werden, die durch photonische Kristalle gebildet werden. Die reduzierte Gruppengeschwindigkeit die diesem Effekt zugrunde liegt konnte anhand des Modenspektrums von kurzen Wellenleitern nachgewiesen werden. Durch zeitaufgelöste Messungen konnte ermittelt werden, dass die Zerfallszeit der spontanen Emission um einen Faktor von 1,7 erhöht wird, wenn die Emitter zur Mode spektrale Resonanz aufweisen. Damit verbunden ist eine sehr hohe Modeneinkopplungseffizienz von 80%. Das Experiment wurde erweitert, indem die zuvor undotierte Membran des Wellenleiters durch eine Diodenstruktur ersetzt und elektrische Kontakte ergänzt wurden. Durch Anlegen von elektrischen Feldern konnte die Emissionsenergie der Quantenpunkte über einen weiten spektralen Bereich von etwa 7meV abgestimmt werden. Das Verfahren kann genutzt werden, um die exzitonischen Quantenpunktzustände in einen spektralen Bereich der Wellenleitermode mit besonders stark reduzierter Gruppengeschwindigkeit zu verschieben. Hierbei konnten für Purcell-Faktor und Kopplungseffizienz Bestwerte von 2,3 und 90% ermittelt werden. Mithilfe einer Autokorrelationsmessung wurde außerdem nachgewiesen, dass die Bauelemente als Emitter für einzelne Photonen geeignet sind. Ein weiteres zentrales Thema dieser Arbeit war die Entwicklung spektraler Filterelemente. Aufgrund des selbstorganisierten Wachstums und der großen räumlichen Oberflächendichte von Quantenpunkten werden von typischen Anregungsmechanismen Photonen mit einer Vielzahl unterschiedlicher Energien erzeugt. Um die Emission eines einzelnen Quantenpunktes zu selektieren, muss der Transmissionsbereich des Filters kleiner sein als der Abstand zwischen benachbarten Spektrallinien. Ein Filter konnte durch die Variation des effektiven Brechungsindex entlang von indexgeführten Wellenleitern realisiert werden. Es wurde untersucht wie sich die optischen Eigenschaften durch strukturelle Anpassungen verbessern lassen. Ein weiterer Ansatz wurde mithilfe photonischer Kristalle umgesetzt. Es wurde gezeigt, dass der Filter hierbei eine hohe Güte von 1700 erreicht und gleichzeitig die Emission des Quantenpunkt-Ensembles abgetrennt werden kann. Die Bauelemente wurden so konzipiert, dass die im photonischen Kristall geführten Moden effizient in indexgeführte Stegwellenleiter einkoppeln können. Ein Teil dieser Arbeit beschäftigte sich zudem mit den Auswirkungen von anisotropen Verspannungen auf die exzitonischen Zustände der Quantenpunkte. Besonders starke Verspannungsfelder konnten induziert werden, wenn der aktive Teil der Bauelemente vom Halbleitersubstrat abgetrennt wurde. Dies wurde durch ein neu entwickeltes Fabrikationsverfahren ermöglicht. Infolgedessen konnten die Emissionsenergien reversibel um mehr als 5meV abgestimmt werden, ohne dass die optischen Eigenschaften signifikant beeinträchtigt wurden. Die auf den aktiven Teil der Probe wirkende Verspannung wurde durch die Anwendung verschiedener Modelle abgeschätzt. Darüberhinaus wurde gezeigt, dass durch Verspannungen der spektrale Abstand zwischen den Emissionen von Exziton und Biexziton gezielt beeinflusst werden kann. Die Kontrolle dieser exzitonischen Bindungsenergie kann für die Erzeugung quantenmechanisch verschränkter Photonen genutzt werden. Dieses Ziel kann auch durch die Reduzierung der Feinstrukturaufspaltung des Exzitons erreicht werden. Die experimentell untersuchten Quantenpunkte weisen Feinstrukturaufspaltungen in der Größenordnung von 100meV auf. Durch genau angepasste Verspannungsfelder konnte der Wert erheblich auf 5,1meV verringert werden. Beim Durchfahren des Energieminimums der Feinstrukturaufspaltung wurde eine Drehung der Polarisationsrichtung um nahezu 90° beobachtet. Desweiteren wurde ein Zusammenhang des Polarisationsgrades mit der Feinstrukturaufspaltung nachgewiesen. Es wurde ein weiterer Prozessablauf entworfen, um komplexe Halbleiterstrukturen auf piezoelektrische Elemente übertragen zu können. Damit war es möglich den Einfluss der Verspannungsfelder auf Systeme aus Quantenpunkten und Mikroresonatoren zu untersuchen. Zunächst wurde demonstriert, dass die Modenaufspaltung von Mikrosäulenresonatoren reversibel angepasst werden kann. Dies ist ebenfalls von Interesse für die Erzeugung polarisationsverschränkter Photonen. An Resonatoren aus photonischen Kristallen konnte schließlich gezeigt werden, dass das Verhältnis der spektralen Abstimmbarkeiten von exzitonischen Emissionslinien und Resonatormode etwa fünf beträgt, sodass beide Linien in Resonanz gebracht werden können. Dieses Verhalten konnte zur Beeinflussung der Licht-Materie-Wechselwirkung genutzt werden. N2 - The focus of this work lies on the development of quantum photonic components which are capable to be integrated into a monolithic semiconductor chip. The GaAs material system is an ideal platform for such an optical circuit since it offers flexible emitters for single photons and can be processed in various ways using mature technologies. Quantum dots can serve as photon emitters. They can be readily combined with complex devices in order to enhance their optical properties. In this thesis, an increased efficiency of the photon emission was observed when quantum dots are embedded into photonic crystal waveguides. The reduced group velocity which is responsible for this effect was verified in short waveguides by analyzing spectral features of the mode. Time resolved measurements were used to show a decrease of the decay time of the spontaneous emission time by a factor of 1.7 when the emitter is resonant to the mode. As a consequence, a very high mode coupling efficiency of 80% was found. In an extended experiment, the previously undoped membrane of the waveguide was replaced by a diode-like layer structure and electrical contacts were added to the device. Using an electrical field, the emission energies of the quantum dots were tuned in a wide spectral range of approximately 7 meV. This technique can be used to shift the excitonic states of the quantum dots towards the spectral part of the waveguide mode where the group velocity is strongly reduced. As a result, the Purcell factor and the coupling efficiency were found to be as high as 2.3 und 90%. Using autorcorrelation measurements single photon emission was demonstrated for the devices. A futher topic of this work is focused on the development of spectral filters. Due to the self-assembled growth and high spatial surface density of quantum dots, typical excitation schemes generate a great number of photons with different energies. In order to select the emission of a single quantum dot, the transmission range of the filters must be lower than the distance of adjacent spectral lines. A filter device was realized by variations of the effective refractive index alongside of ridge waveguides. The optical properties were improved by structural adjustments. Another approach was implemented by using photonic crystals. This filter yielded a quality factor of 1700 and was able to suppress the emission of the quantum dot ensemble. The devices were designed to efficiently couple the mode from the photonic crystal to a ridge waveguide. Another part of this work addresses the effect of anistropic strain on the excitonic states of the quantum dots. In order to induce high amounts of strain, the active parts of the devices must be separated from the semiconductor substrate. For this reason a new fabrication process was developed. Consequently, reversible tuning ranges of more than 5 meV could be achieved for the emission energies while largely maintaining the optical properties. Strain applied at the active parts of the sample was estimated using various models. Furthermore, it was demonstrated that the spectral distance between exciton and biexziton is influenced by strain. The manipulation of the excitonic binding energy is useful for the generation of quantum-mechanically entangled photons. Another way to accomplish this goal is the reduction of the fine structure splitting of the exciton. The fine structur splitting of quantum dots used in the experiments is in the order of magnitude of 100 µeV. This value was decreased to 5.1 µeV by precise adjustments of the induced strain. A rotation of the emission polarization by almost 90◦ was observed when crossing the energetic minimum of the fine structure splitting. Furthermore, a change of the degree of polarization associated with the fine structure splitting was demontrated. A further process flow was developed in order to transfer complex device structures onto piezoelectric substrates. This allows for the investigation of strain induced to systems composed of quantum dots and microresonators. It was demonstrated that the spectral splitting of the mode of micropillar resonators can be tuned in a reversible manner. This finding is again interesting for the generation of polarization-entangled photons. When strain is applied to photonic crystal resonators a ratio of 5 is observed for the tuning ranges of excitonic emission lines and resonator mode with the result that resonance can accomplished between both lines. Since the tuning sensitivities are different the interaction of light and matter can be adjusted by strain. KW - Galliumarsenid-Bauelement KW - Resonatoren KW - Photonische Kristalle KW - Quantenpunkt KW - Photonik KW - Halbleiter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117130 ER - TY - THES A1 - Benkert, Thomas T1 - Neue Steady-State-Techniken in der Magnetresonanztomographie T1 - Novel Steady-State Techniques for Magnetic Resonance Imaging N2 - Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verhältnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgründe hierfür sind Signalauslöschungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur Lösung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP für die MR-Diagnostik zu ermöglichen. Magnetfeldinhomogenitäten, die im Wesentlichen durch Suszeptibilitätsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, äußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalauslöschungen effizient zu entfernen. Während für bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden müssen, ist für die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizufälligem Abtastschema ermöglicht. Die notwendigen Bestandteile können mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes ermöglicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bezüglich ihrer Robustheit als auch bezüglich der notwendigen Messzeit übertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gewöhnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgelöste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitivät der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgeführt werden, ohne dass nennenswerte Beeinträchtigungen der Bildqualität auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gewöhnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten benötigt werden. Dies führt zu einer entsprechenden Verlängerung der zugehörigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, ermöglicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenitäten. Dennoch ist es möglich, dass Signalauslöschungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt primär bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierfür wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erhöhten Messzeit ermöglichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkohärente Bildartefakte, die sich jedoch durch eine Erhöhung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu wählen, bei denen bereits intrinsisch eine verhältnismäßig hohe Anzahl von Projektionen benötigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgelösten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gewöhnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdrückungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten für die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. Während die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente Lösungen für das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die Möglichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einfügen von Inversionspulsen in ungleichmäßigen Abständen aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gewöhnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit können bei gleichbleibender oder sogar verbesserter Bildqualität aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gewöhnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingefügten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen möglich ist, zusätzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgelöscht sind. Diese Substanzen können am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine ähnlich hohe klinische Relevanz aus. Die mögliche Bedeutung der vorgestellten Methode für die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur Lösung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software für die Rekonstruktion von RA-TOSSI-Datensätzen wurde für Siemens Scanner implementiert. Folglich sind beide Methoden für klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt. N2 - The bSSFP sequence combines short acquisition times with a high signal-to-noise ratio, and is therefore a promising imaging technique. However, aside from a few applications, this method is hardly established in the clinical routine. The main reasons for this are signal voids that arise as banding artifacts and the obtained T2/T1-weighted mixed contrast. The goal of this dissertation was to develop strategies to overcome these limitations and allow for a more widespread use of bSSFP for MR diagnostics. In bSSFP imaging, magnetic field inhomogeneities, which are mainly caused by susceptibility differences and imperfections of the scanner hardware, manifest as banding artifacts. In order to efficiently remove these artifacts from the image, DYnamically Phase-cycled Radial bSSFP (DYPR-SSFP) was proposed. While existing methods rely on the acquisition and subsequent combination of several separate bSSFP images, banding removal with DYPR-SSFP requires the acquisition of only a single data set. This is achieved by combining a dynamic phase-cycle with a radial trajectory and a quasi-random acquisition scheme. The individual components of this method can be implemented with little effort. Furthermore, no specific reconstruction scheme is necessary, guaranteeing the broad applicability of the developed approach. DYPR-SSFP outperformed conventional methods for banding removal both in robustness and scan time. In order to demonstrate the applicability of DYPR-SSFP beyond conventional imaging, the method was also applied to fat-water separation. Based on the Dixon technique, fat and water images were generated with high resolution. Due to the motion robustness of the underlying radial trajectory, measurements could be performed during free-breathing, without notable degradation of image quality. Abdominal images showed neither regional fat-water flipping nor residual banding artifacts. A drawback of standard Dixon-based fat-water separation is the fact that several separate images with different echo times have to be acquired, therefore prolonging the respective scan time. This can be overcome by using a multiecho sequence. It was demonstrated that the combination of such multiecho sequence and Dixon DYPR-SSFP allows for robust, banding-free fat-water separation in clinically acceptable scan times. DYPR-SSFP guarantees removal of banding artifacts even for strong magnetic field inhomogeneities. However, signal voids may remain due to intravoxel dephasing. This problem primarily arises when imaging metallic implants or when moving to ultra-high field strengths. To address this issue, the combination of DYPR-SSFP with the so-called z-shim technique was investigated, allowing the removal of these artifacts at the expense of an increased measurement time. Due to the applied dynamic phase-increment, radial projections which are acquired with DYPR-SSFP exhibit slightly different signal levels and phases. This results in incoherent artifacts, that can be effectively reduced by increasing the number of acquired projections. Therefore, DYPR-SSFP should be preferably applied when many projections are intrinsically necessary. It has been demonstrated that, besides high resolution imaging, the choice of a 3D radial trajectory is a promising combination. The proposed 3D DYPR-SSFP technique allowed isotropic banding-free bSSFP imaging without any expense of additional scan time compared to a conventional bSSFP acquisition. Residual artifacts caused by the dynamic phase-cycle could be effectively mitigated by applying a denoising algorithm. Volunteer measurements showed that 3D DYPR-SSFP is a promising candidate for imaging of the cranial nerves and the musculoskeletal system. While DYPR-SSFP and all presented resulting methods constitute an efficient solution for banding artifacts in bSSFP imaging, the proposed RAdial T-One sensitive and insensitive Steady-State Imaging (RA-TOSSI) method addresses the problem of the mixed contrast in bSSFP imaging. The possibility to generate T2-contrast with bSSFP has been shown before. The previous approach is based on the fact that T1-relaxation during the transient phase of a bSSFP acquisition can be suppressed by inserting unequally spaced inversion pulses. Thus, the resulting image shows a clinically relevant T2-contrast. The method which was presented as part of this dissertation relies on the same principle. However, instead of the originally proposed Cartesian trajectory, a radial trajectory in combination with a KWIC-filter reconstruction was applied. This allows the generation of several T2-weighted images as well as T2/T1-weighted images from a single RA-TOSSI dataset, while image quality remains comparable or even improves compared with existing methods. It could further be shown that varying the number of inversion pulses allows the generation of additional contrasts, where different tissue types are attenuated in the image. In the case of brain imaging for instance, these tissues comprise fat, gray matter, white matter, and CSF and offer high clinical relevance similar to T2-weighted images. Measurements of a patient with a brain tumor demonstrate the possible impact of the proposed method. In conclusion, the techniques developed as part of this dissertation present a valuable contribution to the solution of various problems which are associated with bSSFP imaging. Images acquired with DYPR-SSFP can be reconstructed directly at the scanner using existing, commercial reconstruction software. The software for the reconstruction of RA-TOSSI data was implemented for Siemens scanners. Therefore, both methods can be directly employed for clinical studies which remain as future work. KW - Kernspintomografie KW - Radiale Bildgebung KW - Steady-State-Sequenzen KW - balanced SSFP KW - Nicht-kartesische Bildgebung KW - Radial Imaging KW - Steady-State Sequences KW - balanced SSFP KW - Non-Cartesian Imaging KW - Magnetische Kernresonanz KW - Biophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115381 ER - TY - THES A1 - Wolf, Nadine T1 - Synthese, Charakterisierung und Modellierung von klassischen Sol-Gel- und Nanopartikel-Funktionsschichten auf der Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid T1 - Synthesis, characterization and modeling of classical sol gel and nanoparticle functional layers on the basis of indium tin oxide and alumnium zinc oxide N2 - Das Ziel dieser Arbeit ist neben der Synthese von Sol-Gel-Funktionsschichten auf der Basis von transparent leitfähigen Oxiden (transparent conducting oxides, TCOs) die umfassende infrarotoptische und elektrische Charakterisierung sowie Modellierung dieser Schichten. Es wurden sowohl über klassische Sol-Gel-Prozesse als auch über redispergierte Nanopartikel-Sole spektralselektive Funktionsschichten auf Glas- und Polycarbonat-Substraten appliziert, die einen möglichst hohen Reflexionsgrad im infraroten Spektralbereich und damit einhergehend einen möglichst geringen Gesamtemissionsgrad sowie einen niedrigen elektrischen Flächenwiderstand aufweisen. Zu diesem Zweck wurden dotierte Metalloxide, nämlich einerseits Zinn-dotiertes Indiumoxid (tin doped indium oxide, ITO) und andererseits Aluminium-dotiertes Zinkoxid (aluminum doped zinc oxide, AZO)verwendet. Im Rahmen dieser Arbeit wurden vertieft verschiedene Parameter untersucht, die bei der Präparation von niedrigemittierenden ITO- und AZO-Funktionsschichten im Hinblick auf die Optimierung ihrer infrarot-optischen und elektrischen Eigenschaften sowie ihrer Transmission im sichtbaren Spektralbereich von Bedeutung sind. Neben der Sol-Zusammensetzung von klassischen Sol-Gel-ITO-Beschichtungslösungen wurden auch die Beschichtungs- und Ausheizparameter bei der Herstellung von klassischen Sol-Gel-ITO- sowie -AZO-Funktionsschichten charakterisiert und optimiert. Bei den klassischen Sol-Gel- ITO-Funktionsschichten konnte als ein wesentliches Ergebnis der Arbeit der Gesamtemissionsgrad um 0.18 auf 0.17, bei in etwa gleichbleibenden visuellen Transmissionsgraden und elektrischen Flächenwiderständen, reduziert werden, wenn anstelle von (optimierten) Mehrfach-Beschichtungen Einfach-Beschichtungen mit einer schnelleren Ziehgeschwindigkeit anhand des Dip-Coating-Verfahrens hergestellt wurden. Mit einer klassischen Sol-Gel-ITO-Einfach-Beschichtung, die mit einer deutlich erhöhten Ziehgeschwindigkeit von 600 mm/min gedippt wurde, konnte mit einem Wert von 0.17 der kleinste Gesamtemissionsgrad dieser Arbeit erzielt werden. Die Gesamtemissionsgrade und elektrischen Flächenwiderstände von klassischen Sol-Gel-AZOFunktionsschichten konnten mit dem in dieser Arbeit optimierten Endheizprozess deutlich gesenkt werden. Bei Neunfach-AZO-Beschichtungen konnten der Gesamtemissionsgrad um 0.34 auf 0.50 und der elektrische Flächenwiderstand um knapp 89 % auf 65 Ω/sq verringert werden. Anhand von Hall-Messungen konnte darüber hinaus nachgewiesen werden, dass mit dem optimierten Endheizprozess, der eine erhöhte Temperatur während der Reduzierung der Schichten aufweist, mit N = 4.3·1019 cm-3 eine etwa doppelt so hohe Ladungsträgerdichte und mit µ = 18.7 cm2/Vs eine etwa drei Mal so große Beweglichkeit in den Schichten generiert wurden, im Vergleich zu jenen Schichten, die nach dem alten Endheizprozess ausgehärtet wurden. Das deutet darauf hin, dass bei dem optimierten Heizschema sowohl mehr Sauerstofffehlstellen und damit eine höhere Ladungsträgerdichte als auch Funktionsschichten mit einem höheren Kristallisationsgrad und damit einhergehend einer höheren Beweglichkeit ausgebildet werden. Ein Großteil der vorliegenden Arbeit behandelt die Optimierung und Charakterisierung von ITO-Nanopartikel-Solen bzw. -Funktionsschichten. Neben den verwendeten Nanopartikeln, dem Dispergierungsprozess, der Beschichtungsart sowie der jeweiligen Beschichtungsparameter und der Nachbehandlung der Funktionsschichten, wurde erstmals in einer ausführlichen Parameterstudie die Sol-Zusammensetzung im Hinblick auf die Optimierung der infrarot-optischen und elektrischen Eigenschaften der applizierten Funktionsschichten untersucht. Dabei wurde insbesondere der Einfluss der verwendeten Stabilisatoren sowie der verwendeten Lösungsmittel auf die Schichteigenschaften charakterisiert. Im Rahmen dieser Arbeit wird dargelegt, dass die exakte Zusammensetzung der Nanopartikel-Sole einen große Rolle spielt und die Wahl des verwendeten Lösungsmittels im Sol einen größeren Einfluss auf den Gesamtemissionsgrad und die elektrischen Flächenwiderstände der applizierten Schichten hat als die Wahl des verwendeten Stabilisators. Allerdings wird auch gezeigt, dass keine pauschalen Aussagen darüber getroffen werden können, welcher Stabilisator oder welches Lösungsmittel in den Nanopartikel-Solen zu Funktionsschichten mit kleinen Gesamtemissionsgraden und elektrischen Flächenwiderständen führt. Stattdessen muss jede einzelne Kombination von verwendetem Stabilisator und Lösungsmittel empirisch getestet werden, da jede Kombination zu Funktionsschichten mit anderen Eigenschaften führt. Zudem konnte im Rahmen dieser Arbeit erstmals stabile AZO-Nanopartikel-Sole über verschiedene Rezepte hergestellt werden. Neben der Optimierung und Charakterisierung von ITO- und AZO- klassischen Sol-Gel- sowie Nanopartikel-Solen und -Funktionsschichten wurden auch die infrarot-optischen Eigenschaften dieser Schichten modelliert, um die optischen Konstanten sowie die Schichtdicken zu bestimmen. Darüber hinaus wurden auch kommerziell erhältliche, gesputterte ITO- und AZO-Funktionsschichten modelliert. Die Reflexionsgrade dieser drei Funktionsschicht-Typen wurden einerseits ausschließlich mit dem Drude-Modell anhand eines selbstgeschriebenen Programmes in Sage modelliert, und andererseits mit einem komplexeren Fit-Modell, welches in der kommerziellen Software SCOUT aus dem erweiterten Drude-Modell, einem Kim-Oszillator sowie dem OJL-Modell aufgebaut wurde. In diesem Fit-Modell werden auch die Einflüsse der Glas-Substrate auf die Reflexionsgrade der applizierten Funktionsschichten berücksichtigt und es können die optischen Konstanten sowie die Dicken der Schichten ermittelt werden. Darüber hinaus wurde im Rahmen dieser Arbeit ein Ellipsometer installiert und geeignete Fit-Modelle entwickelt, anhand derer die Ellipsometer-Messungen ausgewertet und die optischen Konstanten sowie Schichtdicken der präparierten Schichten bestimmt werden können. N2 - The aim of this thesis is on the one hand the synthesis of sol-gel functional layers on the basis of transparent conducting oxides (TCOs) and on the other hand a comprehensive infrared-optical and electrical characterization as well as modeling of these layers. Spectrally selective coatings have been prepared with the classical sol-gel route as well as with redispersed nanoparticle sols on glass and polycarbonate substrates and these coatings should have a reflectance in the infrared spectral range which is as high as possible and therefore a total emittance and an electrical sheet resistance which are as small as possible. For this purpose tin doped indium oxide (ITO) and aluminum doped zinc oxide (AZO) have been used as doped metal oxides. Within this thesis several parameters have been investigated in-depth which play a decisive role in the preparation of ITO and AZO low emissivity coatings, in order to prepare such coatings with optimized infrared-optical and electrical properties as well as visual transmittances. Besides the composition of the classical sol-gel ITO coating solutions, also the parameters of the coating as well as the heating processes have been characterized and optimized in the manufacture of classical sol-gel ITO and AZO functional layers. As a significant result the total emittance of classical sol-gel ITO functional layers could be reduced by 0.18 to 0.17 while the visual transmittance and electrical sheet resistances stay approximately the same, if just one-layered coatings are applied with a higher withdrawal speed with the dip coating technique instead of (optimized) multi-layered coatings. With a classical sol-gel ITO single coating, which has been produced with a withdrawal speed of 600 mm/min, the smallest total emittance of this work could be realized with 0.17. The total emittances and electrical sheet resistances of classical sol-gel AZO functional layers were reduced drastically in this work by using the optimized final heating process. The total emittance could be reduced by 0.34 to 0.50 and the electrical sheet resistance by 89 % to 65Ω/sq with a coating which consists of nine single layers. On the basis of Hall measurements it has been shown that coatings which were treated with the optimized heating process (which exhibits a higher temperature during the reducing treatment of the coatings) show a higher charge carrier density as well as a higher mobility than those coatings treated with the old heating process. With the optimized heating process the ninelayered coatings exhibit a charge carrier density of N = 4.3·1019 cm-3 which is approximately twice as high and a mobility of µ = 18.7 cm2/Vs which is about three times higher than the values of coatings which have been heated with the old process. This indicates that with the optimized heating process more oxygen vacancies and, associated therewith a higher charge carrier density as well as a higher crystallinity of the layer and thus a higher mobility are generated. One focus of the presented work lies on the optimization and characterization of ITO redispersed nanoparticle sols and functional layers respectively. In addition to the used nanoparticles, the dispersion process, the coating type with the respective coating parameters and post-treatments of the functional layers also a detailed parameter study has been done. This parameter study examined the composition of the nanoparticle sols with a view to the optimization of the infrared-optical and electrical properties of the applied coatings. The coating properties have been studied in particularly with regard to the influence of the used stabilizers and solvents respectively. In this work it will be shown, that the accurate composition of the nanoparticle sols plays a decisive role and the choice of the used solvents has a bigger impact on the coating properties than the choice of the used stabilizers. However, it will also be shown, that no general statements can be made which stabilizers or which solvents within the sols lead to coatings which have small total emittances and small electrical sheet resistances. Instead each combination of used stabilizer and used solvent has to be empirically tested since each combination leads to coatings with different properties. Furthermore stable AZO nanoparticle sols based on several formulas have been developed for the first time. Besides the optimization and characterization of ITO and AZO classical sol-gel as well as nanoparticle sols and functional layers, also the infrared-optical properties of these coatings have been modeled in order to determine the optical constants as well as the coating thicknesses. Furthermore also commercially available sputtered ITO and AZO coatings have been modeled. The reflectances of these three types of coatings have been modeled on the one hand by using only the Drude model within a self-written program in the software Sage. On the other hand these coatings have been modeled with more complex fitting models within the commercially available software called SCOUT. These more complex fitting models consist of the extended Drude model, a Kim oscillator and an OJL model and they also take the influence of the glass substrates on the reflectances of the applied coatings into account. By using these fitting models, the optical constants of the applied coatings and the coating thicknesses can be obtained. In addition an Ellipsometer has been installed as part of this work and suitable fitting models have been developed. These models can be used for analyzing the Ellipsometer measurements in order to determine the optical constants and the coating thicknesses of the coatings applied. KW - Transparent-leitendes Oxid KW - Sol-Gel-Verfahren KW - Beschichtung KW - Funktionswerkstoff KW - Sol-Gel-Synthese KW - ITO KW - AZO KW - redispergierte Nanopartikel-Sole KW - Drude-Modell KW - sol gel KW - redispersed nanoparticle sol KW - Drude model KW - Charakterisierung KW - Modellierung KW - Physikalische Schicht KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112416 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Müller, Thomas M. T1 - Computergestütztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid–Aluminiumoxid Keramiken T1 - Computer-Aided Material Design: Microstructure and Electrical Properties of Zirconia-Alumina-Ceramics N2 - Die Mikrostruktur von Zirkonoxid–Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen äquivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repräsentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachträglich hinzugefüg. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE für die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache Übernahme der Voxelstrukturen in hexaedrische Elemente führt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zunächst eine adaptive Oberflächenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verkürzen ohne die Genauigkeit der FES zu beeinträchtigen, wurden die Oberflächenvernetzungen dergestalt vereinfacht, dass eine hohe Auflösung an den Ecken und Kanten der Strukturen erhalten blieb, während sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberflächenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und für die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zunächst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Berücksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute Übereinstimmung zwischen den experimentellen und simulierten Werten bezüglich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einflüsse verschiedener mikrostruktureller Parameter, wie Porosität, Korngröße und Komposition, auf das makroskopische Materialverhalten näher zu untersuchen. N2 - The microstructures of zirconia–alumina ceramics are investigated by scanning electron microscopy (SEM) and further characterised by quantitative image analysis. This leads to specific morphological parameters which are compared with the same parameters derived from three-dimensional model structures generated in voxel-based representative volume elements (RVE). Modified Voronoi clusters are employed to represent alumina and zirconia phases. Pores are added at the grain corners and edges respectively. After adjusting all the relevant morphological parameters of the model to the real ceramics’ microstructure, the RVE has to be meshed for finite element simulations (FES). Hexahedral elements which simply use the voxel structure did not lead to sufficient accuracy of the FES. As a first step, an adapted surface tessellation is generated, using a generally classed marching tetrahedra method. Special care is taken to preserve the topology as well as the individual volumes and interfaces of the model. In terms of processing time and accuracy of the FES it is very important to simplify the initially generated surface mesh in a manner that preserves detailed resolution at corners and along edges, while decimating the number of surface elements in flat regions, i.e. at the grain boundaries. From the surface mesh an adequate tetrahedral volume tessellation, including solid elements representing the grain boundaries, is created, which is used for the FES. Therefore, a FE-model for the simulation of impedance spectra has been established and validated. To simulate the macroscopic electrical behaviour of polycrystalline ceramics, the electrical properties of the individual constituting phases need to be measured. This is done by impedance spectroscopy up to 1000 °C. Further analysis of the experimental data with special respect to the effect of the grain boundaries is carried out to obtain the individual phases’ properties. The sample composition was varied from pure zirconia to pure alumina. A very good agreement between experimental and simulated data was achieved in terms of electrical, thermal and mechanical properties. The FES were employed to scrutinize the effects of systematically varying microstructural properties, such as porosity, grain size and composition, on the macroscopic material behaviour. KW - Keramischer Werkstoff KW - Mikrostruktur–Eigenschafts–Korrelationen KW - Mikrostrukturmodellierung KW - Impedanzspektroskopie KW - Finite Element Simulationen KW - Microstructure–Property–Relationship KW - Microstructure Modelling KW - Impedance Spectroscopy KW - Finite Element Simulations KW - Mikrostruktur KW - Computersimulation KW - Finite-Elemente-Methode KW - Simulation KW - Dreidimensionales Modell KW - Gefügekunde Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110942 ER - TY - THES A1 - Fuchs, Peter T1 - Monolithische Quantenkaskadenlaser mit monomodiger und weit abstimmbarer Emission T1 - Monolithic quantum cascade lasers with monomode and widely tunable emission N2 - Ausgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser für die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. Für den Entwurf der Laserstege wurde zunächst die zeitliche Entwicklung der Temperaturverteilung für verschiedene Varianten von Wellenleitern sowohl im gepulsten als auch im kontinuierlichen Betrieb simuliert. Anhand der berechneten thermischen Bauteilwiderstände konnten so geeignete Prozessparameter für die Herstellung der Laserstrukturen ermittelt werden Zur Herstellung von monochromatischen DFB-Lasern auf Basis eines MesaWellenleiters mit Seitenwandgittern wurde ein Prozess entwickelt, der sich - im Vergleichzu gängigen Verfahren zur Strukturierung von DFB-Gittern - durch eine stark reduzierte Anzahl an Verfahrenschritten und eine schnelle und einfache Durchführbarkeit auszeichnet. Für Laser mit 4 mm Länge und 14 µm mittlerer Breite wurde eine Spitzenleistung über 200 mW bei einer externen Effizienz von 330 mW/A und einer Schwellstromdichte von 2,1 kA/cm^2 bei Raumtemperatur bestimmt. DFB-Laser um 14 µm, welche - durch die große Wellenlänge bedingt – höhere Schwellstromdichten aufweisen, wurden dagegen auf Basis von nasschemisch geätzten Doppelkanal-Wellenleitern mit in die Oberseite des Steges geätzten Gittern und dickem Gold auf den Stegflanken hergestellt, um eine bessere laterale Wärmeabfuhr zu erreichen. Basierend auf der Analyse des Strahlprofils und des Emissionsspektrums war trotz der großen Stegbreite ausschließlich Betrieb auf der Grundmode zu beobachten. So konnte eine Spitzenleistung von 810 mW bei einer Schwellstromdichte von 4,3 kA/cm^2 bei Raumtemperatur erreicht werden. Um eine größere spektrale Abstimmbarkeit zu erreichen als dies mit DFB-Lasern möglich ist, wurde ein Lasertyp auf Basis von zwei gekoppelten Fabry-P erot Kavitäten entworfen, hergestellt und untersucht. Mit diesem Konzept konnte über eine geringe Stromvariation ein Umschalten zwischen verschiedenen Resonanzen erreicht werden, was bei konstanter Temperatur der Wärmesenke um Raumtemperatur einen Abstimmbereich von 5,2 cm^−1 ermöglichte. Unter Einbeziehung einer Variation der Temperatur der Wärmesenke konnte monomodige Emission in einem Spektralbereich von 52 cm^−1 erreicht und die Tauglichkeit der Laser für die Gas-Sensorik anhand einer Absorptionsmessung an Ammoniak demonstriert werden. Da die monomodige Spitzenleistung dieser Laser jedoch konzeptbedingt auf wenige mW beschränkt war, wurde für den Einsatz weit abstimmbarer Laser in der Spurengasanalytik im letzten Teil der Arbeit ein anderer Lasertyp mit flachgeätztem Bragg-Reflektor entwickelt. Durch sorgfältige Wahl der Gitterparameter und ein spezielles Puls-Schema wurde eine über 30 cm^−1 quasi-kontinuierlich abstimmbare, monomodige Emission erreicht. Die Stabilität und die spektrale Reinheit des Laserlichts mit einer Seitenmodunterdrückung von mehr als 30 dB konnte anhand von zeitaufgelösten Messungen des Abstimmvorgangs und durch ein Absorptionsexperiment mit Ethen belegt werden. Die erzielte spektrale Auflösung war durch die Messelektronik begrenzt und betrug 0,0073 cm^-1. Zudem ergab sich auch die Möglichkeit einer Analyse des thermischen Übersprechens, welche einen vernachlässigbaren Einfluss für den Pulsbetrieb der Laser zeigte und eine moderate Erwärmung benachbarter Segmente um 10% des für das vorsätzlich beheizte Segment gemessenen Wertes. Des Weiteren konnte dank der Möglichkeit zur unabhängigen Strominjektion in verschiedene Sektionen die Temperaturabhängigkeit von Verstärkung und Absorption im Resonator untersucht werden. Herausstechende Eigenschaften dieser Laser wie die Verringerung der gepulsten Chirprate im Vergleich zu DFB-Lasern um den Faktor 3 konnten anhand von systematischen Untersuchungen mit einer Vielzahl von Bauteilen analysiert und auf die zeitlicheTemperaturentwicklung bzw. die räumliche Temperaturverteilung im Lasersteg zurückgeführt werden. Die optische Spitzenleistung von 600 mW und externe Effizienzen bis 300mW/A sollten auch den Einsatz in der Spurengasanalyse erlauben, die hohe Geschwindigkeit mit der die Emissionswellenlänge variiert werden kann, überdies die Untersuchung der Reaktionskinetik in der Gasphase. N2 - The main focus of this work was the design, fabrication and characterization of widely tunable monochromatic quantum cascade laser sources based on InGaAs/InAlAs/InP gain material grown by molecular beam epitaxy. Primary targets were the development of high-power lasers in the long-wavelength region of the mid-infrared around 14 µm as well as the design of devices with broad and fast tunability. To gain insight into the time evolution and spatial distribution of the waste heat in the laser ridge for both pulsed and cw-operation a thermal simulation was performed. Based on the calculated thermal resistance of the laser structures optimum parameters for the fabrication process were deducted. A fabrication procedure for monochromatic DFB-lasers based on mesa-waveguides with lateral sidewall gratings was devised. It exhibits a strongly reduced number of fabrication steps and enables a quick and simple implementation compared to established types of DFB lasers. The electro-optic characteristics as well as the farfield-profile of the laser emission and the coupling coefficient of the DFB-grating were systematically investigated in dependence of the geometry of the ridge waveguide. Lasers with a resonator length of 4 mm and an average ridge width of 14 µm showed a peak output power of more than 200 mW with an external efficiency of 330 mW/A and a threshold current density of 2.1 kA/cm^2. In contrast, DFB lasers emitting around 14 µm were fabricated as double-channel waveguides with a DFB-grating on top of the laser ridge. A thick gold layer was deposited around the laser ridge to provide enhanced heat dissipation since inherently higher losses at long wavelengths lead to higher electrical power densities during operation and subsequently the production of more waste heat. It was found that lasers with very wide ridges of 28 µm exhibited the highest average output power of 11 mW at room temperature given the maximum targeted duty-cycle of 10% as specified by the application of industrial detection of acetylene. This way a record peak output power of 810 mW with a threshold current density of 4.3 kA/cm^2 at room temperature was reached. In order to acquire greater spectral tunability compared to DFB-lasers, multisegment lasers based on two coupled FP-cavities were designed, fabricated and characterized. Single-mode emission with side-mode suppression ratios up to 30 dB, operation above room temperature and reproducible mode switching between different cavity-resonances via current-tuning was observed in accordance with theory. A tuning range of 5.2 cm−1 was achieved at constant temperature. With additional temperature tuning single-mode emission within a spectral range of 52 cm−1 was observed. The usability of these devices for gas sensing purposes was demonstrated with a gas absorption experiment using ammonia. Since the monomode peak output power of these coupled cavity lasers was limited to a few mW due to constraints of the mode selection principle, the last part of the thesis deals with a novel type of multi-segment laser featuring a shallow etched Bragg-reflector. Through careful design of the grating parameters and a specific pulsing scheme quasi-continuously tunable single mode emission over 30 cm−1 was achieved. Excellent spectral purity and pulse stability with side-mode suppression ratios greater than 30 dB (noise limited) could be demonstrated by means of time-resolved measurements of the tuning behavior. The achievable spectral resolution in an absorption experiment with ethene was shown to be better than 0.0073 cm−1 and limited by the signal acquisition electronics. The influence of thermal crosstalk between the laser segments was investigated and found to be negligible for pulsed operation. For constant injected currents a moderate temperature rise in the neighbouring segment of about 10% compared to the value in the deliberately heated segment was observed. Moreover the temperature dependence of both gain and waveguide absorption could be determined separately by individual current injection into different segments and subsequent analysis of the threshold currents. Outstanding characteristics of these lasers like the reduction of the laser chirp by a factor of three compared to DFB lasers were systematically investigated on the basis of a multitude of devices. Finally comprehension of the temperature evolution and the spatial distribution of the temperature in the laser resonator lead to an explanation for both phenomena. The high peak output power of 600 mW and external efficiences up to 300 mW/A should prepare the ground for trace gas sensing applications with these devices. Their fast tuning capabilities should also enable the investigation of reaction kinetics in the gas phase with a single laser source. KW - Quantenkaskadenlaser KW - Quantenkaskadenlaser KW - gekoppelte Kavitäten KW - weite Abstimmbarkeit KW - monomodige Laser KW - Einmodenlaser Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109432 ER - TY - THES A1 - Heindel, Tobias T1 - Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation T1 - Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication N2 - Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. N2 - Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems. KW - Quantenpunkt KW - Lumineszenzdiode KW - Einzelphotonenemission KW - semiconductor quantum dot KW - single photon emission KW - non-classical light KW - electrically triggered KW - quantum key distribution KW - quantum information technology KW - Quantenkryptologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105778 ER - TY - THES A1 - Lother, Steffen Reiner T1 - Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung T1 - Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPI N2 - Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. N2 - Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI KW - NMR-Spektroskopie KW - Erdmagnetismus KW - Kernspintomografie KW - 3D Erdfeld-NMR Tomograph KW - MR-MPI-Tomograph KW - Präpolarisationssystems KW - Gradientensystem KW - Magnetresonanztomographie KW - Systembau KW - Erdfeld KW - Magnetpartikelbildgebung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99181 ER - TY - THES A1 - Albert, Ferdinand T1 - Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung T1 - Vertical and lateral emission properties of semiconductor quantum-dot-microresonators in the regime of weak and strong light matter interaction N2 - Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt. N2 - The present work deals with the light-matter interaction in quantum dot microcavities and their vertical and lateral emission properties. Quantum dots are nanoscopic structures, in which charge carriers are confi� ned in all three dimensions below the de-Broglie wavelength. As a consequence, the density of electronic states becomes singular and quantum dots are therefore referred to as arti� cal atoms. To modify the emission properties of quantum dots, they are introduced in micropillar cavities. These consist of a GaAs � -cavity, which is sandwiched between two Bragg mirrors of alternating layers of GaAs and AlAs. The micropillar resonators provide both a vertical emission via Fabry-P� erot modes, as well as a lateral emission via whispering gallery modes. The light-matter interaction between the microcavity modes and the localized charge carriers, called exzitons, can be devided into two regimes. In the strong coupling regime, the spontaneous emission process becomes reversible and an emitted photon can be reabsorbed by the quantum dot. The theoretical description of the coupling of a two-level emitter with a photonic mode is given by the Jaynes-Cummings model. For multiple two-level emitters, it can be extended to the Tavis-Cummings model. In the weak coupling regime the spontaneous emission rate of a quantum dot can be increased by the Purcell e� ect. Here, microlasers with high spontaneous emission coupling factors and low lasing thresholds can be realized. In order to investigate the samples, especially the methods of microelectroluminescence and photon correlation measurements are applied. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Halbleiterlaser KW - Quantenoptik KW - Mikrolaser KW - Mikrosäulenresonator KW - Quantenpunkt KW - Flüstergaleriemode KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Mikroresonator Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93016 ER - TY - THES A1 - Wießner, Michael T1 - Isolierte Moleküle und delokalisierte Zustände: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgelöster Photoemission T1 - Isolated molecules and delocalised states: Insight into the electronic structure of organic adsorbates by angle-resolved photoemission N2 - Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen. N2 - This work demonstrates the versatility of angular resolved photoemission (ARPES) in extracting fundamental properties of molecular condensates. With the technique proposed by Peter Puschnig et al., ARPES intensities of aromatic molecules can be linked to the absolute square of the fourier transformed molecular orbital. This allows experimentally identifying individual orbitals and understanding different physical mechanisms at the interface between an organic layer and a metal. This technique shows a clear agreement between theoretical intensity distributions, as e.g. derived from density functional theory (DFT), and the measurements on systems like coronene and HBC. Opposite to that, deviations occur on PTCDA and NTCDA for both local and semilocal density functionals, is s-polarized light is used. Additional measurements with different polarisation directions show, that relaxation effects in the final state lead to a mixing of the N-particle initial state with the N-1-particle final state. This phenomenon can be described theoretically within the framework of Dyson orbitals, in an approximate way already by introducing self-interaction corrected density functionals. Additional deviations from the simple approximation of the photoelectron by a plane wave can be made visible with circular polarised light. For the PTCDA HOMO and LUMO, circular dichroism appears in the angular distribution of the photoemission intensity, an effect that is by definition not included in the plane wave approximation. A refined approximation given by the partial wave expansion of the final state shows a distinct dichroism of both the HOMO and LUMO. But apparently this approximation is not able to describe the detailed circular dichroism angular distribution. In the future, this might be possible by applying the Independent Atomic Center (IAC) approximation including multiple intramolecular scattering. The origin of the dichroic signal can be elucidated by measurements with different incidence directions and applying group theory. The changes in the dichroism signal of the HOMO and LUMO upon rotation by 90° is different indicating on different irreducible representations for both states. This paves the way to reconstruct the intramolecular phase distribution for the rather simple PTCDA HOMO and LUMO. Access to this distribution is usually hindered by the measurement process itself due to the absolute square in the evaluation of the photoemission matrix elements. And finally with the knowledge of the intensity and the phase a transformation of the HOMO and LUMO to real space is possible. Next to the measurement of individual molecular orbitals, ARPES contains signatures from the molecule substrate interaction. For a unique identification of the several interaction mechanisms a commensurate lattice of molecules is indispensable. Otherwise different adsorption sites would sum up to a broad photoemission signal, both in energy and momentum direction. For the commensurate systems of coronene or HBC on the Ag(111) and Au(111) surfaces, this prerequisite is fulfilled. The analysis of the peak shape shows different Lorentzian broadenings of the adiabatic vibronic transition of the HOMO. This width can be approximately correlated to the lifetime of the photo hole. Therefor a stronger molecule metal interaction leads to a faster decay of the photo hole on the molecule and consequently to broader lorentzian line width. For example the lorentzian width of the hybridized NTCDA on Ag(110) is of FWHM=427 meV and therewith five times larger than the rather weakly interacting coronene on Au(111). The strong interaction for NTCDA on Ag(110) but also for the investigated systems NTCDA on Cu(100) and PTCDA on Ag(110) goes along with charge transfer from the substrate to the molecule, i.e. the LUMO gets filled for the molecules in the first layer. Moreover a hybridization occurs between the metal and the molecule resulting in an additional contribution to the LUMO in the momentum distribution at kx,y=0Å-1. In the direct comparison of the NTCDA/Ag(110) and NTCDA/Cu(100) adsorption systems, this intensity of this contribution can be linked to the interaction strength deduced from the lorentzian width of the respective LUMO. The hybridization has even more consequences on this interface system. The observable intermolecular band dispersion gets drastically enhanced due to the increased interaction strength mediated by the molecule substrate hybridization. The direct overlap of the PTCDA LUMO wave function is according to the DFT calculation rather small leading to a band width of only 60 meV. Opposite to that, the experiment as well as the calculation for a PTCDA layer adsorbed on a silver slab show a band width of 230 meV, which can only be explained by the additional adsorbate. And opposite to previous STM/STS measurements [Temirov2006] the observed substrate mediated band width enhancement is clearly observed for a molecular state, whose effective mass is reduced by this mechanism from meff=3,9me to meff=1,1me. In conclusion, this work demonstrates how the properties of electrons in molecules and at interfaces to a metal can be detected and characterised by the photoemission technique. If these systems are rather characterized by localized molecular orbitals than by delocalized bloch waves, depends on the individual properties. On the one hand the momentum dependency of the photoemission intensity of indivdual orbitals match nearly perfect the calculation on isolated molecules. On the other hand, the momentum dependent binding energies E(k||) show a bloch-like character, whose band width is amplified by the substrate interaction. This means, the molecular adsorbate is both, molecules and a 2D-crystal with delocalized states. KW - Organisches Molekül KW - Adsorbat KW - ARPES KW - Organische Moleküle KW - Hochgeordnete Monolagen KW - Molekülphysik KW - Festkörperphysik KW - Perylendianhydrid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95265 ER - TY - THES A1 - Stäb, Daniel T1 - Erweiterung der Anatomischen Abdeckung in der MRT des Herzens T1 - Anatomic Coverage Extension in Cardiac MRI N2 - Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen ermöglicht die kardiale MRT die ortsaufgelöste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie können damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilität und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden Störfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verfügung steht und erzeugen so Konflikte zwischen räumlicher Auflösung, anatomischer Abdeckung, zeitlicher Auflösung und dem Signal-zu-Rausch-Verhältnis (SNR). Ferner ergibt sich für die meisten eingesetzten Verfahren eine erhöhte Komplexität. Die Bildgebungssequenzen müssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgeführt werden. In manchen Fällen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen nötig, was wiederum die Dauer der Untersuchungen verlängert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erhöht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verkürzung der Datenakquisition ermöglichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grundsätzlich durch eine unvollständige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zusätzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollständig durchgeführte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverstärkung. Die Multischichtbildgebungstechnik zeichnet sich gegenüber der konventionellen Parallelen Bildgebung durch ein wesentlich höheres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens präsentiert sowie ihre Vorund Nachteile gegenübergestellt. Im Allgemeinen ermöglichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine Möglichkeit vorgestellt, mit der es uneingeschränkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr häufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im stationären Zustand die Applikation eines dedizierten RF-Phasenzyklus während der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verknüpfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erfüllen, ermöglichen eine uneingeschränkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspräparation – Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden – einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht benötigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unverändert hoher Bildqualität. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezustände und dementsprechend eine wirksame Verkürzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die größer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die räumliche Auflösung innerhalb der Bildgebungsschicht erhöht werden kann. Beide Verbesserungen sind für die MR-gestützte Diagnostik der Koronaren Herzerkrankung von Bedeutung. Während mit einer hohen räumlichen Auflösung subendokardiale und transmurale Infarktareale unterschieden werden können, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grundsätzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsansätze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zusätzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelmäßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der räumlichen Auflösung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollständigen Erhalt der Datenakquisitionszeit gegenüber einer unbeschleunigten Messung mit Standardabdeckung und -auflösung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgröße sowie die Rauschverstärkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverstärkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie möglich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums ermöglichte die Durchführung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer räumlichen Auflösung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv fünffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverstärkung durchführbar ist. Bildqualität und SNR waren für eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, während die hohe räumliche Auflösung die Abgrenzung kleiner subendokardialer Perfusionsdefizite ermöglichte. Aufgrund seiner großen Flexibilität und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbezügliche Tauglichkeit ist allerdings in weiterführenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie für die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher räumlicher Auflösung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche größer sind als die Anzahl der simultan angeregten Schichten und die Vergrößerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverstärkung zu minimieren, wurde zur Verbesserung der räumlichen Auflösung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik ermöglicht die exakte Rekonstruktion zufällig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung überführen lässt. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherhöhung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die für die Verbesserung der Auflösung nötige Unterabtastung des k-Raums, zufällig und inkohärent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zufällige Unterabtastung entstandenen inkohärenten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverstärkung ermöglicht und zur Durchführung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer räumlichen Auflösung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung überlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Auflösung zählt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte führen und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalveränderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden können. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten präzise Untersucht werden. Die beiden Analysemethoden ermöglichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und räumlicher Auflösungsverluste. Dabei konnte ein Mangel an Sparsität als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verständnis von Compressed Sensing und können beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualitätsanalyse eingesetzt werden. N2 - In the recent years Magnetic Resonance Imaging (MRI) has become a powerful clinical tool for the diagnosis of cardiovascular diseases. In fact, getting along without ionizing radiation, the technique represents a noninvasive alternative to computed tomography or nuclear medicine treatment. In cardiac MRI, the heart can be imaged with a large variety of contrasts, which helps assessing not only morphologic but also functional information like the ejection fraction of the left ventricle or the viability and perfusion of the myocardium. However, having to deal with a moving organ, cardiac MRI is very challenging. In particular, breathing and the motion of the heart restrict the time available for imaging and a trade-off has to be found between signal-to-noise ratio (SNR), spatial resolution, anatomic coverage and temporal resolution. In addition, the motion enforces complexity. In-vivo examinations have to be performed in breath hold and ECG triggering has to be applied in order to adopt the sequences to the cardiac cycle. In several cases, measurements have to be split into multiple acquisitions which significantly prolongs the examination and reduces the patient comfort. Nevertheless, recent advances in gradient and receiver coil design in addition to the development of dedicated sequences for imaging led to significant improvements and helped strengthening the role of MRI in the diagnosis of cardiovascular diseases. A major part of the improvements has been achieved by employing acceleration techniques like Parallel Imaging. By substantially shortening the data acquisition they allow reducing the impact of motion onto the examinations. The acceleration is basically achieved by undersampling k-space, i.e. performing the data acquisition incompletely. The lack of data is compensated by making use of additional information inherently available. In Parallel Imaging for example, multiple receiver coils positioned around the subject to be investigated are utilized to partially replace the spatial encoding conventionally performed by gradient switching. However, employing these acceleration strategies always comes along with a reduction of the SNR since the time utilized for data sampling is shortened. For accelerating 2D measurements of multiple slices, an alternative approach is given by the simultaneous multi-slice imaging technique Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration (MS-CAIPIRINHA). Unlike conventional Parallel Imaging, which requires shortening of the data acquisition, the technique provides acceleration by exciting the spins in multiple slices at the same time using multi-band radio frequency (rf) pulses. The slices are provided with specific rf phase cycles that allow shifting the simultaneously excited slices with respect to each other in the FOV. The shift facilitates the separation of the slices using Parallel Imaging reconstruction techniques. Moreover, it allows minimizing the inhomogeneous noise amplification coming along with the reconstruction. With respect to conventional Parallel Imaging, MS-CAIPIRINHA benefits from considerably higher SNR and an image reconstruction with less reconstruction errors. In this thesis several strategies for employing the simultaneous multi-slice imaging technique in the field of cardiac MRI have been presented together with their advantages and disadvantages. In general, the individual concepts allow for increasing the anatomic coverage in a very SNR efficient manner. First of all, a concept was presented that allows applying MS-CAIPIRINHA to bSSFP sequences. Providing an advantageous image contrast and intrinsically high SNR, the steady-state sequence is often utilized for cardiac MR examinations at field strengths of 1,5T. Like the simultaneous multi-slice imaging technique, it requires the strict application of a dedicated rf phase cycle to keep the magnetization in steady state. However, this rf phase cycle is incompatible to the rf phase cycles usually employed in MS-CAIPIRINHA. Thus, the combination of the two methods is impaired unless the imaging procedure is split into several measurements. This rather impractical segmentation is not required utilizing the concept proposed in chapter 5. By employing generalized rf phase cycles that match the requirements of the simultaneous multi-slice imaging technique while simultaneously fulfilling the steady state condition of the sequence, MS-CAIPIRINHA can be employed unrestrictedly to bSSFP or similar steady state sequences. The simultaneous multi-slice imaging technique is thus also applicable to magnetization prepared and real-time imaging modalities. Both types of examinations are frequently utilized in cardiac MRI. The applicability of the concept was successfully demonstrated for real-time cine, segmented cine and myocardial first-pass perfusion imaging. By scanning two slices in the time conventionally required for the acquisition of one single slice, the anatomic coverage could be doubled while maintaining the image quality almost completely. The myocardial first-pass perfusion examinations for example could be performed with a coverage of six slices every RR-interval. In real-time and cine imaging, the concept allows significantly reducing the number of breath holds that have to be performed. Thus, the examination is considerably shortened and the patient comfort ameliorated. In chapter 6, an efficient strategy for applying MS-CAIPIRINHA to contrast enhanced myocardial first-pass perfusion imaging at 3T was presented. It could be shown that by employing the simultaneous multi-slice imaging technique with an acceleration factor higher than the number of simultaneously excited slices, not only the anatomic coverage but also the spatial resolution can be increased. Both improvements are of importance for the MRI based diagnosis of coronary artery disease. While a high spatial resolution allows distinguishing between transmural and subendocardial hypoperfused regions, a large anatomic coverage facilitates their exact localization. The proposed technique is based on the combination of two different acceleration approaches: For increasing the anatomic coverage the simultaneous multi-slice imaging technique is employed. In addition to exciting multiple slices at once, k-space is regularly undersampled. This supplemental acceleration is utilized to increase the spatial resolution. Image calculation and slice separation is performed using conventional Parallel Imaging reconstruction techniques. In particular, the concept benefits from conserving the image acquisition time with respect to a non-accelerated examination with standard coverage and resolution. In contrast to conventional acceleration techniques, where significantly higher undersampling has to be performed, only the voxel size and the inhomogeneous noise amplification contribute to the SNR reduction. Moreover, the noise amplification is minimized by shifting the simultaneously excited slices with respect to each other in the FOV. The applicability of the concept was demonstrated on volunteers and patients. By exciting two slices at the same time and additionally undersampling k-space by a factor of 2.5, an anatomic coverage of six to eight slices every RR-interval and a spatial resolution of 2,0×2,0×8 0mm3 were achieved. The applied GRAPPA reconstruction algorithm was shown to allow for a robust image reconstruction with basically low noise amplification. The spatial resolution facilitated the differentiation between subendocardial and transmural hypoperfused areas and the image quality as well as the SNR were sufficiently high for a sectorwise absolute quantitative estimation of the myocardial blood flow. Regarding the high flexibility and simple applicability in addition to the robustness and speed of the image reconstruction, the concept is a promising candidate for clinical perfusion studies. However, further patient studies are required to prove the applicability of the concept in clinical routine. As an alternative to this concept, in chapter 7, a different acquisition strategy for myocardial first-pass perfusion imaging with extended coverage and high spatial resolution based on MS-CAIPIRINHA was presented. As before, the underlying idea was to apply the multi-slice imaging technique with acceleration factors higher than the number of slices excited at the same time and to achieve the anatomic coverage extension by means of simultaneous multislice excitation. Nevertheless, in order to minimize the inhomogeneous noise amplification coming along with the image reconstruction, the nonlinear acceleration method Compressed Sensing was employed for increasing the spatial resolution within the imaging plane. This recently developed acceleration technique allows exactly reconstructing MR images from randomly undersampled data as far as the reconstructed image can be sparsified by applying a well-defined transformation. The technique allows for high acceleration factors and benefits from an image reconstruction without significant noise amplification. In order to apply Compressed Sensing to the multi-slice imaging concept, the undersampling for resolution improvement is performed randomly and the image reconstruction is carried out in two separate steps. First, Compressed Sensing is applied in order to remove the incoherent artifacts introduced by random undersampling. Second, the slices are separated by applying conventional Parallel Imaging reconstruction techniques. It could be shown that combining MS-CAIPIRINHA with Compressed Sensing allows reducing the noise amplification and facilitates myocardial first-pass perfusion imaging with an anatomic coverage of six to eight slices every heartbeat and a spatial resolution of 2.0×2.0×8.0mm3. Moreover, it could be shown that the technique is superior to employing the Compressed Sensing concept without simultaneous multi-slice excitation. However, the concept also comes along with an impairment of image quality by systematic reconstruction errors. Amongst the latter for example there is a loss of temporal resolution, which might induce significant errors in a quantitative perfusion analysis. Robust quantitative measurements of the myocardial blood flow are thus not feasible so far. In presence of arrhythmia or motion, significant reconstruction errors, having a major impact onto the quality and the temporal fidelity of the measurement are expected. The systematic reconstruction errors could be precisely analyzed by employing a simple Monte Carlo simulation and a dedicated local point spread function analysis. The two specific tools were utilized to reveal the systematic and statistical deviations of the signal amplitude as well as the spatiotemporal resolution losses. A lack of sparsity could thereby be identified as the basic error cause. In general, the evaluation tools provide useful information for understanding the nonlinear character of Compressed Sensing and may be utilized for image quality analysis in the development of nonlinear reconstruction concepts. KW - Kernspintomographie KW - Herz KW - MRT KW - Herz KW - Parallele Bildgebung KW - CAIPIRINHA KW - Compressed Sensing KW - MRI KW - Cardiac KW - Parallel Imaging KW - Compressed Sensing KW - CAIPIRINHA KW - Biophysik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93405 ER - TY - THES A1 - Hölscher, Uvo Christoph T1 - Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie T1 - Relaxation Dispersion Magnetic Resonance Imaging N2 - Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups für einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung ermöglicht, und die anschließende Ergründung von möglichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe gehört die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der nötigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden. N2 - The goal of this dissertation is the design of a dreMR setup for a clinical 1.5T whole body scanner and the subsequent exploration of possible application fields for the dreMR method. This task includes the investigation of the underlying theory, the design and construction of the dreMR setup (offset-coil and current driver) and the preparation of required software. Two major application fields have been demonstrated: dreMR with and without contrast agents. KW - Kernspintomografie KW - MRT KW - Dispersion KW - dreMR KW - MRI KW - dreMR KW - NMR-Tomographie KW - Kontrastmittel KW - Bilderzeugung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79554 ER - TY - THES A1 - Göpfert, Sebastian T1 - Einzel-Quantenpunkt-Speichertransistor: Experiment und Modellierung T1 - Single quantum dot memory transistor: Experiment and modeling N2 - In dieser Arbeit wurden Einzel-Quantenpunkt-Speichertransistoren im Experiment untersucht und wesentliche Ergebnisse durch Modellierung nachgebildet. Der Einzel-Quantenpunkt-Speichertransistor ist ein Bauelement, welches durch eine neuartige Verfahrensweise im Schichtaufbau und bei der Strukturierung realisiert wurde. Hierbei sind vor allem zwei Teilschritte hervorzuheben: Zum einen wurde das Speicherelement aus positionskontrolliert gewachsenen InAs Quantenpunkten gebildet. Zum anderen wurden durch eine spezielle Trockenätztechnik schmale Ätzstrukturen erzeugt, welche sehr präzise an der lateralen Position der Quantenpunkte ausgerichtet war. Durch diese Verfahrensweise war es somit möglich, Transistorstrukturen mit einzelnen Quantenpunkten an den charakteristischen Engstellen des Kanals zu realisieren. N2 - In this thesis single-quantum-dot memory-transistors have been studied in experiment and the experimental findings have been reproduced by modeling. The studied single-quantum-dot memory transistor is a device which has been realized by a novel process technique as regards layer composition and structuring. According to this there are two steps to be emphasized: First the memory element is based on site-controlled grown InAs quantum dots. Second, there has been used a unique dry etching technique to define narrow etched structures, which have been precisely aligned laterally with respect to the position of the quantum dots. Due to this method it was possible to realize transistor structures with single quantum dots centered in a quantum wire. KW - Quantenpunkt KW - Transistor KW - Speicherelement KW - single electron transport KW - single quantum dot KW - nanotechnology KW - Nanotechnologie KW - Elektronischer Transport KW - Single electron transfer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80600 ER - TY - THES A1 - Wichmann, Tobias T1 - Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten T1 - Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems N2 - In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. N2 - Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance. KW - Kernspintomografie KW - NMR-Tomographie KW - Spulen-Array KW - magnetic resonance imaging KW - coil-array KW - Magnetspule KW - Magnetische Kernresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79358 ER - TY - THES A1 - Grodzki, David Manuel T1 - Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten für die klinische Magnetresonanzbildgebung T1 - Development of New Sequences with Ultrashort Echo Times for Clinical Magnetic Resonance Imaging N2 - Stoffe mit schnell zerfallendem Magnetresonanz (MR)-Signal sind mit herkömmlichen MR- Sequenzen nicht darstellbar. Solche Stoffe haben meist starke Bindungen, wie im menschlichen Körper beispielsweise Sehnen, Bänder, Knochen oder Zähne. In den letzten Dekaden wurden spezielle Sequenzen mit ultrakurzer Echozeit entwickelt, die Signale von diesen Stoffen messen können. Messungen mit ultrakurzen Echozeiten eröffnen der Kernspintomographie neue Anwendungsgebiete. In dieser Doktorarbeit werden die in der Literatur bekannten Methoden zur Messung mit ultrakurzen Echozeiten untersucht und evaluiert. Es werden zwei neue, in dieser Arbeit entwickelte Ansätze vorgestellt, die es zum Ziel haben, bestehende Probleme der vorhandenen Methoden bei robuster Bildqualität zu lösen, ohne auf Hardwareänderungen am Kernspintomographen angewiesen zu sein. Die ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) Sequenz ist eine Single-Point-Sequenz, die im Vergleich zu den bekannten Single-Point-Sequenzen eine stark reduzierte Echozeit ermöglicht. Es wird gezeigt, dass dadurch ein deutlich besseres Signalzu-Rausch-Verhältnis (SNR) von Stoffen mit schnell zerfallendem Signal erreicht wird. Das Problem der sehr langen Messzeit bei Single-Point-Verfahren wird mit der ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) Sequenz gelöst. Bei diesem Ansatz wird der k-Raum-Außenbereich radial und das k-Raum-Zentrum single-point-artig abgetastet. Durch die Kombination beider Akquisitionsstrategien ist eine schnelle und robuste Bildgebung mit ultrakurzer Echozeit und ohne Hardwareänderungen möglich. Wie bei anderen Ansätzen sind bei der PETRA-Sequenz die Bildgebungsgradienten zum Anregungszeitpunkt bereites angeschaltet. Es wird untersucht, welchen Einfluss ungewollte Schichtselektionen auf die Bildgebung haben können und ein Korrekturalgorithmus entwickelt, mit dem sich dadurch entstehende Artefakte im Bild beheben lassen. Die Limitationen des Korrekturalgorithmus sowie mögliche Artefakte der PETRA-Sequenz werden untersucht und diskutiert. Erste Anwendungsbeispiele der PETRA-Sequenz bei verschiedenen Feldstärken und Applikationen werden demonstriert. Wie bei anderen Sequenzen mit ultrakurzen Echozeiten sind die Gradientenaktivitäten bei der PETRA- und GOSPEL-Sequenz gering, wodurch die Messung sehr leise sein kann. Lautstärkemessungen zeigen, dass bei Messungen mit der PETRA-Sequenz der Geräuschpegel um nur ein bis fünf dB(A) im Vergleich zum Hintergrundgeräuschpegel steigt. Es wird demonstriert, dass sich dadurch neue Anwendungsgebiete eröffnen könnten. Vergleichsmessungen zwischen einer T1-gewichteten PETRA- und einer MPRAGE-Messung weisen Bilder auf, die in Kontrast, Auflösung, SNR und Messzeit vergleichbar sind. Mit den in dieser Arbeit entwickelten Methoden konnten Probleme bestehender Ansätze gelöst und offene Fragen beantwortet werden. Die Ergebnisse können helfen, Applikationen von Sequenzen mit ultrakurzen Echozeiten in der klinischen Routine weiter zu etablieren. N2 - Tissues with fast decaying magnetic resonance (MR) signal are not measureable with conventional MR sequences. These tissues mostly have strong covalent bondings, like in the human body tendons, ligaments, bones and teeth. In the last decade, special MR sequences with ultrashort echo times have been developed that are able to depict signal from those tissues. Ultrashort echo time imaging opens new application fields for magnetic resonance imaging. In this thesis, the known methods for imaging with ultrashort echo times are investigated and evaluated. Two new approaches that were developed in this work are presented. They aim to solve the problems of the previous methods and to allow for robust image quality. No hardware changes should be required for the MR scanner. The ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) sequence is a single-point sequence. Compared to the known single-point sequences, GOSPEL enables a reduced echo time. It is demonstrated that this allows for an enhanced SNR for tissues with fast decaying signal. The problem of very long measurement times with single point sequences is solved with the ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) sequence. In this approach, outer k-space is acquired with radial half-projections while the k-space center is acquired single-pointwise. The combination of these two acquisition strategies allows for fast and robust ultrashort echo time imaging without the need for hardware changes. Comparable to other approaches, the imaging gradients at the PETRA sequence are already switched on during the excitation pulse. The influence of unwanted slice-selectivity of the pulse is investigated. A newly developed correction algorithm is presented that eliminates artefacts due to unwanted slice-selectivity. The limitations of the correction approach are presented and discussed. A number of application examples of the PETRA sequence at different field strengths is demonstrated. The PETRA and GOSPEL sequence, and other ultrashort echo time sequences, have very limited gradient activities. Due to this, the measurements can be kept very silent. Acoustic noise measurements show that the acoustic noise level during PETRA examinations is only raised by one to five dB(A). It is demonstrated, that this might enable new applications. Comparing measurements between T1-weighted PETRA images and MPRAGE images lead to images with comparable contrast, resolution, SNR and measurement times. With the methods developed in this thesis, issues of existing ultrashort echo time approaches can be solved and answers to open questions are given. The outcomes could help to further establish the use of ultrashort echo time sequences in clinical routine applications. KW - Kernspintomographie KW - Spin-Spin-Relaxation KW - Magnetresonanz KW - Magnetresonanzbildgebung KW - Echozeit KW - MRI KW - echo time KW - magnetic resonance imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71328 ER - TY - THES A1 - Huggenberger, Alexander T1 - Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren T1 - Optimization of site-controlled In(Ga)As quantum dots for the integration into semiconductor micro resonators N2 - Diese Arbeit beschäftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Datenübertragung, die durch Quantenkryptographie abhörsicher verschlüsselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschränkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein häufig untersuchtes System und können heutzutage mit hoher Kristallqualität durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erhöhen, wurden Mikrosäulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate für die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen Ätztechniken erreicht. Für den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema für den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. Für die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngröße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese häufig aufgrund spektraler Diffusion größer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ansätze und Strategien zur Überwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV für die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualität besitzen. Die FSS der Emission eines Quantenpunktes sollte für die direkte Erzeugung polarisationsverschränkter Photonen möglichst klein sein. Deswegen wurden unterschiedliche Ansätze diskutiert, um die FSS einer möglichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in geätzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend für den künftigen Einsatz solcher Quantenpunkte in Quellen für verschränkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschränkten Zustandes gezeigt. In Zusammenarbeit mit der Universität Tokyo wurde ein Konzept entwickelt, mit dem künftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavitäten hergestellt werden können. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikrosäulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavitätsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion für verschwindende Zeitdifferenzen nachgewiesen wurde. N2 - The present thesis is about the fabrication of site-controlled In(Ga)As quantum dots for the scalable integration into devices. The optical properties of these quantum dots were systematically optimized with special care regarding the optical linewidth and the fine structure splitting of single quantum dots. This optimization was accomplished in order to use the quantum dots in light sources for quantum key distribution By coupling semiconductor microcavities and quantum dots one is able to realize single photon sources or sources of entangled photons. This work demonstrates the scalable integration of site-controlled quantum dots into semiconductor microresonators. The growth of In(Ga)As quantum dots on GaAs substrates is a field of vivid research nowadays and can be fabricated with high quality by molecular beam epitaxy. The emission from single quantum dots exhibits lines that resemble the discrete emission spectra of atoms. This thesis uses micropillar cavities and photonic crystal cavities to direct the emission of quantum dots and to increase the extraction efficiency. The integration into these resonator systems was done by adjusting the quantum dots’ positions to reference structures on the samples. This allows for a scalable fabrication of many spatially coupled quantum dot resonator systems The substrates were patterned using a combination of optical and electron beam lithography followed by wet or dry etching. Electrical carrier injection was realized by developing a contact scheme. The quantum dots were fabricated using a stacked growth scheme that consists of a seeding layer and an optical active quantum dot layer. Quantum dots on square lattices with a period of up to 10 mum were fabricated to enable the integration of single quantum dots into semiconductor microresonators. On the other hand, it was possible to realize periods of only 200 nm which is promising for the investigation of superradiance effects in the ensemble emission of quantum dots. The optical properties of site-controlled quantum dots were investigated by studying the photoluminescence. The emission linewidth of single quantum dots is an important benchmark for the optical quality. Site-controlled quantum dots are known to exhibit large linewidths due to the effect of spectral diffusion. Different strategies to overcome this obstacle were investigated during this work. A linewidth as low as 25 mueV was observed for a single site-controlled quantum dot (on a square lattice of 2 mum period). The statistical evaluation yields a mean value of 133 mueV for this kind of quantum dots. Both results prove the high optical quality of the site-controlled quantum dots fabricated in this work. The fine structure splitting of the quantum dot emission should be close to zero for the direct observation of polarization entangled photons. Different concepts were investigated during this work to reduce the fine structure splitting of the quantum dot ensemble. The lowest splitting obtained for site-controlled In(Ga)As quantum dots on (100) GaAs was 9.8 mueV. By growing quantum dots into inverted pyramids etched into (111) GaAs one should be able to further reduce the splitting due to the threefold symmetry of (111) GaAs. Furthermore, the piezoelectric field in (211) GaAs should compensate the fine structure splitting. Using quantum dots on these high index materials the fine structure splitting was reduced to values below 5 mueV during this work. Another concept to reduce the fine structure splitting is the application of a lateral electric field which was shown to reduce the splitting from 25 mueV to 15 mueV. For the future measurement of the degree of entanglement of photons, an experimental setup was established and its functionality was proven by measuring the temporal characteristics of an biexciton-exciton-cascade. In cooperation with the group of Prof. Arakawa from Tokyo University a concept was developed to realize single quantum dot lasers by combining site-controlled quantum dots and two- or three-dimensional photonic crystal cavities in the near future. Furthermore, with the help of an electrically driven micropillar resonator the enhancement of the spontaneous emission for spectral resonance of the cavity mode with the emission of a site-controlled quantum dot was shown. This system could be used as a single photon source which is proven by the measurement of the autocorrelation function for zero time delay. KW - Quantenpunkt KW - Einzelphotonenemission KW - Drei-Fünf-Halbleiter KW - quantum dot KW - semiconductor KW - molecular beam epitaxy KW - single photon emission KW - optical resonator KW - Halbleiter KW - Molekularstrahlepitaxie KW - Optischer Resonator KW - Linienbreite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78031 ER - TY - THES A1 - Bisping, Dirk T1 - Wachstum und Charakterisierung von GaInNAs-basierenden Halbleiterstrukturen für Laseranwendungen in der optischen Telekommunikation T1 - Growth and characterization of GaInNAs-based semiconductor structures for laser applications in optical communication N2 - Im Rahmen dieser Arbeit wurden mit Molekularstrahlepitaxie GaInNAs-Strukturen für mögliche Anwendungen in der Telekommunikation als GaAs-basierende Alternative für herkömmliche Laser auf InP-Substrat hergestellt und untersucht. Zunächst wurden durch Optimierung der Substrattemperaturmessung und RF-Plasmaquelle die Voraussetzungen für gutes GaInNAs-Wachstum geschaffen. Thermisches Ausheilen ist essentiell, um eine gute optische Qualität von GaInNAs-Strukturen zu erzielen. Man beobachtet einen signifikanten Einfluss von Ausheildauer und -temperatur. Exzessives Ausheilen bei zu hohen Temperaturen bzw. zu langen Zeiten führt, neben einer ebenso unerwünschten Blauverschiebung der Emission, wiederum zu einer Degradation der optischen Qualität, die sich in einer deutlichen Reduktion der Photolumineszenz(PL)-Intensität äußert. GaInNAs-Quantenfilm(QF)-Laser mit Emission um 1240 nm mit möglicher Anwendung als Pumplaser für Ramanverstärker wurden hergestellt und charakterisiert. Durch eine Optimierung des in-situ-Ausheilens dieser Laserstrukturen konnten Laser mit sehr niedrigen Schwellenstromdichten von deutlich unter 200 A/cm^2 hergestellt werden. Für eine möglichst hohe Ausgangsleistung wurde der Wirkungsgrad der Bauteile durch eine Optimierung der internen Verluste erhöht. Eine Reduktion der internen Verluste konnte durch eine Anpassung des Dotierprofils und die Verwendung von sogenannten Large-Optical-Cavities (LOCs) erreicht werden. Mit Hilfe des LOC-Designs konnten sehr niedrige interne Verluste von nur 0,5 1/cm bei einer internen Quanteneffizienz von nahezu 80 % erreicht werden. Mit optimierten Strukturen wurde stabiler Dauerstrichbetrieb bei Ausgangsleistungen von mehreren Watt über 1000~h ohne sichtbare Degradation demonstriert. Mit auf dem LOC-Design basierenden Lasern konnte schließlich eine sehr hohe Ausgangsleistung von ca. 9 W gezeigt werden. Anschließend wurden Untersuchungen zu Quantenpunkten (QPen) im Materialsystem GaInNAs vorgestellt. Mit steigendem Stickstoffgehalt beobachtet man eine Rotverschiebung der Emission bis auf 1,43 µm, allerdings gleichzeitig eine deutliche Degradation der optischen Qualität. Eine Untersuchung der QP-Morphologie ergibt eine Reduktion der Homogenität der QP-Größenverteilung, die sich im Auftreten zweier unterschiedlich großer QP-Ensembles äußert. Um diese Degradation der QPe zu vermeiden, wurde weiterhin auf den N-Einbau in den QPen verzichtet. Wider Erwarten führt der Verzicht auf N in den QPen nicht zu einer Blauverschiebung der Emission. Dieses Resultat konnte auf die veränderte QP-Morphologie zurückgeführt werden. Durch eine Erhöhung des N-Gehaltes im die QP überwachsenden QF wurde eine weitere deutliche Rotverschiebung der Emission erreicht. So konnte PL-Emission bei Raumtemperatur mit einem Emissionsmaximum bei 1600 nm demonstriert werden. Weiterhin wurden GaInNAs-QF-Strukturen für Laser im Wellenlängenbereich um 1550 nm untersucht. Da das Wachstum hier auf Grund des deutlich höheren, notwendigen N-Gehaltes wesentlich schwieriger wird, erfolgte zunächst eine detaillierte Untersuchung der wesentlichen Wachstumsparameter. Hierbei ist es essentiell, auch das Ausheilverhalten der jeweiligen Strukturen genau zu betrachten. Bei einer Untersuchung des Einflusses der Wachstumstemperatur auf GaInNAs-Teststrukturen wurden signifikante Unterschiede auch bei nur sehr geringen Änderungen in der Substrattemperatur von nur 10 °C festgestellt. Die beobachteten Effekte wurden vor dem Hintergrund des Modells der QP-ähnlichen Emitter diskutiert. Eine Variation des Arsen-Flusses zeigte einen deutlichen Einfluss auf die PL-Emission und vor allem auf das Ausheilverhalten. Das Ausheilverhalten lässt sich durch eine Anpassung des Arsen-Flusses maßgeschneidert anpassen. Während dem Überwachsen der aktiven Schicht mit Mantel- und Kontaktschicht kann es bereits zu einem Überausheilen der Strukturen kommen. Es wurden Laser mit niedrigen Schwellenstromdichten um 1 kA/cm^2 bis zu einer Wellenlänge von 1500 nm hergestellt. Für höhere Wellenlängen steigt die Schwellenstromdichte in den Bereich von 2 bis 3 kA/cm^2. Maximal wurde Laseremission bei über 1600 nm erreicht. Bei der Untersuchung der bei 1600 nm emittierenden Laserdioden wurde eine Verbreiterung der Laseremission zur hochenergetischen Seite auf bis zu 150 nm Bandbreite bei steigendem Betriebsstrom beobachtet. Dieser Effekt kann mit Hilfe des Modells der QP-ähnlichen Emitter verstanden werden. Unter Ausnutzung dieses Effekts wurden auf dem selben epitaktischen Material monomodige Distributed-Feedback(DFB)-Laser über einen Wellenlängenbereich von ca. 1500 nm bis 1600 nm gezeigt. Auf Basis der zuvor vorgestellten langwelligen Laserstrukturen mit niedrigen Schwellenstromdichten wurde erstmals Dauerstrichbetrieb von monomodigen DFB-Lasern im Bereich um 1500 nm und von multimodigen Stegwellenleiter-Lasern über 1500 nm im Materialsystems GaInNAs gezeigt. N2 - In this work, GaInNAs structures for telecom application based on GaAs in contrast to common lasers based on InP substrates have been grown by molecular beam epitaxy and subsequently characterized. First, optimizations of substrate temperature measurement and RF plasma source were incorporated to allow high quality GaInNAs growth. Thermal annealing is crucial to achieve high optical quality of GaInNAs structures. After a discussion of the microscopic processes during annealing, the influence of annealing parameters was examined. Excessive annealing with too high temperatures or too long times can, besides the typical blue-shift of the emission, also result in a decrease of the optical quality leading to a considerable reduction of the photoluminescence intensity. Laser diodes based on GaInNAs quantum wells emitting around 1240nm have been grown and characterized for a potential application as pump sources for Raman amplifiers. Using an optimization of the in-situ annealing during growth of these structures, laser diodes with very low threshold current densities well below 200 A/cm^2 have been realized. To achieve maximum output powers, the wallplug efficiencies of these devices have been increased by reducing the internal losses. Low internal losses have been achieved using an optimized doping profile or large optical cavities (LOCs). Using a LOC, very low internal losses of only 0.5 1/cm together with a high internal quantum efficiency of almost 80 % have been achieved. Stable performance for 1.000 h without degradation under continuous-wave operation was achieved. Using lasers with a LOC design, high maximum output powers of about 9 W have been demonstrated in continuous-wave operation. Afterwards, studies concerning quantum dots based on the GaInNAs material system have been shown. Increasing N-content leads to a redshift of the emissions wavelength up to 1.43 µm, but accompanied by a significant reduction of the optical quality. An examination of the quantum dot morphology also reveals a reduction in homogeneity of the quantum dot size distribution resulting in the occurence of quantum dot ensembles with two different sizes. To avoid this degradation of the quantum dots, N was not incorporated in the quantum dots, but only in the quantum well on top of the quantum dots. Unlike expectations, this doesn't involve a blueshift of the emission wavelength. This result could be explained by the different quantum dot morphology. By increasing the N-content in the quantum well the emission wavelength at room temperature was redshifted to 1600 nm. In addition, GaInNAs quantum well structures for laser diodes in the wavelength range around 1550 nm have been examined. Due to the more difficult growth resulting from the necessary higher N-content, a detailed examination of the growth parameters was required. Doing that, it is obligatory to take the annealing behaviour into account. A study of the influence of the substrate temperature showed a significant influence of very small differences in the range of 10 °C. Results have been discussed based on the modell of quantum dot like emitters. A variation of the arsenic flux during growth showed strong impact on photoluminescence emission and particularly annealing behaviour. The annealing behaviour can be tailored by changing the arsenic flux. Overgrowth of the quantum well with cladding and contact layers in complete laser stuctures can already result in over-annealing of the quantum well. It was possible to realize laser diodes with low threshold current densities in the range of 1 kA/cm^2 with emission wavelengths up to 1500 nm. For longer wavelengths, threshold current densities increase into the range of 2 to 3 kA/cm^2. The longest laser emission wavelength achieved was slightly above 1600 nm. Detailed examination of laser diodes emitting at 1600 nm revealed a huge broadening of the laser emission to higher energies resulting in an emission bandwidth of up to 150 nm under increasing drive current. This effect is explained using the model of quantum dot like emitters. Making use of this effect, single mode emitting distributed feedback lasers with emission wavelengths covering the whole wavelength range from 1500 to 1600 nm have been demonstrated. Based on the described long-wavelength laser diodes with low threshold current densities, continuous-wave operation of single-mode distributed feedback laser near 1500 nm and multimode ridge-waveguide lasers above 1500 nm have been shown for the first time using the GaInNAs material system. KW - Halbleiterlaser KW - Drei-Fünf-Halbleiter KW - Optoelektronik KW - verdünnte Nitride KW - Dilute Nitrides KW - Galliumarsenid KW - Molekularstrahlepitaxie KW - Telekommunikation KW - Hochleistungslaser KW - Dauerstrichbetrieb KW - Nitride Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77538 ER - TY - THES A1 - Bentmann, Hendrik T1 - Spin-Bahn-Kopplung in Grenzschichten: Mikroskopische Zusammenhänge und Strategien zur Manipulation T1 - Spin-Orbit-Coupling at Interfaces: Microscopic Mechanisms and Strategies for Manipulation N2 - Die vorliegende Arbeit befasst sich mit dem Einfluss der Spin-Bahn-Kopplung (SBK) auf die zweidimensionale elektronische Struktur von Festkörperoberflächen und -grenzflächen. Aufgrund der strukturellen Inversionsasymmetrie kann die SBK in derartigen Systemen eine Spinaufspaltung der elektronischen Zustände herbeiführen und eine charakteristische impulsabhängige Spinstruktur induzieren (Rashba-Effekt). Die Studien in dieser Arbeit sind zum einen darauf gerichtet, das physikalische Verständnis der mikroskopischen Zusammenhänge, die die Spinaufspaltung und die Spinorientierung elektronischer Zustände an Grenzflächen bestimmen, zu verbessern. Des Weiteren sollen Möglichkeiten zur Manipulation der SBK durch kontrollierte Variationen chemischer und struktureller Grenzflächenparameter erforscht werden. Als Modellsysteme für diese Fragestellungen dienen die isostrukturellen Oberflächenlegierungen BiCu2 und BiAg2, deren elektronische Struktur mittels winkelaufgelöster Photoelektronenspektroskopie (ARPES) und spinaufgelöster ARPES untersucht wird. Die Resultate der Experimente werden mithilfe von ab initio-Rechnungen und einfacheren Modellbetrachtungen interpretiert. Die Arbeit schließt mit einer ausblickenden Präsentation von Experimenten zu dem topologischen Isolator Bi2Se3(0001). Vergleichende ARPES-Messungen zu BiAg2/Ag(111) und BiCu2/Cu(111) zeigen, dass bereits geringe Unterschiede in der Grenzschichtmorphologie die Größe der Spinaufspaltung in der elektronischen Struktur um ein Vielfaches verändern können. Zudem belegen spinaufgelöste Experimente eine invertierte Spinorientierung der elektronischen Zustände in BiCu2 im Vergleich mit dem Referenzsystem Au(111). Beide Resultate können durch eine theoretische Analyse des Potentialprofils und der elektronischen Ladungsverteilung senkrecht zu der Grenzfläche in Kombination mit einfachen Modellbetrachtungen verstanden werden. Es stellt sich heraus, dass Asymmetrien in der Ladungsverteilung das direkte mikroskopische Bindeglied zwischen der Spinstruktur des elektronischen Systems und den strukturellen und chemischen Parametern der Grenzschicht bilden. Weitergehende ARPES-Experimente zeigen, dass die spinabhängige elektronische Struktur zudem signifikant durch die Symmetrie des Potentials parallel zu der Grenzflächenebene beeinflusst wird. Eine Manipulation der SBK wird in BiCu2 durch die Deposition von Adatomen erreicht. Hierdurch gelingt es, die Spinaufspaltung sowohl zu vergrößern (Na-Adsorption) als auch zu verringern (Xe-Adsorption). ARPES-Experimente an dem ternären Schichtsystem BiAg2/Ag/Au(111) belegen erstmalig eine Kopplung zwischen elektronischen Bändern mit entgegengesetztem Spincharakter in einem zweidimensionalen System mit Spinaufspaltung (Interband-Spin-Bahn-Kopplung). Der zugrundeliegende Kopplungsmechanismus steht in bemerkenswerter Analogie zu den Auswirkungen der SBK auf die spinpolarisierte elektronische Struktur in ferromagnetischen Systemen. Variationen in der Schichtdicke des Ag-Substratfilms erlauben es, die Stärke der Interband-SBK zu manipulieren. N2 - This thesis deals with the effects of the spin-orbit coupling (SOC) on the two-dimensional electronic structure of crystal surfaces and interfaces. Due to the structural inversion asymmetry the SOC can provoke a spin splitting of the electronic states in such systems and thereby induce a characteristic momentum-dependent spin structure (Rashba effect). The studies presented in this work are directed towards an improved understanding of the microscopic mechanisms that govern the size of the spin splitting and the spin orientation of two-dimensional electronic states. Furthermore, possibilities to manipulate the SOC via controlled variations of the chemical and structural interface properties shall be investigated. In order to address these issues the spin-dependent electronic structure of the two isostructural surface alloys BiCu2 and BiAg2 is scrutinized by angle-resolved photoelectron spectroscopy (ARPES) and spin-resolved ARPES experiments. The experimental results are interpreted using ab initio electronic structure theory as well as more simple free-electron-type models. The thesis closes with a forward-looking presentation of experimental results on the topological insulator surface Bi2Se3(0001). ARPES measurements for BiAg2/Ag(111) and BiCu2/Cu(111) reveal that already small changes in the interface morphology can result in sizeable differences of the spin splitting. Moreover, spin-resolved experiments provide evidence for an inverted spin orientation of the electronic states in BiCu2 when compared to the reference system Au(111). Both results can be understood through a careful theoretical analysis of the potential profile and the electronic charge distribution perpendicular to the interface in combination with simple model considerations. It turns out that asymmetries in the charge distribution represent the central microscopic link between the spin structure of the electronic system and the structural and chemical interface properties. Further ARPES experiments show that the spin-dependent electronic structure is also significantly influenced by the symmetry of the potential parallel to the interface. A manipulation of the SOC is achieved in BiCu2/Cu(111) by the deposition of adatoms. Thereby it is possible both to increase the spin splitting by the adsorption of Na and to decrease it by theadsorption of Xe. ARPES experiments for the ternary layer system BiAg2/Ag/Au(111) show for the first time a coupling between electronic bands of opposite spin character in a spin-orbit split electron system (interband-spin-orbit-coupling). The underlying coupling mechanism shows remarkable analogies with the effect of SOC on the spin-polarized electronic structure in ferromagnetic systems. Variations of the layer thickness of the Ag-film allow for a manipulation of the interband-SOC. KW - Spin-Bahn-Wechselwirkung KW - Grenzflächenphysik KW - Photoemission KW - Spin-orbit coupling KW - Electronic structure KW - Interface physics KW - Elektronenstruktur Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76963 ER - TY - THES A1 - Gerhard, Sven T1 - AlGaInP-Quantenpunkte für optoelektronische Anwendungen im sichtbaren Spektralbereich T1 - AlGaInP Quantum Dots for Optoelectronic Applications in the Visible Spectral Range N2 - Die Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von AlGaInP Quantenpunkten auf GaP und GaAs-Substrat. Auf Basis dieser Quantenpunkte wurden Halbleiterlaser auf GaAs hergestellt, welche bei Raumtemperatur zwischen 660 nm und 730 nm emittierten. Die Untersuchung von Breitstreifenlasern, welche aus diesen Strukturen gefertigt wurden, legen nahe, dass man mithilfe eines höheren Aluminiumanteils in größeren Quantenpunkten bei vergleichbarer Wellenlänge Laser mit besseren Eigenschaften realisieren kann. Weiterhin wurden in dieser Arbeit Quantenpunkten auf GaP-Substrat untersucht, welche in AlGaP eingebettet wurden. Da diese Quantenpunkte in Barrieren eingebettet sind, welche eine indirekte Bandlücke besitzen, ergibt sich ein nicht-trivialer Bandverlauf innerhalb dieser Strukturen. In dieser Arbeit wurden numerische 3D-Simulationen verwendet, um den Bandverlauf zu berechnen, wobei Verspannung und interne Felder berücksichtigt wurden und auch die Grundzustandswellenfunktionen ermittelt wurden. Ein eingehender Vergleich mit dem Experiment setzt die gemessenen Emissionswellenlängen und -intensitäten mit berechneten Übergangsenergien und Überlappintegralen in Verbindung. N2 - The scope of this work is the fabrication and characterization of AlGaInP quantum dots on GaP an GaAs substrates. Based on such quantum dots, semiconductor lasers have been realized, emitting between 660 nm and 730 nm at room temperature. The examination of broad-area lasers processed on these structures suggests that active layers of larger quantum dots with higher aluminium contents lead to lasers with better performance at similar emission wavelength. Additionally, quantum dots grown on GaP substrates have been characterized, that were embedded in AlGaP barriers. Since these barriers exhibit an indirect bandgap, a non-trivial band alignment within these structures is expected. In this work, numerical 3D-simulations are employed to calculate the band alignment including strain and internal fields. Also, ground state wavefunctions of charge carriers have been determined. A thorough comparison between theory and experiment connects the measured emission wavelength and luminescence intensities with calculated transition energies and wavefunction overlaps. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Optoelektronik KW - AlGaInP KW - AlGaInP KW - quantum dot KW - gallium phosphide KW - Galliumphosphid KW - Laser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76174 ER - TY - THES A1 - Münch, Steffen T1 - Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis T1 - Photoluminescence Spectroscopy on low-dimensional III-V Semiconductor Structures N2 - Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zunächst im ersten Teil selbst-organisiert gewachsene Nanodrähte aus InP und GaN bezüglich ihrer Oberflächen- und Kristallqualität charakterisiert. Dies ist besonders im Hinblick auf zukünftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberflächen-Untersuchungen an Halbleiter-Nanodrähten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodrähten mittels zeitintegrierter und zeitaufgelöster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive für die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodrähten besteht darüber hinaus konkret noch die Möglichkeit, über ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalitäten einzubauen. Auf Grund ihres großen Oberfläche-zu-Volumen Verhältnisses sind die elektronischen und optischen Eigenschaften der Nanodrähte extrem oberflächensensitiv, was vor allem im Hinblick auf zukünftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur näheren Untersuchung der Oberflächeneigenschaften von Nanodrähten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufwändige Probenpräparation schnell nützliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden können. Quantenoptik an Halbleiter-Mikrokavitäten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf mögliche zukünftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-Türmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgelöster Mikro-PL-Spektroskopie in einem äußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zunächst wurden InxGa(1−x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30%, 45% und 60%) magneto-optisch untersucht. Aufgrund der größeren Abmessungen weisen die Quantenpunkte mit 30% In-Anteil auch hohe Oszillatorstärken auf, was sie besonders für Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der Möglichkeit, das Resonanzverhalten über das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsstärke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorstärke im Magnetfeld zurückgeführt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschnürung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorstärke erlaubt eine in situ Variation der Kopplungsstärke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabhängigen photonischen Moden über den Spinzustand eines Exzitons dar. N2 - This thesis deals with optical investigations on low-dimensional III/V-semiconductor structures. In the first part self-organized nanowires made of InP and GaN are characterized for their surface and crystal quality, which is of special interest with respect to future opto- and nanoelectronic devices. The second part is dedicated to the more basic research topic of Quantum Optics. It presents magneto-optical studies on the light-matter interaction in quantum dot microresonator systems within the regime of strong coupling. Surface investigations on semiconductor nanowires This aspect of the present work focuses on investigations of semiconductor nanowires by means of time-integrated and time-resolved photoluminescence (PL) spectroscopy. These one-dimensional nanostructures provide a promising perspective for the further miniaturization of microelectronics. Since conventional structuring techniques increasingly face physical and technological boundaries, self-organized growth processes are of special interest in this context. Moreover, nanowires offer the possibility to implement complex functionalities already during their fabrication by means of controlled growth of axial and radial heterostructures. Due to their high surface-to-volume ratio the electronic and optical properties of nanowires are extremely sensitive to the surface conditions, which is of essential relevance for future applications in the range of micro- and optoelectronics as well as sensor technology. For a detailed investigation of the surface properties of nanowires optical spectroscopy is especially suitable, because as a non-invasive measurement method it quickly provides useful information without the necessity of an eloborate sample preparation. This information can, for instance, be adopted for the optimization of the fabrication process. Quantum Optics in semiconductor microcavities The second part of this thesis addresses the light-matter interaction in quantum dot-microresonator systems. Here, the regime of strong coupling between emitter and resonator is of special interest, also with respect to potential future applications in the field of quantum information processing. These microresonator-pillars based on planar AlAs/GaAs microresonators with InGaAs quantum dots in the active layer have been investigated by means of time-integrated and time-resolved micro-PL-spectroscopy in an external magnetic field in Faraday configuration. Basic investigations of quantum dots in magnetic fields In the first place, InxGa(1−x)As quantum dots with different In-content (x = 30%, 45% and 60%) have been investigated magneto-optically. Due to their bigger dimensions these quantum dots with 30% In-content exhibit higher oscillator strengths which makes them especially suitable for experiments on strong coupling. The influence of the magnetic field showed a direct relation between the lateral extension of the quantum dots and their diamagnetic shift. Strong coupling in magnetic fields Besides the possibility of tuning the system in resonance by the external magnetic field, a correlation between the coupling strength and the magnetic field was discovered which could be ascribed to a reduction of the oscillator strength in the magnetic field. This in turn is based on a squeeze of the exciton’s wavefunction by the applied field. This direct influence of the magnetic field on the oscillator strength allows for an in situ control of the coupling strength. Photon-photon interaction under strong coupling in magnetic fields After the demonstration of strong coupling between degenerate exciton and resonator modes in magnetic fields, spin-related coupling effects within the regime of strong coupling have been investigated. Two regions of interaction between the individual components of the resonator and exciton mode developed in the magnetic field under variation of the temperature. Here, an observed indirect interaction between both photonic modes at the moment of resonance is of special interest, because it is mediated by the excitonic mode. This so-called spinmediated photon-photon coupling represents a link between technically independent photonic modes via the spin state of an exciton. KW - Drei-Fünf-Halbleiter KW - Niederdimensionaler Halbleiter KW - Photolumineszenzspektroskopie KW - quantum dot KW - quantum optics KW - optical spectroscopy KW - solid state physics KW - nanowire KW - Quantenpunkt KW - Quantenoptik KW - Optische Spektroskopie KW - Festkörperphysik KW - Nanodraht Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74104 ER -