TY - THES A1 - Gulve, Nitish T1 - Subversion of Host Genome Integrity by Human Herpesvirus 6 and \(Chlamydia\) \(trachomatis\) T1 - Störung der Integrität des Wirts Genoms durch das Human Herpesvirus 6 und \(Chlamydia\) \(trachomatis\) N2 - Ovarian cancer is one of the most common gynecological malignancies in the world. The prevalence of a microbial signature in ovarian cancer has been reported by several studies till date. In these microorganisms, Human herpesvirus 6 (HHV-6) and Chlamydia trachomatis (C.tr) are especially important as they have significantly high prevalence rate. Moreover, these pathogens are directly involved in causing DNA damage and thereby disrupting the integrity of host genome which is the underlying cause of any cancer. This study focuses on how the two pathogens, HHV-6 and C. trachomatis can affect the genome integrity in their individual capacities and thereby may drive ovarian epithelial cells towards transformation. HHV-6 has unique tendency to integrate its genome into the host genome at subtelomeric regions and achieve a state of latency. This latent virus may get reactivated during the course of life by stress, drugs such as steroids, during transplantation, pregnancy etc. The study presented here began with an interesting observation wherein the direct repeat (DR) sequences flanking the ends of double stranded viral genome were found in unusually high numbers in human blood samples as opposed to normal ratio of two DR copies per viral genome. This study was corroborated with in vitro data where cell lines were generated to mimic the HHV-6 status in human samples. The same observation of unusually high DR copies was found in these cell lines as well. Interestingly, fluorescence in situ hybridization (FISH) and inverse polymerase chain reaction followed by southern blotting showed that DR sequences were found to be integrated in nontelomeric regions as opposed to the usual sub-telomeric integration sites in both human samples and in cell lines. Sanger sequencing confirmed the non-telomeric integration of viral DR sequences in the host genome. Several studies have shown that C. trachomatis causes DNA damage and inhibits the signaling cascade of DNA damage response. However, the effect of C. trachomatis infection on process of DNA repair itself was not addressed. In this study, the effect of C. trachomatis infection on host base excision repair (BER) has been addressed. Base excision repair is a pathway which is responsible for replacing the oxidized bases with new undamaged ones. Interestingly, it was found that C. trachomatis infection downregulated polymerase β expression and attenuated polymerase β- mediated BER in vitro. The mechanism of the polymerase β downregulation was found to be associated with the changes in the host microRNAs and downregulation of tumor suppressor, p53. MicroRNA-499 which has a binding site in the polymerase β 3’UTR was shown to be upregulated during C. trachomatis infection. Inhibition of miR-499 using synthetic miR-499 inhibitor indeed improved the repair efficiency during C. trachomatis infection in the in vitro repair assay. Moreover, p53 transcriptionally regulates polymerase β and stabilizing p53 during C. trachomatis infection enhanced the repair efficiency. Previous studies have shown that C. trachomatis can reactivate latent HHV-6. Therefore, genomic instability due to insertions of unstable ‘transposon-like’ HHV-6 DR followed by compromised BER during C. trachomatis infection cumulatively support the hypothesis of pathogenic infections as a probable cause of ovarian cancer N2 - Diese Studie fokussiert sich darauf, wie die beiden Pathogene HHV-6 und C. trachomatis die Genom Integrität beeinflussen und dadurch die Transformation ovarialer Epithelzellen zu Tumorzellen antreiben können. Das latente Virus HHV-6 kann sich in Subtelomer-Regionen des Genoms integrieren und zu jeder Lebensphase (z.B. durch Stress oder Pharmaka) reaktiviert werden. Zu Beginn dieser Studie wurde die Beobachtung gemacht, dass in menschlichen Blutproben eine ungewöhnlich hohe Anzahl an sogenannten direct repeat Sequnzen, die die Enden des doppelsträngigen Virus Genoms flankieren, aufwiesen. Bestätigt wurde diese Beobachtung durch in vitro Daten, wofür Zelllinien generiert wurden, um den HHV-6 Wert in menschlichen Proben zu imitieren. Außerdem konnte durch Sanger Sequenzierung die Integration der viralen DR Sequenzen außerhalb von Telomer Regionen in das Genom nachgewiesen werden. Verschiedene Studien konnten zeigen, dass C. trachomatis DNA Schäden verursacht und die Signal Kaskade von Antworten auf DNA-Schäden inhibiert. Bisher wurde die Auswirkung einer C. trachomatis Infektion auf den Prozess der DNA Reparatur selbst noch nicht behandelt. In dieser Studie wird die Auswirkung einer C. trachomatis Infektion auf Basen-Exzisionsreparatur (BER) thematisiert. Interessanterweise wurde herausgefunden, dass während einer C. trachomatis Infektion die Expression von Polymerase β herunterreguliert ist und dadurch die Polymerase β-vermittelte Basen-Exzisionsreparatur in vitro gestoppt wird. Diese Herunterregulierung konnte mit einer verminderten Expression des Tumorsuppressor p53 assoziiert werden. Darüber hinaus reguliert p53 auf transkriptioneller Ebene Polymerase β und eine Stabilisierung von p53 während einer C. trachomatis Infektion verbesserte die Reparatur-Effizienz. Vorangegangene Studien haben außerdem gezeigt, dass C. trachomatis die latente Form von HHV-6 reaktivieren kann. Deshalb unterstützt die genomische Instabilität aufgrund einer Insertion von HHV-6 DR, gefolgt von komprimierter BER während einer C. trachomatis Infektion, zunehmend die Hypothese, dass eine pathogene Infektion ein vermutlicher Auslöser von Eierstockkrebs sein könnte. KW - Chlamydia trachomatis KW - Host Genome Integrity KW - Chlamydia trachomatis KW - Human Herpesvirus 6 KW - Humanes Herpesvirus 6 KW - Eierstockkrebs KW - Molekulargenetik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162026 ER - TY - THES A1 - Blocka, Joanna T1 - Molecular mechanisms underlying Woodhouse-Sakati syndrome: characterization of DCAF17 with specific, polyclonal antibodies T1 - Molekulare Grundlagen des Woodhouse-Sakati Syndroms: Charakterisierung des DCAF 17 mit spezifischen, polyklonalen Antikörpern N2 - Woodhouse-Sakati syndrome (WSS) is a rare multisystemic, autosomal recessive disease. The underlying cause of WSS are mutations of C2orf37 gene, which result in a truncated protein. Little is known about the function of C2orf37 (DDB1-CUL4A-associated factor 17, DCAF17) apart from it being part of the DDB1-CUL4-ROC1 E3 ubiquitin ligase complex, specifically binding directly to DDB1 and serving as a substrate recruiter for E3. There are two major isoforms of DCAF17: beta (65 kDa, 520 amino acids) and alpha (27 kDa, 240 amino acids), which is a C-terminal part of beta. The intracellular localization of the WSS protein is thought to be primarily the nucleolus. A murine ortholog protein was found to be expressed in all tissues with a relatively higher expression in the brain, liver, and skin.The aim of this work was to investigate DCAF17 in HeLa cells in more detail, in particular the redistribution of both WSS isoforms on the subcellular and -nuclear level as well as their chemical features. For these experiments, I developed, through recombinant expression and affinity purification, a specific polyclonal antibody against a WSS-epitope 493-520. Furthermore, three other specific polyclonal antibodies were obtained through affinity purification with help of commercially produced high-affinity epitope peptides.By means of these antibodies, I determined- through immunofluorescence and subcellular protein fractionation- that, apart from the redistribution of the WSS protein within the non-soluble = chromatin-bound nuclear fraction, a significant amount of both WSS isoforms is present in the soluble nuclear fraction. Indeed, treatment of purified nuclear envelopes with an increasing concentration of NaCl as well as urea confirmed a non-covalent binding of the WSS protein to the nuclear envelope with the detachment ofbeta-WSS at a lower NaCl concentration than alpha-WSS. In regard to the chromatin-bound WSS protein, I performed hydrolysis of nuclear and nucleolar extract with DNase and RNase. The results indicate that the WSS protein is bound to DNA but not RNA, with alpha-WSS being possibly located more abundantly in the nucleolus, whereas beta-WSS within other subnuclear departments. Furthermore, in all the above-mentioned experiments, a presence of an 80-kDa protein, which specifically reacted with the polyclonal high-affinity antibodies and showed similar redistribution and chemical features as alpha- and beta-WSS, was observed. In order to investigate whether this protein is a posttranslationally modified WSS isoform, I performed deglycosylation and dephosphorylation of nuclear extract, which showed no disappearance or change in abundance of the 80-kDa band on Western blot. While other ways of poststranslational modification cannot be excluded as the cause of occurrence of the 80-kDa protein, an existence of a third, yet undescribed, major isoform is also conceivable. Summarizing, this work contributed to a deeper characterization of the WSS protein, which can help future investigators in developing new experimental ideas to better understand the pathology of WSS. N2 - Woodhouse-Sakati Syndrom (WSS) ist eine seltene, autosomal rezessive Multisystemerkrankung, deren Ursache Mutationen im C2orf37 Gen, resultierend in einem trunkierten Protein, sind. Die Funktion des C2orf37 (DDB1-CUL4A-associated factor 17, DCAF 17) ist weitgehend unbekannt. Das Protein ist Teil des DDB1-CUL4-ROC1 E3-Ubiquitin-Ligase-Komplexes, wo es direkt an DDB1 bindet und Substrate für E3 rekrutiert. Zwei Isoformen des DCAF17: beta (65 kDa, 520 Aminosäuren) und alpha (27 kDa, 240 Aminosäuren), die ein C-terminaler Teil der beta-Isoform ist, sind heutzutage bekannt. Man geht von einer primär nukleolären Lokalisation des WSS-Proteins in den Zellen aus. Untersuchungen des murinen C2orf37-Ortholog-Proteins ergaben eine Expression in allen Zellen mit einer erhöhten Expression im Gehirn, in der Leber und in der Haut. Das Ziel dieser Arbeit war es, DCAF17 in HeLa-Zellen zu untersuchen, insbesondere die Lokalisation beider WSS-Isoformen auf dem subzellulären und -nukleären Niveau sowie deren chemische Eigenschaften. Durch rekombinante Expression und Affinitätsreinigung entwickelte ich spezifische polyklonale Antikörper gegen das WSS-Epitop 493-530. Zudem reinigte ich drei weitere spezifische polyklonale Antikörper mithilfe kommerziell produzierter hochaffiner Epitop-Peptide auf. Mithilfe dieser Antikörper konnte ich- durch Immunfluoreszenz und subzelluläre Proteinfraktionierug- eine Lokalisation des WSS-Proteins in der löslichen Kernfraktion, zusätzlich zu der bereits bekannten chromatingebundenen Kernfraktion, nachweisen. Die Behandlung reiner Kernhüllen mit steigernden NaCl-Konzentrationen und Harnstoff zeigte eine nicht-kovalente Bindung des DCAF17 an die Kernhülle mit einer Ablösung der beta-Isoform von der Kernhülle bereits bei niedrigeren NaCl-Konzentrationen als im Falle der alpha-Isoform. Um das chromatingebundene DCAF17 genauer zu untersuchen, führte ich eine Hydrolyse des Ganzkern- und Nukleolusextraktes mit DNase und RNase durch. Diese ergab eine Bindung des WSS-Proteins an die DNA, jedoch nicht an die RNA, mit der möglichen Hauptlokalisation der alpha-Isoform im Nukleolus und der beta-Isoform in anderen subnukleären Kompartimenten. Des Weiteren wurde in den oben beschriebenen Experimenten ein 80-kDa Protein nachgewiesen, das eine spezifische Reaktion mit den polyklonalen hochaffinen Antikörpern sowie eine dem WSS-Protein ähnliche subzelluläre / -nukleäre Lokalisation und chemische Eigenschaften zeigte. Um zu untersuchen, ob es sich um ein posttranslational modifiziertes DCAF17 handelt, führte ich Deglycosylierung und Dephosphorylierung des Ganzkernextraktes durch. Diese zeigten weder ein Verschwinden noch eine Änderung des 80-kDa-Signals auf Immunoblots. Obwohl eine andere Art einer posttranslationalen Proteinmodifizierung ist nicht ausgeschlossen, entspricht dieses Protein möglicherweise einer dritten, bisher nicht beschriebenen, Hauptisoform des DCAF17. Zusammenfassend trug diese Arbeit zur genaueren Charakterisierung des WSS-Proteins bei. Dies kann zukünftigen Forschern helfen, die Pathologie des WSS besser zu verstehen. KW - Humangenetik KW - Molekulargenetik KW - Grundlagenforschung KW - Woodhouse-Sakati Syndrom KW - Woodhouse-Sakati sydrome KW - DCAF17 KW - Humangenetik KW - genetics KW - autosomal recessive Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174766 ER -