TY - JOUR A1 - Fischer, Roman A1 - Maier, Olaf A1 - Siegemund, Martin A1 - Wajant, Harald A1 - Scheurich, Peter A1 - Pfizenmaier, Klaus T1 - A TNF Receptor 2 Selective Agonist Rescues Human Neurons from Oxidative Stress-Induced Cell Death JF - PLoS ONE N2 - Tumor necrosis factor (TNF) plays a dual role in neurodegenerative diseases. Whereas TNF receptor (TNFR) 1 is predominantly associated with neurodegeneration, TNFR2 is involved in tissue regeneration and neuroprotection. Accordingly, the availability of TNFR2-selective agonists could allow the development of new therapeutic treatments of neurodegenerative diseases. We constructed a soluble, human TNFR2 agonist (TNC-scTNF(R2)) by genetic fusion of the trimerization domain of tenascin C to a TNFR2-selective single-chain TNF molecule, which is comprised of three TNF domains connected by short peptide linkers. TNC-scTNFR2 specifically activated TNFR2 and possessed membrane-TNF mimetic activity, resulting in TNFR2 signaling complex formation and activation of downstream signaling pathways. Protection from neurodegeneration was assessed using the human dopaminergic neuronal cell line LUHMES. First we show that TNC-scTNF(R2) interfered with cell death pathways subsequent to H(2)O(2) exposure. Protection from cell death was dependent on TNFR2 activation of the PI3K-PKB/Akt pathway, evident from restoration of H(2)O(2) sensitivity in the presence of PI3K inhibitor LY294002. Second, in an in vitro model of Parkinson disease, TNC-scTNFR(2) rescues neurons after induction of cell death by 6-OHDA. Since TNFR2 is not only promoting anti-apoptotic responses but also plays an important role in tissue regeneration, activation of TNFR2 signaling by TNC-scTNF(R2) appears a promising strategy to ameliorate neurodegenerative processes. KW - Tumor-necrosis-factor KW - Glutamate-induced excitotoxicity KW - Single-chain TNF KW - Kappa-B pathway KW - Parkinsons-disease KW - Signaling complex KW - Activation KW - Apoptosis KW - Dopamine KW - Ligand Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133552 VL - 6 IS - 11 ER - TY - JOUR A1 - Rauert, H. A1 - Stühmer, T. A1 - Bargou, R. A1 - Wajant, H. A1 - Siegmund, D. T1 - TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms JF - Cell Death and Disease N2 - The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival KW - apoptosis KW - CD95 KW - multiple myeloma KW - NFkB KW - TNF KW - TRAIL KW - NF-Kappa-B KW - Tumor-necrosis-factor KW - Factor receptor KW - Factor-alpha KW - Activation KW - Polymorphisms KW - Inhibitor KW - Promoter KW - Transcription KW - Expression Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133486 VL - 2 ER -