TY - THES A1 - Buback, Johannes T1 - Femtochemistry of Pericyclic Reactions and Advances towards Chiral Control T1 - Femtochemie pericyclischer Reaktionen und Fortschritte in Richtung einer chiralen Kontrolle N2 - Pericyclic reactions possess changed reactivities in the excited state compared to the ground state which complement each other, as can be shown by simple frontier molecular orbital analysis. Hence, most molecules that undergo pericyclic reactions feature two different photochemical pathways. In this thesis an investigation of the first nanoseconds after excitation of Diazo Meldrum’s acid (DMA) is presented. The time-resolved absorption change in the mid-infrared spectral region revealed indeed two reaction pathways after excitation of DMA with at least one of them being a pericyclic reaction (a sigmatropic rearrangement). These two pathways most probably start from different electronic states and make the spectroscopy of DMA especially interesting. Femtochemistry also allows the spectroscopy of very short-lived intermediates, which is discussed in context of the sequential mechanism of the Wolff rearrangement of DMA. An interesting application of pericyclic reactions are also molecular photoswitches, i.e. molecules that can be switched by light between two stable states. This work presents a photoswitch on the basis of a 6-pi-electrocyclic reaction, whose reaction dynamics after excitation are unravelled with transient-absorption spectroscopy for both switching directions. The 6-pi-electrocyclic reaction is especially attractive, because of the huge electronic changes and subsequent absorption changes upon switching between the ring-open and ring-closed form. Fulgides, diarlyethenes, maleimides as well as spiropyrans belong to this class of switches. Despite the popularity of spiropyrans, the femtochemistry of the ring-open form (“merocyanine”) is still unknown to a great extent. The experiments in this thesis on this system combined with special modeling algorithms allowed to determine the quantum efficiencies of all reaction pathways of the system, including the ring-closure pathway. With the knowledge of the reaction dynamics, a multipulse control experiment showed that bidirectional full-cycle switching between the two stable states on an ultrafast time scale is possible. Such a controlled ultrafast switching is a process which is inaccessible with conventional light sources and may allow faster switching electronics in the future. Theoretical calculations suggest an enantioselective photochemistry, i.e. to influence the chirality of the emerging molecule with the chirality of the light, a field called “chiral control”. The challenges that need to be overcome to prove a successful chiral control are extremely hard, since enantiosensitive signals, such as circular dichroism, are inherently very small. Hence, chiral control calls for a very sensitive detection as well as an experiment that cancels all effects that may influence the enantiosensitive signal. The first challenge, the sensitive detection, is solved with a polarimeter, which is optimized to be combined with femtosecond spectroscopy. This polarimeter will be an attractive tool for future chiral-control experiments due to its extreme sensitivity. The second challenge, the design of an artefact-free experiment, gives rise to a variety of new questions. The polarization state of the light is the decisive property in such an experiment, because on the one hand the polarization carries the chiral information of the excitation and on the other hand the change of the polarization or the intensity change dependent on the polarization is used as the enantiosensitive probing signal. A new theoretical model presented in this thesis allows to calculate the anisotropic distribution of any given pump-probe experiment in which any pulse can have any polarization state. This allows the design of arbitrary experiments for example polarization shaped pump-probe experiments. Furthermore a setup is presented and simulated that allows the shot-to-shot switching between mirror-images of light polarization states. It can be used either for control experiments in which the sample is excited with mirror-images of the pump polarization or for spectroscopy purposes, such as transient circular dichroism or transient optical rotatory dispersion. The spectroscopic results of this thesis may serve as a basis for these experiments. The parallel and sequential photochemical pathways of DMA and the feasibility of the bidirectional switching of 6,8-dinitro BIPS in a pump–repump experiment on the one hand offer a playground to test the relation of the anisotropy with the polarization of the pump, repump and probe pulse. On the other hand control experiments with varying pump and repump polarization may be able to take influence on the dynamics after excitation. Especially interesting is the combination of the 6,8-dinitro BIPS with the polarization-mirroring setup, because the closed form (spiropyran) is chiral. Perhaps in the future it will be possible to prove a cumulative circular-dichroism effect or even a chiral control with this system. N2 - Pericyclische Reaktionen besitzen unterschiedliche Reaktivitäten im elektronischen Grund- und angeregten Zustand, wie anhand einfacher Grenzorbitalbetrachtungen gezeigt werden kann. Deswegen weisen Moleküle die eine pericyclische Reaktion eingehen meist mehrere photochemische Reaktionspfade auf. In dieser Arbeit wird die Femtochemie von Diazo-Meldrumssäure (DMA) utnersucht. Die zeitaufgelösten Absorptionsänderungen im mittleren Infrarotbereich zeigen tatsächlich zwei Reaktionspfade nach Anregung der DMA, von denen zumindest einer eine pericyclische Reaktion ist (eine sigmatrope Umlagerung). Diese zwei Pfade starten vermutlich von unterschiedlichen elektronischen Zuständen, was die Spektroskopie von DMA besonders interessant macht. Besonders kurzlebige Intermediate oder transiente Zustände können mit Hilfe der Femtochemie auch beobachtet werden, was in Zusammenhang mit der Wolff Umlagerung von DMA gezeigt wird. Eine weitere interessante Anwendung pericyclischer Reaktionen sind die molekularen Schalter, also Moleküle die mit Licht zwischen zwei stabilen Zuständen hin und hergeschaltet werden können. In dieser Arbeit wird ein Photoschalter, 6,8-dinitro BIPS, auf Basis einer 6-pi elektrocyclischen Reaktion vorgestellt, dessen Reaktionsdynamiken nach Anregung mit Hilfe transienter Absorption sichtbar gemacht werden. Die 6-pi elektrocyclische Reaktion ist besonders attraktiv, da mit ihr große elektronische Änderungen und somit auch starke Absorptionsänderungen einhergehen beim Schaltvorgang. Fulgide, Diarylethene, Maleimide und Spiropyrane gehören zu dieser Klasse von Schaltern. Trotz der großen Verbreitung der Spiropyrane ist jedoch bisher die Femtochemie der offenen Form ("Merocyanin") zum großen Teil unbekannt. Die Experimente und Modellierungen an diesem System in dieser Arbeit erlauben die Bestimmung der Quanteneffizienzen aller beteiligten Reaktionspfade beider Schaltrichtungen. Mit diesem Wissen ausgestattet konnte ein Multipulse-Kontroll Experiment durchgeführt werden in dem bidirektional zwischen den beiden Zuständen des Photoschalters auf Pikosekunden Zeitskala hin und hergeschaltet wurde. Dieser Prozess ist mit konventionellen Lichtquellen nicht möglich. Laut theoretischen Rechnungen ist eine enantionselektive Photochemie, also die Beeinflussung der Chiralität von gebildeten Produkten einer Photoreaktion, möglich. Dieses Feld wird "chirale Kontrolle" genannt. Die Herausforderungen eine erfolgreiche chirale Kontrolle zu beweisen sind extrem anspruchsvoll, da enantiosensitive Signale, wie zum Beispiel der Zirkulardichroismus, sehr klein sind. Deswegen ist einerseits eine sehr genaue Detektionsmethode notwendig sowie eine experimentelle Anordnung in der Artefakte direkt ausgeschlossen werden. Für die sehr genaue Detektion wurde in dieser Arbeit ein Polarimeter entwickelt, das zudem für die Kombination mit Femtosekundenlaserpulsen optimiert ist. Dieses Polarimeter wird in Zukunft eine attraktive Detektionsmethode für chirale-Kontrollexperimente sein auf Grund seiner extrem guten Sensitivität. Die zweite Herausforderung eine artefaktfreie experimentelle Anordnung zu finden, eröffnet eine Fülle neuer Fragen. Der Polarisationszustand in diesen Experimenten ist die entscheidende Eigenschaft, da einerseits die Polarisation die chirale Information der Anregung trägt und andererseits die Änderung des Polarisationszustands oder der Intensität benutzt wird als enantiosensitives Abfragesignal. Ein neues theoretisches Modell ist in dieser Arbeit präsentiert, das es ermöglicht die anisotropen Verteilungen beliebiger Anrege-Abfrage Experimente mit beliebigen Polarisationszuständen aller beteiligten Pulse zu berechnen. Das ermöglicht den Aufbau beliebiger Anrege-Abfrage Experimente, z.B. polarisationsgeformte Anrege-Abfrage Experimente. Außerdem wird ein Setup vorgestellt und simuliert, das es ermöglicht Schuss-zu-Schuss zwischen spiegelbildlichen Polarisationszuständen des Lichts hin und herzuschalten. Mit diesem Setup können zum Beispiel Kontrollexperimente durchgeführt werden in denen die Probe mit spiegelbildlichen Polarisationszuständen angeregt wird. Des weiteren können mit dem Setup auch Spektroskopieexperimente durchgeführt werden, wie z.B. transienter Zirkulardichroismus oder transiente optische Rotationsdisperision. Die spektroskopische Ergebnisse dieser Arbeit können als Basis dienen für solche Experimente. Die parallelen und sequentiellen photochemischen Pfade des DMA sowie das bidirektionale Schalten des 6,8-dinitro BIPS in einem Anrege-Wiederanrege Experiment bieten viele Möglichkeiten die neuen Zusammenhänge der Anisotropie mit den Polarisationszuständen des Anrege, Wiederanrege oder Abfragestrahls zu überprüfen. Andererseits könnte man mit Kontrollexperimenten mit variierender Anrege und Wiederanregepolarisation Einfluss nehmen auf die induzierten Dynamiken. Besonders interessant ist hier die Kombination des 6,8-dinitro BIPS mit der Polarisationsspiegelungssetups, weil die geschlossene Form (Spiropyran) chiral ist. Vielleicht ist es mit diesem System tatsächlich in der Zukunft möglich einen kumulativen Zirkulardichroismuseffekt oder sogar eine chirale Kontrolle zu zeigen. KW - Femtosekundenspektroskopie KW - Chiralität KW - Anisotropie KW - Pericyclische Reaktion KW - chirale Kontrolle KW - transiente Absorption KW - molekulare Schalter KW - femtosecond spectroscopy KW - chiral control KW - anisotropy KW - transient absorption KW - molecular switch Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66484 ER - TY - THES A1 - Kullmann, Martin Armin T1 - Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy T1 - Auflösung der Photochemie von angeregten Zuständen mittels multidimensionaler elektronischer Spektroskopie N2 - Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta’-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained. N2 - Über Lichtanregung erreichen Moleküle innerhalb von Femtosekunden angeregte Zustände. Aus diesen können photochemische Reaktionen wie Isomerisierungen einsetzen. Zusätzlich treten photophysikalische Effekte wie exzitonische Delokalisierungen auf. Daher ist es wichtig, die auftretenden Relaxationspfade zu analysieren um das Reaktionsschema des Systems zu erhalten. Ultrakurzzeitspektroskopie mit Femtosekundenlaserpulsen hat sich als nützliches Werkzeug erwiesen um lichtinduzierte Reaktionen auf ihrer intrinsischen Zeitskala zu studieren. In dieser Arbeit sind zeitaufgelöste Experimente an unterschiedlichen Verbindungen durchgeführt worden. Einerseits wurden neuartige Molekülklassen umfassend photodynamisch untersucht. Andererseits sind neue breitbandige Spektroskopiemethoden entwickelt worden. Durch die Kombination eines Anregungspulspaars mit einem weiteren Laserpuls sowie einem Weißlichtkontinuum wurde zum ersten Mal elektronische zweidimensionale Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D“, TE2D) demonstriert. Dies war durch die Implementierung eines Pulsformers in ein transientes Absorptionsspektrometer möglich. In einem ersten Experiment wurde die prinzipielle Eignung des Aufbaus getestet indem 2D Spektroskopie mit Weißlichtabfrage implementiert wurde. Diese Methoden wurden dazu genutzt zwei verschiedene Verbindungen zu untersuchen, ein direkt beta,beta'-verknüpftes, Zn-metalliertes Bisporphyrin [(ZnTPP)2] und ein Spiropyran-Merocyanin Photoschalter (6,8-dinitro BIPS). (ZnTPP)2 ist ein Homodimer, in welchem sich starke exzitonische Einflüsse, z. B. das Aufspalten der Soret-Bande (S2), zeigen. 6,8-Dinitro BIPS hingegen besteht aus zwei Konformeren. Zum einen liegt das nur im UV absorbierende Spiropyran vor. Das zweite Konformer ist Merocyanin, welches zusätzlich im sichtbaren absorbiert. Zuerst sind die Relaxationsdynamiken beider Moleküle mittels transienter Absorption untersucht worden. Allerdings waren die Resultate nicht eindeutig, so dass im Anschluss komplexere Messmethoden angewandt wurden. Für das Studium des Bisporphyrins (ZnTPP)2 wurde das zugehörige Monomer untersucht. Nach Anregung relaxiert die Population aus dem S2 in den S1 Zustand. Anschließend tritt Intersystem Crossing in T1 ein. Für das Dimer selbst ergaben sich die gleichen Reaktionswege. Das Intersystem Crossing wurde nicht nur abgeleitet, sondern durch Abfrage im nahinfraroten Spektralbereich direkt gemessen. Der Einfluss der Exzitonen auf das Bisporphyrin wurde durch kohärente 2D Spektroskopie innerhalb der Soret-Bande untersucht. Dies ermöglichte die Visualisierung von Populationstransfer innerhalb von 100 fs. Eine Berechnung der 2D Spektren eines einfachen Homodimers unterstützt dieses Resultat. Indem die hier vorgestellten Ergebnisse genutzt werden, könnte (ZnTPP)2 als Baustein für Porphyrinsysteme dienen. Deren denkbare Anwendungen reichen von asymmetrischer Katalyse über die Nachahmung von biologischem Elektronentransfer hinzu organo-optischen Geräten. Das zweite untersuchte System war der molekulare Schalter 6,8-dinitro BIPS mit Merocyanin als stabile Form im thermischen Gleichgewicht. Transiente Absorptionsmessungen deckten auf, dass die Lösung aus zwei Merocyanin-Isomeren besteht (TTC oder TTT). Es ergab sich ebenso, dass beide eine elektrozyklische Ringschlussreaktion zum Spiropyran durchführen. Mittels eines 2D Spektrums konnte die unterschiedliche Photochemie beider Isomere innerhalb einer einzigen Messung aufgezeigt werden. Zusätzlich wurde keine Isomerisierung zwischen ihnen beobachtet. Damit steht fest, dass 6,8-dinitro BIPS eine konzertierte Reaktion zum Spiropyran durchführt. Der direkte Schaltvorgang wurde eindeutig über Anrege-Wiederanrege-Abfrage Spektroskopie nachgewiesen. Hierfür wurde 6,8-dinitro BIPS mit sichtbarem gefolgt von ultraviolettem Licht bestrahlt. Der resultierende zweifache Schaltvorgang ist ein wichtiges Kriterium für einen Photoschalter. Ein ähnliches Experiment zeigte, dass 6,8-dinitro BIPS ionisiert wird, wenn die angeregte Population resonant bestrahlt wird. Das neugebildete langlebige Produkt konnte einem Kation zugeordnet werden. Durch die Verwendung der neuen elektronischen TE2D Methode ist aufgezeigt worden, dass lediglich TTC ionisiert werden kann. Zusammengefasst gilt, dass sowohl Fortschritte in der Methodenentwicklung als auch in der Charakterisierung von Verbindungen erzielt wurden. Ein tieferes Verständnis über die Dynamiken des Bisporphyrins (ZnTPP)2 und des molekularen Schalters 6,8-dinitro BIPS wurden durch Erweiterungen an einem transienten Absorptionsspektrometers, den Aufbau eines 2D Spektrometers in Anrege-Abfrage-Geometrie und durch die Kombination von letzterem mit Mehrfachanregung zu TE2D Spektroskopie gewonnen. Insbesondere letztere eröffnet neue Möglichkeiten in der Photochemie, da Edukte, Produkte und die zugehörigen Zwischenzustände miteinander verknüpft werden, wodurch lichtinduzierte Reaktionen schrittweise nachvollzogen werden können. KW - Femtosekundenspektroskopie KW - Fotochemie KW - Angeregter Zustand KW - Elektronenspektroskopie KW - femtosecond spectroscopy KW - pericyclic reaction KW - porphyrin KW - merocyanine KW - optical spectroscopy KW - Pericyclische Reaktion KW - Porphyrin KW - Photonenecho KW - Optische Spektroskopie KW - Merocyanine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81276 ER - TY - THES A1 - Maksimenka, Raman T1 - Techniques in frequency conversion and time-resolved spectroscopy with nonlinear optical processes in the femtosecond regime T1 - Techniken der Frequenzumwandlung und der zeitaufgelösten Spektroskopie mit nichtlinearen optischen Prozessen im Femtosekunden-Regime N2 - Nichtlineare Frequenzumsetzung der niederenergetischen femtosekunden Laserpulsen wurde in den Festkörpermitteln nachgeforscht. Ramanumwandlung im weiss-Licht-freien Regime des impulsiven stimulierten Raman Streuungs wurde erzielt, indem man KGW-Kristall mit den Bessel-Lichtstrahl pumpte. Leistungs-fähiges Superkontinuumerzeugung wurde für die sub-microjule Pulse demonstriert, die in Mikrostrukturfaser fokussiert wurden. Anwendung von Vier-Wellen-Mischung Techniken zur Überwachung der Aufregenzustandsdynamik in den mehratomigen Molekülen wurde demonstriert. Zeitkonstanten der Prozesse, die auf Schwingungsenergiewiederverteilung nach dem ursprunglichen Photoanregung von Stilben-3 bezogen wurden, wurden mittels der Pump-CARS Technik festgestellt, in der CARS-Prozess als wirkungsvoller Modus-vorgewählter Filter diente. Spektrale sowie zeitliche Eigenschaften der elektronischen Entspannungbahnen in den Azulenderivats wurden erforscht, indem man vergänglichen-Bevölkerungs-Gittern und Pump-Probe vergänglichen Absorptions Techniken verwendete. N2 - Nonlinear frequency conversion of low-energy fs laser pulses was investigated in solid-state media. Raman conversion in the white-light-free regime of impulsive stimulated Raman scattering was achieved by pumping KGW crystal with Bessel beam. Efficient supercontinuum generation was demonstrated for sub-microjule pulses focused into microstructure fiber. Application of four-wave mixing techniques to monitoring of the excited-state dynamics in polyatomic molecules was demonstrated. Time constants of the processes related to vibrational energy redistribution upon the initial photoexcitation of stilbene-3 were determined by means of pump-CARS technique, where CARS process served as an effective mode-selective filter. Spectral as well as temporal properties of electronic relaxation pathway in azulene derivatives were explored by using transient population gratings and pump-probe transient absorption techniques. KW - Frequenzumsetzung KW - Femtosekundenspektroskopie KW - Nichtlineare Optik KW - Frequenzumwandlung KW - Femtosekunden Spektroskopie KW - ISRS KW - Pump-CARS KW - nichtlineare Optik KW - frequency conversion KW - femtosecond spectroscopy KW - ISRS KW - pump-CARS KW - nonlinear optics Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14087 ER - TY - THES A1 - Marquetand, Philipp T1 - Vectorial properties and laser control of molecular dynamics T1 - Vektorielle Eigenschaften und Laser-Kontrolle molekularer Dynamik N2 - In this work, the laser control of molecules was investigated theoretically. In doing so, emphasis was layed on entering vectorial properties and in particular the orientation in the laboratory frame. Therefore, the rotational degree of freedom had to be included in the quantum mechanical description. The coupled vibrational and rotational dynamics was examined, which is usually not done in coherent control theory. Local control theory was applied, where the field is determined from the dynamics of a system, which reacts with an instantaneous response to the perturbation and, in turn, determines the field again. Thus, the field is entangled with the quantum mechanical motion and the presented examples document, that this leads to an intuitive interpretation of the fields in terms of the underlying molecular dynamics. The limiting case of a classical treatment was shown to give similar results and hence, eases to understand the complicated structure of the control fields. In a different approach, the phase- and amplitude shaping of laser fields was systematically studied in the context of controlling population transfer in molecules. N2 - Das Ziel dieser Arbeit war die theoretische Analyse der Laserkontrolle von Molekülen. Ein Schwerpunkt lag dabei auf vektoriellen Eigenschaften und im Besonderen auf der Orientierung eines Moleküls im Laboratorium. Hierfür wurde der Rotationsfreiheitsgrad in die quantenmechanische Beschreibung einbezogen. Die Kopplung zwischen Vibrations- und Rotationsdynamik wurde explizit berücksichtigt, während dieser Vorgang normalerweise bei theoretischen Untersuchungen zur kohärenten Kontrolle vernachlässigt wird. Als Kontrollschema wurde die lokale Kontrolltheorie (LCT) verwendet, in der das Feld aus der Dynamik eines Systems bestimmt wird, welche sofort auf diese äußere Störung antwortet und damit wiederum das Feld bestimmt. Somit ist das Feld mit der quantenmechanischen Bewegung verknüpft. Die vorgestellten Beispiele dokumentieren, dass dies zu einer intuitiven Interpretation der Felder bzgl. der zu Grunde liegenden molekularen Dynamik führt. In der vereinfachten, klassischen Darstellung der Probleme findet man vergleichbare Resultate. Die klassische Sichtweise ermöglicht ein anschauliches Verständnis der komplizierten Strukturen der Kontrollfelder. Zusätzlich wurde mit einem anderen Ansatz die Phasen- und Amplitudenformung von Laserfeldern systematisch untersucht, wobei der Populationstransfer in Molekülen kontrolliert werden sollte. KW - Laserchemie KW - Molekularbewegung KW - Vektor KW - Orientierung KW - Orientiertes Molekül KW - Photochemie KW - Zweiatomiges Molekül KW - Nichtstarres Molekül KW - Molekülzu KW - Kohärente Kontrolle KW - Femtochemie KW - Pulsformung KW - Laser-Kontrolle KW - Femtosekunden-Spektroskopie KW - Coherent control KW - Femto-chemistry KW - pulse shaping KW - laser control KW - femtosecond spectroscopy Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24697 ER - TY - THES A1 - Rützel, Stefan T1 - Pulse-Sequence Approaches for Multidimensional Electronic Spectroscopy of Ultrafast Photochemistry T1 - Pulssequenzmethoden zur multidimensionalen elektronischen Spektroskopie ultraschneller Photochemie N2 - Observing chemical reactions in real time with femtosecond laser pulses has evolved into a very popular � field of research since it provides fascinating insights into the nature of photochemical transformations. Nevertheless, many photochemical reactions are still too complex for which reason the underlying mechanisms and all engaged species cannot be identi� fied thoroughly. In these cases, conventional time-resolved spectroscopy techniques reach their technical limits and advanced approaches are required to follow the conversion of reactants to their products including all reaction intermediates. The aim of this work was therefore the development of novel methods for ultrafast spectroscopy of photoreactive systems. Though the concept of coherent multidimensional spectroscopy has so far exclusively been used to explore photophysical phenomena, it also offers great potential for the study of photochemical processes due to its capability of extracting spectroscopic information along several frequency dimensions. This allows resolving the photochemical connectivity between various interconvertible molecular species with ultrafast temporal resolution on the basis of their absorption and emission properties as the spectral correlations are explicitly visualized in the detected spectra. The ring-open merocyanine form of the photochromic compound 6-nitro BIPS was studied in Chap. 4 of this work. Merocyanines and their associated ring-closed spiropyrans are promising candidates for future applications as, for instance, molecular electronics or optical data storage due to their unique property of being switchable between two stable con� gurations via light illumination. Transient absorption with sub-50 fs temporal resolution and broadband probing was employed to characterize the photodynamics of this system with variable excitation wavelengths. Using global data analysis, it could be inferred that two different merocyanine isomers with differing excited-state lifetimes exist in solution. These isomers differ in the cis/trans con� guration in the last bond of the methine bridge. The minority of isomers exist in the all-trans con� guration (TTT) while the isomer with a cis con� guration of the third dihedral angle (TTC) is dominant. A characteristic band, detected after long pump-probe delays, was attributed to the unidirectional cis->trans photoisomerization reaction of the TTC to the TTT form. The quantum yield of the reaction was estimated to be (18� +-4) %. In addition, pronounced coherent vibrational wave-packet oscillations were observed and it was concluded that these signatures are related to the product formation. Coherent two-dimensional electronic spectroscopy was successfully implemented using a partially collinear pump-probe beam geometry in combination with a femtosecond pulse shaper. The use of a whitelight probe continuum enabled us to probe contributions far-off the diagonal over the complete visible range. By properly adjusting the relative phase between the � first two laser pulses with the pulse shaper, the principle of phase-cycling was explained and it was demonstrated that the measurement can be carried out in the so-called "rotating frame" in which the observed frequencies detected during the coherence time are shifted to lower values. It was shown that these concepts allow the extraction of the desired background-free photon echo while the amount of necessary data points is highly reduced. In order to put our proposal of multidimensional spectroscopy of photoreactive systems into practice, third-order two- and three-dimensional spectroscopy was then employed for an in-depth analysis of a photoreactive process, in which the photoisomerization of 6-nitro BIPS served as a model system. The measured two-dimensional spectra revealed the cis->trans photoisomerization after long population times. By collecting a large data set of two-dimensional spectra for short population times and by applying a Fourier transform along the population time axis, the third-order three-dimensional spectrum was obtained. The novelty of this approach compared to coherent two-dimensional spectroscopy is the introduction of a third axis associated with the vibrational frequencies of the molecular system. In this way, the formation of the reaction product was evidenced and it was shown that the product is formed in its fi� rst excited singlet state within 200 fs after excitation. This method hence visualizes the photochemical connections between different reactive molecular species in an intuitive manner and further exposes the normal modes connecting reactant and product. Such conclusions cannot be drawn with conventional third-order techniques such as transient absorption since they are not capable of capturing the full third-order response, but only a subset of it. The reaction mechanism and the role of the observed vibrational modes were uncovered by comparing the experimental data with the results of high-level quantum-chemical calculations performed by our collaborators in the group of Prof. B. Engels from the theoretical chemistry department at the University of Würzburg. Specifi� c calculated molecular normal modes could be assigned to the experimentally observed vibrational frequencies and potential energy surfaces of the electronic ground state and of the � first excited state were computed. The technique implemented in this chapter is general and is applicable for the time-resolved analysis of a wide range of chemical reaction networks. In the fi� rst part of Chap. 5, coherent two-dimensional spectroscopy was employed to track the reaction paths of the related 6,8-dinitro BIPS after S1 excitation. Several differences to the photochemical properties of 6-nitro BIPS were found. From the 2D spectra, the cis-trans isomerization between the two merocyanine isomers could be excluded as a major reaction path for this compound. To explore the dynamics after reexcitation to higher-lying electronic states, pump-repump-probe spectroscopy was implemented and the formation of a new species, a radical cation, was observed. To identify the precursor isomer, triggered-exchange two-dimensional spectroscopy, a � fifth-order technique previously only available in the infrared regime for vibrational transitions, was implemented for the fi� rst time for electronic excitations in the visible. This approach combines the properties of the pump-repump-probe technique with the potential of coherent two-dimensional spectroscopy. It correlates the absorption frequency of a reactive molecular species with the emission signatures of the product formed from this species after an additional absorption of a photon. Using this method, it was unambiguously proven that only the TTC isomer reacts to the radical cation thus forming the precursor species of the reaction. Electronic triggered-exchange two-dimensional spectroscopy is hence another improved technology for time-resolved spectroscopy with applications in the study of multistep photoreactions and higher-lying electronic states. While in the two preceding chapters third- and � fifth-order experiments were discussed that neglect the vectorial character of light-matter interactions, Chap. 6 focused on a novel theoretical formalism enabling the description of light fi� elds optimized for polarization-sensitive higher-order nonlinearities. This formalism is based on the von Neumann time-frequency representation of shaped femtosecond laser pulses which permits the defi� nition of multipulse sequences on a discrete time-frequency lattice. Hence, not only the temporal spacing between subpulses is adjustable, but also the center frequencies may be adapted such that they � fit the experimental requirements. This method was generalized to the description of pulse sequences with time-varying polarization states. It was shown that by using this description, the polarization ellipticity, orientation angle, relative phase and intensity, and the time-frequency location of each subpulse is explicitly controllable. The accuracy of the transformations from Fourier space to von Neumann domain and vice versa was demonstrated. Moreover, a strict accordance between the von Neumann polarization parameters with the conventional parameters in time domain was found for well separated subpulses. A potential future application of this approach is polarization-sensitive multidimensional spectroscopy in which hidden cross peaks may be isolated by de� fining the pulses in the von Neumann picture with suitable polarization sequences. This method could also be used in quantum control experiments in which the polarization of the light fi� eld is used as a major control knob. This thesis summarizes our efforts to open the � field of femtochemistry to the concept of coherent multidimensional electronic spectroscopy. Making use of femtosecond pulse shaping, sub-50 fs temporal resolution, broadband spectral probing, higher-order nonlinearities, and new types of laser pulse descriptions, the presented methods might stimulate further future advancements in this research area. N2 - Mit Hilfe von Femtosekundenlaserpulsen lassen sich chemische Reaktionen in Echtzeit beobachten, was sich zu einem äußerst populären Forschungsgebiet entwickelt hat, welches faszinierende neue Einblicke in die Natur von photochemischen Transformationen ermöglicht. Nichtdestotrotz sind nach wie vor viele photochemische Reaktionen zu komplex, um die zugrunde liegenden Mechanismen entschlüsseln und alle beteiligten Spezies einwandfrei identifizieren zu können. In diesen Fällen stoßen die konventionellen zeitaufgelösten Techniken an ihre Grenzen, sodass verbesserte Ansätze notwendig sind um der Konversion der Edukte zu den Produkten mit allen reaktiven Zwischenprodukten in Gänze folgen zu können. Das Ziel der vorliegenden Arbeit war deshalb die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie photoreaktiver Systeme. Obwohl das Konzept der kohärenten multidimensionalen Spektroskopie bisher ausschließlich zur Erforschung photophysikalischer Phänomene eigesetzt wurde, birgt es angesichts seiner Fähigkeit, spektroskopische Informationen entlang mehrerer Frequenzachsen zu extrahieren, auch großes Potenzial für die Untersuchung photochemischer Prozesse. Diese Eigenschaft ermöglicht die Auflösung des photochemischen Austauschs zwischen untereinander verknüpften molekularen Spezies durch ihre Emissions- und Absorptionseigenschaften, da die spektralen Korrelationen in den gemessenen Spektren unmittelbar visualisiert werden. In Kap. 4 dieser Arbeit wurde die ringgeöffnete Merocyaninform der photochromen Verbindung 6-nitro BIPS untersucht. Aufgrund ihrer besonderen Eigenschaft, durch Lichteinstrahlung zwischen zwei stabilen Konfigurationen umschalten zu können, sind Merocyanine und ihre assoziierten ringgeschlossenen Spiropyrane vielversprechende Kandidaten für zukünftige Anwendungen auf dem Gebiet der molekularen Elektronik und der optischen Datenspeicherung. Die Photodynamiken dieses Systems wurden mit Hilfe der transienten Absorptionstechnik mit einer zeitlichen Auflösung von unter 50 fs und spektral breitbandiger Abfrage charakterisiert. Die globale Datenanalyse ergab hierbei, dass in Lösung zwei unterschiedliche Merocyaninisomere mit unterschiedlichen Lebensdauern der angeregten Zustände vorliegen. Diese Isomere unterscheiden sich in der cis/trans-Anordnung der letzten Bindung der Methinbrücke. Hierbei stellt das Isomer mit trans-trans-trans Konfiguration (TTT) die Minderheit dar, während die Mehrzahl der Moleküle eine cis-Stellung im dritten Diederwinkel aufweist (TTC). Eine charakteristische spektrale Bande, welche nach langen Pump-Probe-Verzögerungszeiten detektiert wurde, konnte der einfachgerichteten cis->trans Photoisomerisierungsreaktion der TTC Form zum TTT zugeordnet werden. Die Quantenausbeute dieser Reaktion wurde auf (18+-4) % bestimmt. Darüber hinaus wurden stark ausgeprägte Oszillationen eines kohärenten Vibrationswellenpakets beobachtet wobei geschlussfolgert wurde, dass diese Signaturen mit der Entstehung des Reaktionsprodukts zusammenhängen. Die Technik der kohärenten zweidimensionalen elektronischen Spektroskopie wurde auf Basis einer partiell kollinearen Pump-Probe Strahlgeometrie und in Kombination mit einem Femtosekundenpulsformer erfolgreich implementiert. Dabei ermöglichte die Verwendung eines Weißlichtkontinuums als Abfragepuls auch die Erfassung von Beiträgen, welche weit entfernt von der Diagonalen lokalisiert sind und sich über den gesamten sichtbaren Spektralbereich erstrecken. Durch eine geeignete Anpassung der relativen Phase zwischen den ersten beiden Laserpulsen mit Hilfe des Pulsformers konnte das Prinzip des „phase cyclings" umgesetzt werden. Darüber hinaus wurde demonstriert, dass die Messung im sogenannten „rotating frame" durchgeführt werden kann wobei die Oszillationsfrequenzen, welche während der Kohärenzzeit detektiert werden, zu niedrigeren Werten verschoben werden. Es wurde gezeigt, dass mit diesen Konzepten das erwünschte hintergrundfreie Photonenecho extrahiert und darüber hinaus das Signal mit einer deutlich niedrigeren Anzahl an notwendigen Datenpunkten erfasst werden kann. Um unsere Idee der multidimensionalen Spektroskopie an photoreaktiven Systemen in die Praxis umzusetzen, wurde anschließend die zwei- und dreidimensionale Spektroskopie dritter Ordnung zur eingehenden Untersuchung eines photoreaktiven Prozesses angewandt, wobei die Photoisomerisierungsreaktion von 6-nitro BIPS als Modellreaktion herangezogen wurde. Die gemessenen zweidimensionalen Spektren offenbarten unmittelbar die cis->trans Photoisomerisierung nach längeren Populationszeiten. Das dreidimensionale Spektrum dritter Ordnung konnte generiert werden, indem ein großer Datensatz an zweidimensionalen Spektren für kleine Populationszeiten aufgenommen und anschließend die Fouriertransformation entlang der Populationszeitachse bestimmt wurde. Die Neuartigkeit dieses Verfahrens besteht darin, dass eine dritte Achse eingeführt wird, welche mit der Schwingungsfrequenz des molekularen Systems assoziiert ist. Dadurch konnte die Entstehung des Reaktionsprodukts eindeutig belegt werden. Außerdem konnte so gezeigt werden, dass es innerhalb von 200 fs im ersten angeregten Singulettzustand erzeugt wird. Somit vermag diese Methode einerseits die photochemischen Beziehungen zwischen unterschiedlichen reaktiven Spezies auf intuitive Art und Weise zu visualisieren und andererseits ermöglicht sie die Enthüllung derjenigen Normalschwingungen, welche Edukt und Produkt miteinander verbinden. Derartige Schlussfolgerungen können nicht mit konventionellen Techniken dritter Ordnung, wie beispielsweise der transienten Absorption, gezogen werden, da sie nicht in der Lage sind die vollständige Antwortfunktion dritter Ordnung, sondern lediglich ein Teil davon, zu erfassen. Durch Abgleich der experimentellen Daten mit den Resultaten von umfassenden quantenchemischen Berechnungen unserer Kollaborationspartner der Gruppe von Prof. B. Engels aus dem Fachbereich der theoretischen Chemie der Universität Würzburg, konnten der Reaktionsmechanismus sowie die Rolle der beobachteten Vibrationsmoden entschlüsselt werden. Dabei konnten spezifische berechnete Normalschwingungen den experimentell beobachteten Frequenzen zugeordnet und die Potentialhyperflächen des elektronischen Grundzustands und des ersten angeregten Zustands bestimmt werden. Die Technik, welche in diesem Kapitel eingesetzt wurde, ist universell und zur zeitaufgelösten Untersuchung einer großen Zahl an chemischen Reaktionsnetzwerken anwendbar. Im ersten Teil von Kap. 5 wurden die Reaktionspfade der sehr ähnlichen Verbindung 6,8-dinitro BIPS nach S1-Anregung mittels kohärenter zweidimensionaler Spektroskopie untersucht. Dabei zeigten sich zahlreiche Unterschiede zu den photochemischen Eigenschaften von 6-nitro BIPS. Auf Basis der 2D Spektren konnte für diese Verbindung die cis-trans Isomerisierung zwischen den beiden Merocyaninisomeren als bedeutender Reaktionspfad ausgeschlossen werden. Zur Erforschung der Dynamik nach der Wiederanregung in höher angeregte elektronische Zustände, wurde die Anrege-Wiederanrege-Abfrage Spektroskopie implementiert, wobei die Bildung einer neuen Spezies – des Radikalkations – beobachtet wurde. Zur Identifikation des Vorläuferisomers wurde die Technik der zweidimensionalen Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D", TE2D) erstmals mit elektronischen Anregungen im Sichtbaren realisiert. Bisher stand diese Technik ausschließlich im infraroten Spektralbereich für Vibrationsübergänge zur Verfügung. Diese Methode vereinigt die Eigenschaften der Anrege-Wiederanrege-Abfrage Technik mit dem Leistungsvermögen der kohärenten zweidimensionalen Spektroskopie. Sie stellt die Korrelation zwischen der Absorptionsfrequenz einer reaktiven molekularen Spezies mit der Emissionssignatur eines Produkts dar, welches von der ersten Spezies durch die zusätzliche Absorption eines weiteren Photons erzeugt wurde. Durch die Zuhilfenahme dieser Methode konnte eindeutig gezeigt werden, dass nur das TTC Isomer zum Radikalkation reagiert, weshalb es somit als Vorläuferisomer der Reaktion aufgefasst werde kann. Die elektronische TE2D Spektroskopie stellt somit eine weitere verbesserte Technologie in der zeitaufgelösten Spektroskopie mit möglichen Anwendungen bei der Untersuchung von mehrstufigen Photoreaktionen und höher angeregten elektronischen Zuständen dar. Während in den beiden vorhergehenden Kapiteln Experimente dritter und fünfter Ordnung unter Vernachlässigung des vektoriellen Charakters von Licht-Materie-Wechselwirkungen diskutiert wurden, befasste sich Kap. 6 mit einem neuartigen theoretischen Formalismus, welcher die Beschreibung von Lichtfeldern ermöglicht, welche für polarisationssensitive Nichtlinearitäten höherer Ordnung optimiert sind. Dieser Formalismus basiert auf der von Neumann Zeit-Frequenz Darstellung von geformten Laserpulsen, welche es gestattet, Mehrfachpulssequenzen auf einem diskreten Zeit-Frequenz Gitter zu definieren. Somit kann nicht nur der zeitliche Abstand zwischen den Teilpulsen eingestellt, sondern auch die Zentralfrequenz derart angepasst werden, dass sie den experimentellen Ansprüchen gerecht wird. Diese Methode wurde für die Beschreibung von Pulsformen mit einem zeitabhängigen Polarisationsprofil verallgemeinert. Es wurde gezeigt, dass mit Hilfe dieser Darstellung die Elliptizität, der Orientierungswinkel, die relative Phase und Intensität der Polarisationsellipse, sowie die Zeit-Frequenz Position jedes einzelnen Teilpulses explizit kontrolliert werden können. Die Genauigkeit der Transformationen vom Fourier- in den von Neumann Raum und wieder zurück wurde demonstriert. Überdies wurde festgestellt, dass im Falle von deutlich getrennten Teilpulsen die von Neumann Parameter exakt mit den konventionellen Polarisationsparametern im Zeitraum übereinstimmen. Eine der möglichen zukünftigen Anwendungen dieser Methode ist die polarisationssensitive multidimensionale Spektroskopie, mit deren Hilfe verborgene Cross Peaks durch die Definition der Pulssequenz in der von Neumann Darstellung unter Verwendung geeigneter Polarisationsabfolgen isoliert werden können. Dieser Formalismus könnte außerdem bei Quantenkontrollexperimenten Anwendung finden, bei denen die Polarisation des Lichtfelds der entscheidende Kontrollparameter darstellt. Diese Dissertation fasst unsere Bemühungen zusammen, das Feld der Femtochemie auch für das Konzept der multidimensionalen Spektroskopie zu eröffnen. Durch die Verwendung der Femtosekundenpulsformung, einer zeitlichen Auflösung von unter 50 fs, spektral breitbandiger Abfrage, Nichtlinearitäten höherer Ordnung sowie das Ausnutzen neuartiger Beschreibungen von Laserpulsen könnten die präsentierten Methoden Anreize für weitere zukünftige Entwicklungen auf diesem Forschungsgebiet schaffen. KW - Ultrakurzzeitspektroskopie KW - femtosecond spectroscopy KW - multidimensional spectroscopy KW - ultrafast photochemistry KW - quantum control KW - Femtosekundenspektroskopie KW - Multidimensionale Spektroskopie KW - Ultraschnelle Photochemie KW - Quantenkontrolle Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98993 ER - TY - THES A1 - Selig-Parthey, Ulrike T1 - Methods of Nonlinear Femtosecond Spectroscopy in the Visible and Ultraviolet Regime and their Application to Coupled Multichromophore Systems T1 - Methoden der nichtlinearen Femtosekundenspektroskopie im sichtbaren und ultravioletten Spektralbereich und ihre Anwendung auf gekoppelte Multichromophor-Systeme N2 - Time-resolved spectroscopic studies of energy transfer between molecules in solution form a basis for both, our understanding of fundamental natural processes like photosynthesis as well as directed synthetic approaches to optimize organic opto-electronic devices. Here, coherent two-dimensional (2D) spectroscopy opens up new possibilities, as it reveals the correlation between absorption and emission frequency and hence the full cause-and-effect chain. In this thesis two optical setups were developed and implemented, permitting the recording of electronic 2D spectra in the visible and in the hitherto unexplored ultraviolet spectral range. Both designs rely on the exclusive manipulation of beam pairs, which reduces the signal modulation to the difference between the transition frequency of the system and the laser frequency. Thus - as has been shown experimentally and theoretically - the timing precision as well as mechanical stability requirements are greatly reduced, from fractions of the oscillation period of the exciting light wave to fractions of the pulse duration. Two-dimensional spectroscopy and femtosecond transient absorption (TA) as well as different theoretical approaches and simulation models were then applied to coupled multichromophore systems of increasing complexity. Perylene bisimide-perylene monoimide dyads were investigated in cooperation with Prof. Dr. Frank Würthner and Prof. Dr. Bernd Engels at the University of Würzburg. In these simplest systems studied, global analysis of six different TA experiments unequivocally revealed an ultrafast interchromophoric energy transfer in the 100 fs range. Comparison between the obtained transfer rates and the predictions of Förster theory suggest a breakdown of this point-transition-dipole-based picture at the donor-acceptor distances realized in our compounds. Furthermore, a model including conformational changes and an interchromophoric charge transfer has been derived to consistently describe the observed pico- to nanosecond dynamics and fluorescence quantum yields. A second collaboration with Prof. Dr. Gregory Scholes (University of Toronto, Canada) and Prof. Dr. Paul Burn (University of Queensland, Australia) addressed the photophysics of a series of uorene-carbazole dendrimers. Here, a combination of 2D-UV spectroscopy and femtosecond ansiotropy decay experiments revealed the initial delocalization of the excited state wave function that saturates with the second generation. In room temperature solution, disorder-induced localization takes place on the time scales comparable to our instrument response, i.e. 100 fs, followed by energy transfer via incoherent hopping processes. Lastly, in tubular zinc chlorin aggregates, semi-synthetic analogues of natural lightharvesting antennae that had again been synthesized in the group of Prof. Dr. Frank Würthner, the interchromophoric coupling is so strong that coherently coupled domains prevail even at room temperature. From an analysis of intensity-dependent TA measurements the dimensions of these domains, the exciton delocalization length, could be determined to span 5-20 monomers. In addition, 2D spectra uncovered efficient energy transfer between neighboring domains, i.e. ultrafast exciton diffusion. N2 - Zeitaufgelöste spektroskopische Untersuchungen zu Energietransferprozessen zwischen Molekülen in Lösung bilden die Grundlage nicht nur für unser Verständnis elementarer natürlicher Vorgänge wie der Photosynthese, sondern auch für gerichtete Synthesen zur Optimierung organischer opto-elektronischer Bauteile. Die kohärente zweidimensionale (2D) Spektroskopie eröffnet hier neue Möglichkeiten, da sie - durch Aufdeckung der Korrelation zwischen Absorptions- und Emissionsfrequenz - die konventionelle transiente Absorption (TA) um die Offenbarung der Ursache erweitert. Im Rahmen dieser Arbeit wurden zwei optische Aufbauten entworfen und umgesetzt, die die Aufnahme von elektronischen 2D Spektren im sichtbaren und im bis dahin unerschlossenen ultravioletten Spektralbereich ermöglichen. Beide Designs beruhen auf dem Prinzip der ausschließlich paarweisen Strahlführung, wodurch die Modulation des Signals auf die Differenz zwischen Übergangsfrequenz des Systems und Laserfrequenz reduziert wird. Damit verringern sich - wie theoretisch und experimentell gezeigt - die Anforderungen sowohl an die mechanische Stabilität der Laborumgebung als auch an die Genauigkeit der verwendeten Verzögerungsbühnen erheblich, von Bruchteilen der Oszillationsperiode des anregenden Lichts auf Bruchteile der Laserpulsdauer. Sowohl die 2D Spektroskopie als auch die transiente Absorption sowie unterschiedliche theoretische Ansätze und Simulationsmodelle wurden in den weiteren Teilen dieser Arbeit auf gekoppelte Multichromophor-Systeme unterschiedlicher Komplexität angewandt. Im einfachsten dieser Systeme, einem Perylen-basierten Heterodimer, einer Kooperation mit Prof. Dr. Frank Würthner und Prof. Dr. Bernd Engels an der Universität Würzburg, konnte durch globale Analyse von sechs verschiedenen TA-Messungen ein ultraschneller Energietransfer im 100 fs Bereich zweifelsfrei identifiziert werden. Ein Vergleich mit Vorhersagen aus der Förster-Theorie legt einen Zusammenbruch dieser auf punktförmigen Übergangsdipolen beruhenden Theorie bei den vorliegenden Interchromophor- Abständen nahe. Darüber hinaus wurde für die Piko- bis Nanosekunden-Zeitskalen ein Schema vorgestellt, das Konformationsänderungen sowie einen Ladungstransfer beinhaltet und das die beobachtete Dynamik wie auch die gemessenen Fluoreszenz-Quantenausbeuten konsistent beschreibt. In einer weiteren Kooperation wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Gregory Scholes (University of Toronto, Kanada) Fluoren-Carbazol-Makromoleküle untersucht, die in der Gruppe von Prof. Dr. Paul Burn (University of Queensland, Australien) synthetisiert worden waren. In diesen sogenannten Dendrimeren konnte durch die Kombination von 2D Spektroskopie und Femtosekunden-Anisotropie-Zerfalls-Experimenten eine anfängliche Delokalisierung der Wellenfunktion des angeregten Zustands abgeleitet werden, die mit der zweiten Generation saturiert. Die Umgebungsunordnung in Raumtemperatur-Lösung führt hier zu einer ultraschnellen Lokalisierung innerhalb der Zeitauflösung des Experiments, gefolgt von inkohärenten Energietransfer-Prozessen. In tubularen Zink Chlorin Aggregaten schließlich, semisynthetischen Analoga zu den Lichtsammelantennen natürlicher Chlorosome, die ebenfalls von Prof. Dr. Frank Würthner's Gruppe bereitgestellt wurden, ist die Kopplung zwischen den einzelnen Molekülen so stark, dass kohärent gekoppelte Segmente selbst bei Raumtemperatur Bestand haben. Die Ausdehnung dieser kohärenten Domänen, die Exzitonen-Delokalisierungslänge, konnte aus der Intensitätsabhängigkeit des transienten Absorptionssignals auf 5-20 Monomere bestimmt werden. 2D Spektren zeigten dabei den effizienten Energietransfer zwischen benachbarten Domänen im Aggregat, also einen ultraschnellen Exzitonen-Diffusionsprozess. KW - Femtosekundenspektroskopie KW - UV-VIS-Spektroskopie KW - Polychromophores System KW - Spektroskopie KW - femtosecond spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74356 ER - TY - THES A1 - Steinbacher, Andreas Edgar T1 - Circular dichroism and accumulative polarimetry of chiral femtochemistry T1 - Zirkulardichroismus und akkumulative Polarimetrie chiraler Femtochemie N2 - This work brings forward successful implementations of ultrafast chirality-sensitive spectroscopic techniques by probing circular dichroism (CD) or optical rotation dispersion (ORD). Furthermore, also first steps towards chiral quantum control, i.e., the selective variation of the chiral properties of molecules with the help of coherent light, are presented. In the case of CD probing, a setup capable of mirroring an arbitrary polarization state of an ultrashort laser pulse was developed. Hence, by passing a left-circularly polarized laser pulse through this setup a right-circularly polarized laser pulse is generated. These two pulse enantiomers can be utilized as probe pulses in a pump--probe CD experiment. Besides CD spectroscopy, it can be utilized for anisotropy or ellipsometry spectroscopy also. Within this thesis, the approach is used to elucidate the photochemistry of hemoglobin, the oxygen transporting protein in mammalian blood. The oxygen loss can be triggered with laser pulses as well, and the results of the time-resolved CD experiment suggest a cascade-like relaxation, probably through different spin states, of the metallo-porphyrins in hemoglobin. The ORD probing was realized via the combination of common-path optical heterodyne interferometric polarimetry and accumulative femtosecond spectroscopy. Within this setup, on the one hand the applicability of this approach for ultrafast studies was demonstrated explicitly. On the other hand, the discrimination between an achiral and a racemic solution without prior spatial separation was realized. This was achieved by inducing an enantiomeric excess via polarized femtosecond laser pulses and following its evolution with the developed polarimeter. Hence, chiral selectivity was already achieved with this method which can be turned into chiral control if the polarized laser pulses are optimized to steer an enhancement of the enantiomeric excess. Furthermore, within this thesis, theoretical prerequisites for anisotropy-free pump--probe experiments with arbitrary polarized laser pulses were derived. Due to the small magnitude of optical chirality-sensitve signals, these results are important for any pump--probe chiral spectroscopy, like the CD probing presented in this thesis. Moreover, since for chiral quantum control the variation of the molecular structure is necessary, the knowledge about rearrangement reactions triggered by photons is necessary. Hence, within this thesis the ultrafast Wolff rearrangement of an α-diazocarbonyl was investigated via ultrafast photofragment ion spectroscopy in the gas phase. Though the compound is not chiral, the knowledge about the exact reaction mechanism is beneficial for future studies of chiral compounds. N2 - Ziel der vorliegenden Arbeit war die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie von chiralen Molekülen, basierend auf den optischen Nachweismethoden Zirkulardichroismus- und optische Rotationsspektroskopie. Zudem sollten die Methoden auch für ihre Eignung hinsichtlich der chiralen Quantenkontrolle, d.h. der selektiven änderung der chiralen Eigenschaften von Molekülen mit Hilfe von kohärentem Licht, beleuchtet werden. Im Falle des Nachweises über den Effekt des Zirkulardichroismus (CD, von engl. circular dichroism) wurde im Rahmen dieser Arbeit ein optischer Aufbau entwickelt, der einen beliebigen Polarisationszustand eines ultrakurzen Laserimpulses spiegeln kann. Mit diesem Aufbau ist es daher möglich, einen links-zirkular polarisierten Laserimpuls zu einem rechts-zirkular polarisierten Laserimpuls zu spiegeln. Die so erzeugten Pulsenantiomere können demnach als Abfragelaserimpulse in einem Anrege-Abfrage-CD-Experiment verwendet werden. Zudem eignet sich der Aufbau auch für Experimente zur Ellipsometriespektroskopie oder für zeitaufgelöste Anisotropiemessungen. In dieser Arbeit wurde die Methode genutzt, um die Photochemie von Hämoglobin zu untersuchen. Hämoglobin ist ein eisenhaltiges Protein, welches für den Sauerstofftransport im Blut aller Wirbeltiere zuständig ist. Die Abgabe von Sauerstoff kann dabei auch mittels Anregung durch einen Laserimpuls erfolgen. Die Auswertung der durchgeführten zeitaufgelösten Anrege-Abfrage-CD-Experimente legt nahe, dass die Relaxation in den Grundzustand in mehreren Schritten, vermutlich verbunden mit änderungen des Spin-Zustands des metallischen Porphyrins, erfolgt. Die entwickelte Spektroskopiemethode für den Nachweis mittels optischer Rotationsdispersion (ORD, von engl. optical rotation dispersion) basiert auf einer Kombination aus optisch einpfadiger Interferometrie und akkumulativer Femtosekundenspektroskopie. Das entwickelte Polarimeter wurde zunächst mittels einer exemplarischen Photoreaktion für Anwendungen in der Ultrakurzzeitspektroskopie getestet. Weiterhin wurde das Polarimeter auch zur Unterscheidung zwischen einer achiralen und einer racemischen Molekül-Lösung genutzt. Anstatt die chiralen Moleküle in Lösung zunächst mittels nicht-optischer Methoden zu separieren, wurde hier auf optischem Weg ein Enantiomerenüberschuss erzeugt. Dazu dienten zirkular polarisierte Laserimpulse, die je nach Händigkeit ein Enantiomer in der Lösung selektiv anreicherten. Die Entstehung des Enantiomerenüberschusses wurde zeitabhängig mit Hilfe des entwickelten Polarimeters detektiert. Dieses Experiment stellt daher gleichzeitig eine Vorstufe zur chiralen Quantenkontrolle dar. In einem nächsten Schritt wäre eine Vergrößerung des Enantiomerenüberschusses durch Anpassung der polarisierten Anregepulse an das molekulare System denkbar. Neben diesen beiden neu entwickelten experimentellen Methoden wurden im Rahmen dieser Arbeit auch die theoretischen Bedingungen für anisotropiefreie Anrege-Abfrage-Experimente für beliebige Polarisationszustände hergeleitet. Da gerade bei der Spektroskopie von chiralen System die Messsignale typischerweise sehr schwach sind, sollten Anisotropie-Effekte vermieden werden. Die Ergebnisse dieser theoretischen Betrachtung fanden daher auch für die oben erwähnte CD-Spektroskopie von Hämoglobin Verwendung. Da im Falle von chiraler Quantenkontrolle eine änderung der chiralen Eigenschaften eines Moleküls von Nöten ist, sind lichtinduzierte ultraschnelle Umlagerungsreaktionen von großer Bedeutung. Daher wurde in dieser Arbeit auch die Wolff-Umlagerung von einer α-Diazocarbonyl-Verbindung mit Hilfe von zeitaufgelöster Massenspektroskopie untersucht. Obwohl das verwendete Molekül nicht chiral ist, sind die Ergebnisse dieses Experiments, wie zum Beispiel der exakte Reaktionsmechanismus, hilfreich für zukünftige Kontrollexperimente mit chiralen Systemen. KW - Ultrakurzzeitspektroskopie KW - femtosecond spectroscopy KW - chirality-sensitive spectroscopy KW - polarimetry KW - circular dichroism spectroscopy KW - ultrafast photochemistry KW - Femtosekundenspektroskopie KW - Chiral-sensitive Specktroskopie KW - Polarimetrie KW - Zirkulardichroismus Spektroskopie KW - Ultraschnelle Photochemie KW - Verbindungen KW - Femtosekundenspektroskopie KW - Chiralität Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116500 ER -