TY - THES A1 - Adae, Jasmin T1 - Interaktion von malignen Tumorzellen mit extrazellulärer Matrix und Migration: Rolle von Rac und ROCK T1 - Interaction of malignant tumor cells with extracellular matrix and migration: role of Rac and ROCK N2 - Auf dem Weg vom Primärtumor zur systemischen Metastasierung, der Haupttodesursache von Krebserkrankungen, ist die Einzelzellmigration von Tumorzellen durch dreidimensionales Bindegewebe ein entscheidender Schritt. Die vorliegende Arbeit zeigt Untersuchungen zur Tumorzellmigration und –plastizität in einem 3D-Migrationsmodell. Kleine G-Proteine kontrollieren Zytoskelettfunktionen, insbesondere Aktinpolymerisation und die Bildung von Zellprotrusionen durch Rac sowie Actomyosinkontraktion durch Rho. Durch pharmakologische Inhibitoren von Rac und dem Rho-Effektor ROCK soll deren Bedeutung für Einzelzellmigration in einem dreidimensionalen Modell und vor allem der Effekt auf Morphologie, Plastizität und Migration von Tumorzellen geklärt werden. Nach Inhibition von ROCK zeigen hochinvasive HT1080 Fibrosarkomzellen einen multipolar-dendritischen und sessilen Phänotyp. Nach Hemmung von Rac wird hingegen ein rundlicher, aber ebenfalls apolarer und sessiler Phänotyp induziert. Bei simultaner Inhibition von Rac und ROCK entstehen rundliche, apolare, sessile Zellen mit abortiven Pseudopodien. Wird das Gleichgewicht von Rac und ROCK durch konstitutive Aktivierung von ROCK gestört, so entsteht eine zweigeteilte Population, bestehend aus rundlichen Zellen, die Blebs bilden, und langgezogenen Zellen. Nach Sortierung nach ihrem ß1-Integrinexpressionsniveau zeigten Zellen mit niedriger Integrin-Expression einen rundlichen Migrationstyp mit blasenartigen dynamischen Protrusionen, während Zellen mit hoher Integrin-Expression langgezogen-mesenchymal migrierten. Somit steuern ROCK und Rac gemeinsam und zeitgleich die mesenchymale Einzelzellmigration. Während Rac Protrusion vermittelt, ist ROCK für Kontraktilität und Retraktion verantwortlich. Erst durch Koordination von Rac und Rho/ROCK entsteht somit Polarität und 3D mesenchymale Migration. N2 - In the development from a primary tumor to metastatic dissemintation, which is the main cause of death from cancer, single cell migration through three-dimensional tumor stroma is an essential step. This work presents data concerning tumor cell migration and plasticity in a three-dimensional migration model. Small G-proteins control cytosceletal functions, especially actin polymerisation and the formation of cell protrusions through Rac as well as actomyosin contractility through Rho. Using pharmacological inhibitors of Rac and the Rho effector ROCK their impact on single-cell-migration in a three-dimensional model and particularly on morphology and plasticity of migration of tumor cells should be clarified. After inhibition of ROCK highly invasive HT1080 fibrosarcoma cells show a multipolar-dendritic and sessile phenotype. Inhibtion of Rac however induced a rounded phenotype which was also apolar and sessile. Simultaneous inhibition of ROCK and Rac resulted in rounded, apolar, sessile cells with abortive pseudopods. After disturbing the balance of ROCK and Rac by constitutive activation of ROCK, a divided population of cells developed, consisting of rounded, blebby cells and elongated cells. After sorting the cells according to their level of ß1-integrin expression, cells with low expression of integrins adopted a rounded type of migration with blebby dynamic protrusions, whereas cells with high integrin expression migrated in a elongated-mesenchymal way. Thus ROCK and Rac control together and simultaneously mesenchymal single cell migration. While Rac mediates protrusion, ROCK is responsible for contractility and retraction. Consequently only by coordination of Rho/ROCK and Rac polarity and mesenchymal 3D migration becomes possible. KW - Zellmigration KW - Invasion KW - Karzinomzellen KW - Rac KW - ROCK KW - Zellmigration KW - Invasion KW - Karzinomzellen KW - Rac KW - ROCK KW - cell migration KW - invasion KW - carcinoma cells KW - Rac KW - ROCK Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52894 ER - TY - THES A1 - Mayer, Christian T1 - Pfadbildung durch invasive Melanomzellen : Matrixdefekte, Zellfragmente und erleichterte Migration T1 - Release of cell fragments and extracellular matrix remodelling by invading melanoma cells N2 - Die metastatische Invasion von Tumorzellen durch die extrazelluläre Matrix von Geweben erfordert aktive Zellmigration sowie häufig auch den Umbau der Gewebestruktur. In dieser Arbeit sollte mittels metastasierender MV3-Melonomzellen in einem 3D-Kollagenmatrixmodell der migrationsassozierte Matrixumbau zellulär und molekular untersucht werden, insbesondere die physikalische Charakterisierung gebildeter Matrixdefekte, die molekulare Identifi kation freigesetzter Zellbestandteile, sowie den Einfluß pfadbildender Zellen auf die Invasion nachfolgender Zellen. Die Daten zeigen, daß MV3-Melanomzellen während der Migration durch ein 3DKollagengewebe komplette Zellfragmente in zurückbleibenden röhrenförmigen Trassen deponieren. Diese beinhalteten Zytoplasma und teils Zytoskelett umgeben von intakter Zellmembran mit integrierten Oberflächenrezeptoren wie β1-Integrinen, nicht jedoch DNA-Material. Der Durchmesser der Fragmente lag überwiegend bei 1-5 μm, selten über 10 μm, entsprechend unspezifisch freigesetzter Zellfragmente, die während der Migration vom Zellhinterende abgeschilftet werden. In einem Sphäroidmodell ließen sich mehrere Invasionsfronten nachweisen, in denen einer ersten pfadbildenden Zelle entlang neu gebildeter Matrixtrassen weitere Zellen den gleichen präformierten Trassen folgten. Die videomikroskopischen Befunde wurden mittels Konfokalmikroskopie bestätigt. Eine erwartete höhere Migrationsgeschwindigkeit der nachfolgenden Zellen in dem präformierten Pfad bestätigte sich jedoch nicht. Somit führt die Invasion von MV3-Melanomzellen zur Ausbildung strukturell umgebauter Matrixtrassen, die aus Matrixdefekt freigesetzten Zellfragmenten und angrenzender Extrazellulärmatrix bestehen und nachfolgenden Zellen als Leitstruktur für eine orientierte Form der Invasion dienen (Kettenwanderung). Diese Befunde beleuchten die Dynamik von Zellarrangements ähnlich dem Invasionsmuster in histopathologischen Tumorproben. N2 - Tumor cell invasion requires coordinated cell adhesion to an extracellular matrix (ECM) substrate at the leading edge and concomitant detachment at the cell rear. Known detachment mechanisms include the slow sliding of focal contacts, the detachment of adhesion receptors by affinity and avidity regulation, as well as the shedding of adhesion receptors, most notably integrins. In highly invasive melanoma cells migrating within 3D collagen matrices, beta1 integrins and CD44 are released upon retraction of the trailing edge, together with ripping-off complete cell fragments to become deposited along the migration trail of remodeled matrix. Cell fragments reach a size up to 12 microm in diameter, contain cytoplasm and occasionally polymerized actin enclosed by intact cell membrane including surface beta1 integrins, but do not include nuclear material. The release of cell fragments was migration dependent, as impairment of motility by a blocking anti-beta1 integrin antibody also blocked cell particle release. Invasion-associated deposition of cell fragments combines the secretory-type release of vesicles with a physical mechanism of rear retraction and migration efficiency. The deposition of cell fragments may further represent a disregulated detachment strategy with implications for neoplastic cell behavior, such as the paracrine effects on neighbor cells or a negative impact on immune effector cells. KW - Migration KW - Zellfragmente KW - Pfadbildung KW - Matrixumbau KW - Invasion KW - migration KW - invasion KW - cellfragments KW - pathways Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19657 ER -