TY - THES A1 - Baluapuri, Apoorva T1 - Molecular Mechanisms of MYC’s impact on Transcription Elongation T1 - Molekulare Mechanismen des Einflusses von MYC auf die Transkriptionselongation N2 - Expression of the MYC oncoprotein, which binds the DNA at promoters of most transcribed genes, is controlled by growth factors in non-tumor cells, thus stimulating cell growth and proliferation. Here in this thesis, it is shown that MYC interacts with SPT5, a subunit of the RNA polymerase II (Pol II) elongation factor DSIF. MYC recruits SPT5 to promoters of genes and is required for its association with Pol II. The transfer of SPT5 is mediated by CDK7 activity on TFIIE, which evicts it from Pol II and allows SPT5 to bind Pol II. MYC is required for fast and processive transcription elongation, consistent with known functions of SPT5 in yeast. In addition, MYC increases the directionality of promoters by stimulating sense transcription and by suppressing the synthesis of antisense transcripts. The results presented in this thesis suggest that MYC globally controls the productive assembly of Pol II with general elongation factors to form processive elongation complexes in response to growth-factor stimulation of non-tumour cells. However, MYC is found to be overexpressed in many tumours, and is required for their development and progression. In this thesis it was found that, unexpectedly, such overexpression of MYC does not further enhance transcription but rather brings about squelching of SPT5. This reduces the processivity of Pol II on selected set of genes that are known to be repressed by MYC, leading to a decrease in growth-suppressive gene transcription and uncontrolled tumour growth N2 - Die Expression des MYC-Onkoproteins, das die Promotoren der meisten exprimierten Gene bindet, wird in gesunden, nicht transformierten Zellen durch Wachstumsfaktoren reguliert und fördert das Zellwachstum und die Zellteilung. In dieser Arbeit wurde die Interaktion zwischen MYC und SPT5, einer Untereinheit des RNA-Polymerase (Pol II) Elongationsfaktors DSIF gezeigt. MYC ist für die Rekrutierung von SPT5 an Promotoren und die Assoziation mit Pol II notwendig. Der Transfer von SPT5 auf Pol II setzt die Aktivität der Proteinkinase CDK7 voraus, die TFIIE aus dem Pol II Komplex entfernt und es so SPT5 ermöglicht, an Pol II zu binden. MYC wird für eine schnelle und prozessive Transkriptionselongation benötigt, was mit bekannten Funktionen von SPT5 in Hefe übereinstimmt. Zusätzlich erhöht MYC die Direktionalität von Promotoren, indem es die Sense-Transkription stimuliert und die Synthese der Antisense-Transkripte unterdrückt. Die in dieser Arbeit vorgestellten Ergebnisse legen nahe, dass MYC in normalen, nicht-transformierten Zellen die produktive Assemblierung von Pol II mit allgemeinen Elongationsfaktoren global steigert, um prozessive Elongationskomplexe als Reaktion auf die Wachstumsfaktorstimulation zu bilden. Die meisten humanen Tumore exprimieren jedoch deutlich erhöhte Mengen des MYC Proteins, das für Tumorentstehung und Progression benötigt wird. In dieser Arbeit wurde festgestellt, dass eine solche Überexpression von MYC unerwarteterweise keine weitere Steigerung der Expression mit sich bringt, sondern zur Sequestrierung von SPT5 führt. Dies reduziert die Prozessivität von Pol II an ausgewählten Genen, welche durch MYC bekannterweise supprimiert werden, was zu einer Abnahme der wachstumsunterdrückenden Gentranskription und zu einem unkontrollierten Wachstum führt. KW - Transcription KW - MYC Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243806 ER - TY - JOUR A1 - Denk, S. A1 - Schmidt, S. A1 - Schurr, Y. A1 - Schwarz, G. A1 - Schote, F. A1 - Diefenbacher, M. A1 - Armendariz, C. A1 - Dejure, F. A1 - Eilers, M. A1 - Wiegering, Armin T1 - CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer JF - International Journal of Colorectal Disease N2 - Background Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that decreasing MYC expression may have significant therapeutic value. CIP2A is an oncogenic factor that regulates MYC expression. CIP2A is overexpressed in colorectal cancer (CRC), and its expression levels are an independent marker for long-term outcome of CRC. Previous studies suggested that CIP2A controls MYC protein expression on a post-transcriptional level. Methods To determine the mechanism by which CIP2A regulates MYC in CRC, we dissected MYC translation and stability dependent on CIP2A in CRC cell lines. Results Knockdown of CIP2A reduced MYC protein levels without influencing MYC stability in CRC cell lines. Interfering with proteasomal degradation of MYC by usage of FBXW7-deficient cells or treatment with the proteasome inhibitor MG132 did not rescue the effect of CIP2A depletion on MYC protein levels. Whereas CIP2A knockdown had marginal influence on global protein synthesis, we could demonstrate that, by using different reporter constructs and cells expressing MYC mRNA with or without flanking UTR, CIP2A regulates MYC translation. This interaction is mainly conducted by the MYC 5′UTR. Conclusions Thus, instead of targeting MYC protein stability as reported for other tissue types before, CIP2A specifically regulates MYC mRNA translation in CRC but has only slight effects on global mRNA translation. In conclusion, we propose as novel mechanism that CIP2A regulates MYC on a translational level rather than affecting MYC protein stability in CRC. KW - CIP2A KW - MYC KW - translation KW - colon cancer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280092 VL - 36 IS - 5 ER - TY - THES A1 - Endres, Theresa T1 - PAF1 complex and MYC couple transcription elongation with double-strand break repair T1 - Koordination von Transkriptionselongation und Doppelstrangbruchreparatur durch den PAF1 Komplex und MYC N2 - The oncogene MYC is deregulated and overexpressed in a high variety of human cancers and is considered an important driver in tumorigenesis. The MYC protein binds to virtually all active promoters of genes which are also bound by the RNA Polymerase II (RNAPII). This results in the assumption that MYC is a transcription factor regulating gene expression. The effects of gene expression are weak and often differ depending on the tumor entities or MYC levels. These observations could argue that the oncogene MYC has additional functions independent of altering gene expression. In relation to this, the high diversity of interaction partners might be important. One of them is the RNAPII associated Factor I complex (PAF1c). In this study, direct interaction between PAF1c and MYC was confirmed in an in-vitro pulldown assay. ChIP sequencing analyses revealed that knockdown of PAF1c components resulted in reduced MYC occupancy at active promoters. Depletion or activation as well as overexpression of MYC led to reduced or enhanced global occupancy of PAF1c in the body of active genes, arguing that MYC and PAF1c bind cooperatively to chromatin. Upon PAF1c knockdown cell proliferation was reduced and additionally resulted in an attenuation of activation or repression of MYC-regulated genes. Interestingly, knockdown of PAF1c components caused an accumulation in S-phase of cells bearing oncogenic MYC levels. Remarkably, enhanced DNA damage, measured by elevated gH2AX and pKAP1 protein levels, was observed in those cells and this DNA damage occurs specifically during DNA synthesis. Strikingly, MYC is involved in double strand break repair in a PAF1c-dependent manner at oncogenic MYC levels. Collectively the data show that the transfer of PAF1c from MYC onto the RNAPII couples the transcriptional elongation with double strand break repair to maintain the genomic integrity in MYC-driven tumor cells. N2 - Das Onkogen MYC ist in einer Vielzahl verschiedener Krebsarten dereguliert und überexprimiert und deshalb ein wichtiger Faktor in der Tumorgenese. Zwei zentrale Beobachten sind: Erstens, das MYC Protein bindet grundsätzlich an allen zugänglichen Promotoren von Genen, die ebenfalls von der RNA Polymerase II gebunden sind. Das resultiert in der Annahme, dass MYC als ein Transktiptionfaktor klassifiziert werden kann, der Genexpression reguliert. Zweitens, die Effekte auf die Genregulation sind schwach und oftmal abhängig von der Tumorart als auch von der unterschiedlichen MYC Proteinmenge. Diese Beobachtungen lassen die Schlussfolgerung zu, dass MYC eine zusätzliche Funktion neben der des Transktiptionfaktors haben könnte. Darauf bezogen könnte die große Anzahl an Interaktionspartnern eine entscheidende Rolle spielen. Einer dieser Interaktionspartner ist der RNA Polymerase II assoziierte Faktor I Complex (PAF1c). In dieser Arbeit konnte die direkte Interaktion zwischen PAF1c und MYC mittels in-vitro Pulldown Assays bestätigt werden. ChIP-Sequenzierungen illustrierten, dass der Knockdown verschiedener Untereinheiten des PAF1c zur einer verminderten Bindung von MYC an aktiven Promotoren führt. Andererseits zeigte die Depletion oder Aktivierung sowie Überexpression des MYC Proteins entweder eine reduzierte oder aber eine gesteigerte PAF1c Bindung im Genkörper aktiver Gene. Folglich wird angenommen, dass MYC und PAF1c kooperativ an das Chromatin binden. Unabhängig von den MYC Proteinmengen, führte der Knockdown von PAF1c Untereinheiten zu einer reduzierten Proliferation von Zellen. Zusätzlich resultierte in RNA Sequenzierexperimenten, dass der PAF1c Knockdown zu einer abgeschwächten Aktivierung oder Repression von MYC regulierten Genen führt. Interessanterweise führte der Knockdown von PAF1c Untereinheiten zu einer Ansammlung in der S-Phase des Zellzyklus für viele Zellen, die onkogene MYC Proteinmengen aufweisten. Auffallend dabei war, dass diese Zellen erhöhten DNA Schaden, gemessen an erhöhten Proteinmengen von γH2AX und pKAP1, aufwiesen. Dieser DNA Schaden ereignete sich spezifisch während der DNA Synthese. Bemerkenswert ist, dass MYC, vor allem bei onkogenen MYC Proteinmengen, in die Doppelstrangbruchreparatur involviert ist und das dies in Zusammenarbeit mit PAF1c erfolgt. Zusammenfassend zeigen die Daten, dass der Transfer des PAF1c von MYC auf die RNAPII die transkriptionelle Elongation mit der Doppelstrangbruchreparatur vereint um die genomische Integrität in MYC getriebenen Tumoren zu gewährleisten. KW - MYC KW - PAF1c KW - double-strand break repair Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249557 ER - TY - JOUR A1 - Hartmann, Oliver A1 - Reissland, Michaela A1 - Maier, Carina R. A1 - Fischer, Thomas A1 - Prieto-Garcia, Cristian A1 - Baluapuri, Apoorva A1 - Schwarz, Jessica A1 - Schmitz, Werner A1 - Garrido-Rodriguez, Martin A1 - Pahor, Nikolett A1 - Davies, Clare C. A1 - Bassermann, Florian A1 - Orian, Amir A1 - Wolf, Elmar A1 - Schulze, Almut A1 - Calzado, Marco A. A1 - Rosenfeldt, Mathias T. A1 - Diefenbacher, Markus E. T1 - Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease JF - Frontiers in Cell and Developmental Biology N2 - Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research. KW - non-small cell lung cancer KW - CRISPR-Cas9 KW - mouse model KW - lung cancer KW - MYC KW - JUN Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230949 SN - 2296-634X VL - 9 ER -