TY - JOUR A1 - Vona, Barbara A1 - Nanda, Indrajit A1 - Shehata-Dieler, Wafaa A1 - Haaf, Thomas T1 - Genetics of Tinnitus: Still in its Infancy JF - Frontiers in Neuroscience N2 - Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention. KW - twin study KW - complex disorders KW - genetics KW - genetic heterogeneity KW - genome-wide association study (GWAS) KW - hearing loss KW - tinnitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170926 VL - 11 IS - 236 ER - TY - JOUR A1 - Vona, Barbara A1 - Hofrichter, Michaela A. H. A1 - Schröder, Jörg A1 - Shehata-Dieler, Wafaa A1 - Nanda, Indrajit A1 - Haaf, Thomas T1 - Hereditary hearing loss SNP-microarray pilot study JF - BMC Research Notes N2 - Objectives: Despite recent advancements in diagnostic tools, the genomic landscape of hereditary hearing loss remains largely uncharacterized. One strategy to understand genome-wide aberrations includes the analysis of copy number variation that can be mapped using SNP-microarray technology. A growing collection of literature has begun to uncover the importance of copy number variation in hereditary hearing loss. This pilot study underpins a larger effort that involves the stage-wise analysis of hearing loss patients, many of whom have advanced to high-throughput sequencing analysis. Data description: Our data originate from the Infinium HumanOmni1-Quad v1.0 SNP-microarrays (Illumina) that provide useful markers for genome-wide association studies and copy number variation analysis. This dataset comprises a cohort of 108 individuals (99 with hearing loss, 9 normal hearing family members) for the purpose of understanding the genetic contribution of copy number variations to hereditary hearing loss. These anonymized SNP-microarray data have been uploaded to the NCBI Gene Expression Omnibus and are intended to benefit other investigators interested in aggregating platform-matched array patient datasets or as part of a supporting reference tool for other laboratories to better understand recurring copy number variations in other genetic disorders. KW - copy number variation KW - genotyping arrays KW - hereditary hearing loss KW - illumina KW - infinium HumanOmni1-Quad KW - SNP-microarray Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176239 VL - 11 IS - 391 ER -