TY - INPR A1 - Légaré, Marc-André A1 - Pranckevicius, Conor A1 - Braunschweig, Holger T1 - Metallomimetic Chemistry of Boron T2 - Chemical Reviews N2 - The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2. KW - boron KW - small-molecule activation KW - catalysis KW - low-valent main group chemistry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186317 N1 - This document is the unedited Author’sv ersion of a Submitted Work that was subsequently accepted for publication in Chemical Reviews,copyright ©American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.chemrev.8b00561. ER -