TY - THES A1 - Deiß, Katharina T1 - Die Regulation des Kinasemodulators Raf Kinase Inhibitor Protein (RKIP): Einfluss von Phosphorylierung und Dimerisierung auf die Interaktion mit Raf1 und G Protein-gekoppelter Rezeptorkinase 2 (GRK2) T1 - Regulation of the kinase modulator Raf kinase inhibitor protein (RKIP): Influence of phosphorylation and dimerization on its interaction with Raf1 and G protein coupled receptor kinase 2 (GRK2) N2 - RKIP reguliert Proteinkinasen der Signaltransduktionskaskaden von G Protein-gekoppelten Rezeptoren, der Raf/MEK/ERK-MAPK, des Transkriptionsfaktors NFκB und von GSK3β. Unklar war bisher, wie die spezifische Interaktion von RKIP mit seinen mannigfaltigen Interaktionspartnern ermöglicht und reguliert wird. Raf1 und GRK2 sind die einzigen bekannten direkten Interaktionspartner von RKIP und wurden deshalb gewählt, um die zugrundeliegenden molekularen Mechanismen dieser Interaktion genauer zu untersuchen. In dieser Arbeit wurde gezeigt, dass RKIP nach PKC-vermittelter Phosphorylierung von Serin153 dimerisiert und dass diese Dimerisierung für die RKIP/Raf1-Dissoziation und die RKIP/GRK2-Interaktion essentiell ist. Co-Immunpräzipitationsexperimente mit einer phosphorylierungsdefizienten Mutante zeigten, dass für diese Dimerisierung die Phosphorylierung von beiden RKIP-Molekülen notwendig ist. Als Dimerinteraktionsfläche wurden die Aminosäuren 127-146 von RKIP identifiziert, da das Peptid RKIP127-146 die Dimerisierung von RKIP spezifisch und effizient hemmte. Um die Bedeutung dieser phosphorylierungsinduzierten Dimerisierung von RKIP für seine Interaktion mit Raf1 und GRK2 zu untersuchen, wurden eine phosphomimetische Mutante (RKIPSK153/7EE) und eine Mutante von RKIP generiert, welche bereits unphosphoryliert dimerisiert (RKIP∆143-6). Folgende Ergebnisse legen nahe, dass die Dimerisierung von RKIP für die spezifische Interaktion mit Raf1 bzw. GRK2 entscheidend ist: (i) Die Dimerisierung von phosphoryliertem RKIP ging mit der Dissoziation von RKIP und Raf1 und der Assoziation von RKIP und GRK2 einher; (ii) die Mutanten RKIPSK153/7EE und RKIP∆143-6, die bereits in unstimulierten Zellen eine starke Dimerisierung zeigten, hatten eine höhere Affinität zu GRK2 als zu Raf1; (iii) die Hemmung der RKIP-Dimerisierung interferierte nur mit der RKIP/GKR2- aber nicht mit der RKIP/Raf1-Interaktion; (iv) in vitro und in Mausherzen konnte ein RKIP- und GRK2-immunreaktiver Komplex nachgewiesen werden; (v) Untersuchungen zur RKIP-vermittelten Hemmung der Kinaseaktivität von GRK2 und Raf implizierten, dass dimerisiertes RKIP nur die Aktivität von GRK2, nicht aber von Raf hemmt. Diese Arbeit zeigt, dass die phosphorylierungsinduzierte Dimerisierung von RKIP die spezifische Interaktion von RKIP mit Raf1 und GRK2 koordiniert. Die Aufklärung dieses Mechanismus erweitert unser Verständnis der spezifischen Interaktion von Kinasen mit ihren Regulatorproteinen. N2 - RKIP is a regulator of several distinct kinases and modulates diverse signal transduction cascades such as the signaling of G protein coupled receptors, of the Raf/MEK/ERK-cascade, of the transcription factor NFκB, and of GSK3β. Until now, it was not well understood how the specific interaction of RKIP with its diverse targets is achieved and regulated. Raf1 and GRK2 are the only known direct interaction partners of RKIP and were thus chosen to untangle the molecular mechanisms regulating the specific interaction of RKIP with these kinases. In this dissertation it is shown that RKIP dimerizes upon PKC-mediated phosphorylation of serine153 and that this dimerization is essential for RKIP/Raf1-dissociation and RKIP/GRK2-association. Co-immunoprecipitation experiments with a phosphorylation-deficient mutant revealed that the dimerization of RKIP requires the phosphorylation of two RKIP molecules. The amino acids 127-146 of RKIP were identified as dimer-interface, since RKIP-dimerization was efficiently and specifically inhibited by the peptide RKIP127-146. To elucidate the implication of this phosphorylation-induced dimerization on the target specificity of RKIP, a phosphomimetic RKIP mutant (RKIPSK153/7EE) and a dimeric RKIP mutant (RKIP∆143-6) were generated. The following results indicated that dimerization of RKIP controls its specific interaction with Raf1 or GRK2, respectively: (i) dimerization of phosphorylated RKIP occurred concomitantly with the release of RKIP from Raf1 and its association with GRK2; (ii) the RKIP mutants RKIPSK153/7EE and RKIP∆143-6, which had a higher propensity for RKIP-dimerization already under basal conditions, had a higher affinity to GRK2 than to Raf1; (iii) inhibition of RKIP-dimerization prevented only RKIP/GRK2-binding but did not interfere with RKIP/Raf1-binding; (iv) an RKIP- and GRK2-immunoreactive complex was detected in vitro as well as in mouse hearts; (v) analyses of RKIP-mediated inhibition of GRK2 and Raf showed that a higher propensity for RKIP-dimerization translates into efficient GRK2-inhibition but not into Raf-inhibition. The results of this thesis show that phosphorylation-induced dimerization of RKIP regulates its specific interaction with Raf1 and GRK2. The elucidation of this mechanism improves our understanding how specificity in the interaction of kinases and their regulatory proteins can be achieved. KW - Signaltransduktion KW - Dimerisierung KW - G-Protein gekoppelte Rezeptoren KW - Proteinkinase C KW - Raf Kinase Inhibitor Protein (RKIP) KW - G protein-gekoppelte Rezeptor Kinase 2 (GRK2) KW - Raf1 KW - Raf Kinase Inhibitor Protein (RKIP) KW - G protein-coupled receptor kinase 2 (GRK2) KW - Raf1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73884 ER - TY - THES A1 - Kramer, Sofia T1 - Hemmung pathologischer kardialer Hypertrophie über das Dimer-Interface von ERK1/2 T1 - Inhibition of pathological cardiac hypertrophy by the dimer interface of ERK1/2 N2 - Die extrazellulär Signal-regulierten Kinasen 1 und 2 (ERK1/2) spielen eine zentrale Rolle bei der Vermittlung kardialer Hypertrophie und dem Zellüberleben. Hypertrophe Stimuli aktivieren ERK1/2, triggern deren Dimerisierung und in der Folge die ERK188-Autophosphorylierung. Diese neu entdeckte Autophosphorylierung ist eine Voraussetzung für den nukleären Import von ERK1/2 und führt zum Entstehen pathologischer kardialer Hypertrophie. Da das Dimer Interface von ERK eine mögliche Zielstruktur darstellt, um selektiv die nukleären Signalwege von ERK zu unterbrechen, wurde untersucht, ob man mit Hemmung der ERK-Dimerisierung eine therapeutische Möglichkeit hat, um pathologische kardiale Hypertrophie zu verhindern. Dazu wurden verschiedene ERK2 Mutanten und Peptide generiert, um die ERK-Dimerisierung zu verhindern. Die Effekte dieser Konstrukte auf die ERK-Dimerisierung und den Kernimport wurden in verschiedenen Zelltypen mittels Fluoreszenzmikroskopie, Co-Immunopräzipitationen und Duolink proximity ligation assays getestet. Es konnte gezeigt werden, dass die Peptide effektiv die ERK-ERK Interaktion nach Stimulation mit Phenylephrin und/oder Carbachol verhindern. Zusätzlich reduzierten die Peptide ERKT188-Phosphorylierung und in der Folge den ERK-Import in den Nukleus und Kardiomyozytenhypertrophie. Normale ERK-Aktivierung wurde jedoch durch die Peptide nicht verhindert. Insgesamt konnte gezeigt werden, dass das ERK-Dimer Interface eine wertvolle Zielstruktur ist, mit dem man nukleäre ERK1/2 Signalwege selektiv unterbrechen und damit effektiv Kardiomyozytenwachstum reduzieren kann, ohne gleichzeitig das Zellüberleben zu gefährden. N2 - The extracellular signal-regulated kinases 1 and 2 (ERK1/2) have a central role in cardiac hypertrophy and cell survival. Hypertrophic stimuli activate ERK1/2, trigger ERK dimerization and subsequently ERKT188-autophosphorylation. This newly discovered autophosphorylation is a prerequisite for nuclear ERK1/2 translocation and leads to the development of pathological cardiac hypertrophy. As the ERK dimer interface is a potential target to selectively interfere with nuclear ERK1/2 signaling, we investigated whether the interference with ERK dimerization may serve as a therapeutic strategy to prevent pathological cardiac hypertrophy. For this, we generated ERK2 mutants and peptide constructs that interfere with ERK dimerization. These constructs were evaluated in various cell types by their effects on nuclear ERK translocation and dimerization by fluorescence microcopy, co-immunoprecipitation and Duolink proximity ligation assays. We showed that the peptides indeed prevented ERK-ERK interaction in response to phenylephrine and/or carbachol stimulation. In addition, the peptides prevented ERKT188-phosphorylation and interfered with all ERK1/2 effects that are associated with ERKT188-phosphorylation e.g. nuclear ERK translocation and cardiomyocyte hypertrophy. Interestingly, the peptide did not inhibit the general activation of ERK1/2. These data indicate that the ERK dimer interface is a valuable target for selective inhibition of nuclear ERK1/2 signaling, that is able to effectively attenuate ERK1/2 mediated cardiomyocyte growth but without impairing cell survival. KW - Dimerisierung KW - Herzhypertrophie KW - Interferenz KW - MAP-Kinase KW - ERK1/2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233739 ER - TY - THES A1 - Dorsch, Sandra T1 - Rezeptor-Rezeptor-Interaktion ß-adrenerger Rezeptoren T1 - Receptor-Receptor Interaction of ß-adrenergic Receptors N2 - Viele Membranrezeptoren liegen als über Disulfidbrücken-verbundene Dimere vor. Ein Nachweis der Dimerisierung ist in diesen Fällen methodisch klar und einfach zu erbringen. Für die meisten G-Protein-gekoppelten Rezeptoren dagegen ist weder die Existenz von Di- oder Oligomeren noch deren Funktion eindeutig belegt. Meist wurden Methoden wie Coimmunopräzipitation und Resonanz-Energie-Transfer-Verfahren wie BRET oder FRET verwendet, um Protein-Protein-Interaktionen zu untersuchen. Trotz ihrer hohen Sensitivität besitzen diese Methoden einige Grenzen und können je nach experimentellem Ansatz und Verwendung verschiedener Kontrollen, unterschiedliche Ergebnisse hinsichtlich des Vorliegens einer Protein-Protein-Interaktion liefern. Weder die Stabilität der Interaktion, noch die Fraktion der interagierenden Proteine kann mittels Resonanz-Energie-Transfer-Assays zuverlässig ermittelt werden. Auch die Größe der Komplexe ist nicht oder nur technisch aufwendig bestimmbar. Deshalb wurde in dieser Arbeit eine neue, unabhängige Methode entwickelt, um Rezeptor-Rezeptor-Interaktionen in lebenden Zellen genauer untersuchen zu können. Diese auf „Fluorescence Recovery after Photobleaching“ basierende Mikroskopie-Methode erlaubt die Mobilität von Proteinen zu bestimmen. Um Homointeraktionen zwischen Proteinen messen zu können, müssen zwei Protein-Fraktionen mit unterschiedlicher Mobilität vorliegen. Deshalb wurde eine Rezeptor-Fraktion extrazellulär mit YFP markiert und mit Hilfe polyklonaler Antikörper gegen YFP spezifisch immobilisiert. Die andere Rezeptorfraktion wurde intrazellulär mit CFP oder Cerulean markiert und wurde deshalb nicht von extrazellulären Antikörpern erkannt. So konnten mittels Zwei-Farben-FRAP potenzielle Interaktionen zwischen den immobilisierten extrazellulär-markierten Rezeptoren und den intrazellulär-markierten Rezeptoren durch eine Mobilitätsänderung letzterer detektiert werden. Diese Methode wurde mittels eines monomeren (CD86) und kovalent dimeren (CD28) Rezeptors validiert. Es zeigte sich, dass eine spezifische Immobilisierung extrazellulär-markierter Proteine nur durch polyklonale, nicht aber durch monoklonale Antikörper gegen YFP erreicht werden konnte. Intrazellulär-markierte Proteine wurden hierbei in ihrer Mobilität nicht durch die extrazellulären Antikörper beeinflusst. Bei Immobilisierung des extrazellulär-markierten CD86 war das coexprimierte, intrazellulär-markierte CD86-CFP weiterhin voll mobil. Außerdem zeigte das Monomer CD86 eine vom relativen CFP-YFP-Expressionsverhältnis unabhängige Mobilität. Dieses Ergebnis ließ den Schluss zu, dass extra- und intrazellulär-markiertes CD86 nicht miteinander interagieren und als Monomer vorliegen. Die Mobilität des kovalenten Dimers CD28 war dagegen abhängig vom CFP–YFP-Expressionsverhältnis und stimmte gut mit theoretisch erwarteten Werten für ein Dimer überein. Die Anwendung der Zwei-Farben-Methode zur Untersuchung von Interaktionen zwischen ß1- und ß2-adrenergen Rezeptoren zeigte Unterschiede zwischen beiden Rezeptor-Subtypen. ß1-AR zeigte eine spezifische transiente Interaktion, ß2-AR dagegen lagen als stabile Oligomere höherer Ordnung vor. Die transiente Interaktion zwischen ß1-AR und die stabile Oligomerisierung von ß2-AR wurde nicht nur in HEK 293T-Zellen sondern auch in neonatalen Rattenkardiomyozyten und bei 37 °C beobachtet. Ferner hatte der Aktivierungszustand des jeweiligen Rezeptors keinen Einfluß auf das Ausmaß der Interaktion. Zwischen ß1- und ß2-AR wurde nur eine sehr schwache und instabile Heterointeraktion mittels der Zwei-Farben-FRAP-Methode beobachtet. Um zu überprüfen, ob eine direkte Interaktion zwischen den adrenergen Rezeptoren vorliegt, wurde die BRET-Methode verwendet. Mittels BRET wurde eine direkte Interaktion zwischen ß2-AR festgestellt, jedoch konnte nicht zwischen Dimeren und Oligomeren höherer Ordnung unterschieden werden. Bei ß1-AR fand bei höheren YFP-Rluc-Expressionsverhältnissen ein spezifischer Energietransfer statt. Bei niedrigeren Expressionsverhältnissen lag das Signal jedoch im unspezifischen Bereich. Auch bei Untersuchung der Heterointeraktion zwischen ß1- und ß2-AR konnte keine klare Aussage über eine spezifische Interaktion zwischen beiden Rezeptor-Subtypen getroffen werden. N2 - Many membrane receptors exist as disulfide-bond dimers. In these cases dimerization is methodological clearly and easily provable. However, for most G-protein coupled receptors the postulated existence of di- or oligomerization nor their function is definitely demonstrated. Mostly, methods like co-immunoprecipitation and resonance energy transfer techniques like BRET and FRET were used to investigate protein-protein interactions. Despite their high sensitivity these methods have some limits and reveal sometimes distinct results regarding the occurrence of a protein-protein interaction depending on experimental approach and use of different controls. Neither the stability of the interaction nor the fraction of interacting proteins are determinable using resonance energy transfer assays. Furthermore the size of complexes is not or only technically difficult determinable. Therefore in this work a novel independent approach was developed to allow a more detailed investigation of receptor-receptor interactions in living cells. This method based on fluorescence recovery after photobleaching microscopy allows to determine the mobility of proteins. In order to measure homo-interactions between proteins two protein fractions with different mobility have to be distinguishable. Therefore one receptor fraction was extracellularly tagged with YFP and specifically immobilized using polyclonal antibodies against YFP. The other receptor fraction was intracellularly labeled with CFP or Cerulean and therefore not recognized by the extracellular antibodies. In this way using dual-color FRAP potential interactions between immobilized extracellularly-tagged receptors and intracellularly-tagged receptors were detectable due to a change of mobility of the latter. This method was validated using monomeric (CD86) and covalent dimeric (CD28) receptors. A specific immobilization of extracellularly-tagged proteins was achievable only by using polyclonal but not monoclonal antibodies against YFP. Intracellularly tagged proteins were not influenced in their mobility by extracellular antibodies. After immobilization of the extracellularly-labeled CD86 the coexpressed intracellularly-tagged CD86-CFP was still fully mobile. Furthermore the monomeric CD86 showed a relative CFP–YFP expression ratio independent mobility. This result led to the conclusion that extra- and intracellularly labeled CD86 did not interact with each other and exist as a monomer. The mobility of the covalent dimer CD28 however was depending on the relative CFP-YFP expression ratio and was in good agreement with theoretically expected values for a dimer. The application of the dual-color FRAP approach for the investigation of interactions between ß1- and ß2-adrenergic receptors showed differences between both receptor subtypes. ß1-AR exhibited a specific transient interaction, however ß2-AR existed as stable higher order oligomers. The transient interaction between ß1-AR and the stable higher order oligomerization of ß2-AR were not only observed in HEK 293T cells but also in neonatal rat cardiac myocytes and at 37°C. Furthermore the activation state of the respective receptor had no influence on the extent of the interaction. Between ß1- and ß2-AR only a weak and unstable hetero-interaction was observed using the dual-color FRAP approach. In order to control if a direct interaction between the adrenergic receptors is occurring the BRET method was applied. Using BRET a direct interaction between ß2-AR was observed, but it was not possible to distinguish between dimers and higher order oligomers. For ß1-AR a specific energy transfer occurred at higher YFP-Rluc expression ratios. At lower expression ratios the signal was in the unspecific range. Also the investigation of hetero-interactions between ß1- and ß2-AR revealed no clear conclusion about a specific interaction between both receptor subtypes. KW - Dimerisierung KW - FRAP KW - GPCR KW - ß-adrenerge Rezeptoren KW - BRET KW - FRAP KW - GPCR KW - ß-adrenergic Receptors KW - BRET Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39712 ER - TY - THES A1 - Gruse, Tamara T1 - Untersuchung der Rolle der ERK-Dimerisierung bei der ERK1/2- vermittelten Proliferation von Tumorzellen T1 - Investigation of the role of ERK dimerization in the ERK1/2-mediated proliferation of tumor cells N2 - Bei vielen Erkrankungen wie z.B. Herzhypertrophie, Diabetes und Entzündungen spielt die Raf-MEK-ERK-Signalkaskade eine wichtige Rolle. ERK1/2 ist in vielen zellulären Prozessen, u.a. Proliferation, Differenzierung, Wachstum, Hypertrophie und Apoptose involviert. Auch in der Tumorentstehung besitzt dieser MAPK-Signalweg eine signifikante Funktion, da er bei ca. 50% aller Krebsarten deutlich aktiviert ist. Ziel dieser Arbeit war es, die Rolle einer neu entdeckten Phosphorylierungsstelle an Threonin188 an ERK2 bei der Entstehung und der möglichen Therapie von Tumoren zu erarbeiten. Dafür wurde ein Myc-ERK2309-357-Peptid verwendet, das 2013 in der Arbeitsgruppe Lorenz entwickelt wurde. Myc-ERK2309-357 zeigte in bisher unveröffentlichten Versuchen, dass es direkt an ERK2 bindet, eine Dimerisierung von ERK1/2 hemmen und eine vermehrte Lokalisation von ERK2 im Zellkern verhindern kann. Im Rahmen dieses Projekts konnten wir belegen, dass mit Hilfe des Myc-ERK2309-357-Peptids die Tumorzellproliferation von verschiedenen Krebszelllinien (Caco-2, SCC68, PC/1-1 und PC/13-1) um 60-80% vermindert werden konnte. Des Weiteren konnten wir zeigen, dass Myc-ERK2309-357 keinen Einfluss auf die Phosphorylierung von ERK1/2 am TEY-Motiv besitzt. Die Aktivierung von ERK1/2 durch die Kinasen MEK1/2 wird somit nicht beeinflusst und die zytosolischen ERK-Funktionen, wie z.B. der anti-apoptotische Effekt, würden somit bestehen bleiben. Außerdem fanden wir heraus, dass Myc-ERK2309-357 im Vergleich zu den MEK-Inhibitoren U0126 und PD98059 und verglichen mit dem EGF-Rezeptor-Antikörper Cetuximab die Proliferation signifikant besser hemmt. N2 - The Raf-MEK-ERK signaling cascade plays an important role in many diseases, such as cardiac hypertrophy, diabetes and inflammation. ERK1/2 is involved in many cellular processes, i.a. proliferation, differentiation, growth, hypertrophy and apoptosis. This MAPK signaling pathway also has a significant function in tumorigenesis because it is clearly activated in about 50% of all cancers. The aim of this work was to investigate the role of a newly discovered phosphorylation site on threonine188 in ERK2 in the genesis and possible therapy of tumors. For this, a Myc- ERK2309-357 peptide was used, which was developed in the research group Lorenz in 2013. It has previously been shown that Myc-ERK2309-357 binds directly to ERK2, inhibits ERK1/2 dimerization, and prevents increased localization of ERK2 in the nucleus. In this project we demonstrated that the Myc-ERK2309-357 peptide reduces the tumor cell proliferation of various cancer cell lines (Caco-2, SCC68, PC / 1-1 and PC / 13-1) by 60-80%. Furthermore, we could show that Myc-ERK2309-357 has no influence on the phosphorylation of ERK1/2 on the TEY motif. The activation of ERK1/2 by the kinases MEK1/2 is thus unaffected and the cytosolic ERK functions, e.g. the anti-apoptotic effect, would thus persist. In addition, we discovered that Myc-ERK2309-357 inhibits proliferation of the tumor cells significantly better compared to the MEK inhibitors U0126 and PD98059 and compared to the EGFR antibody Cetuximab. KW - Dimerisierung KW - MAP-Kinase KW - Carcinogenese KW - ERK1/2 Dimerisierung KW - Tumorzellproliferation KW - Krebs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159847 ER - TY - THES A1 - Kestler, Christian T1 - Untersuchungen über die Dimerisierung der HAD-Phosphatase Chronophin T1 - Investigations of the dimerization of the HAD-phosphatase Chronophin N2 - Phosphatasen der HAD (haloacid dehalogenase)-Familie sind weit verbreitet in allen Domänen des Lebens und erfüllen die verschiedensten zellulären Aufgaben, beispielsweise in Metabolismus und Zellregulation. Die HAD-Phosphatase Chronophin zeigt Phosphataseaktivität unter anderem gegenüber Pyridoxal-5‘-Phosphat (PLP), einem essentiellen Kofaktor vieler biochemischer Prozesse, und Phosphocofilin, einem Regulator des Aktinzytoskeletts. Chronophin dimerisiert über die Interaktion zweier identischer Untereinheiten zu einem Homodimer. Ziel dieser Arbeit war, die Rolle dieser Dimerisierung, eines bei HAD-Phosphatasen weit verbreiteten Oligomerisierungszustandes, näher zu untersuchen. Hierzu wurde die Dimerisierung erfolgreich durch den Austausch der Aminosäuren Alanin 194 und 195 zu Lysinen (Mutation A194K/A195K) gestört. Der Nachweis einer konstitutiv monomeren Chronophin-Mutante mittels Größenausschlusschromatographie, Rasterkraftmikroskopie, analytischer Ultra¬zentrifugation und Zellexperimenten wurde schließlich über die Struktur¬auflösung mittels Röntgenstrukturanalyse bestätigt. Aktivitätsmessungen der monomeren Mutante gegenüber dem Substrat PLP zeigten eine deutliche Verminderung der Phosphataseaktivität. Die Röntgenstrukturanalyse von Chronophin A194K/A195K im Vergleich mit Wildtyp-Chronophin enthüllte einen Mechanismus, wie die sogenannte Substratspezifitätsschleife, die für die korrekte Positionierung des PLP sorgt, im Homodimer des Wildtyps durch Interaktionen mit dem zweiten Protomer stabilisiert wird. Diese Stabilisierung fehlt bei der monomeren Mutante und äußert sich in einer veränderten Stellung der Substratspezifitätsschliefe. Der Strukturvergleich von Chronophin mit weiteren HAD-Phosphatasen der selben strukturellen Untergruppe vom C2a-Typ lässt eine allgemeine Gültigkeit der hier beschriebenen allosterischen Kontrolle von Substratspezifität über Homodimerisierung bei HAD-Phosphatasen vermuten und könnte so neue Ansatzpunkte für möglicherweise auch therapeutisch nutzbare Aktivitätshemmungen liefern. N2 - Investigations of the dimerization of the HAD-phosphatase Chronophin KW - Dimerisierung KW - Phosphatasen KW - Pyridoxalphosphat KW - Ortspezifische Mutagenese KW - Chronophin KW - Substratspezifitätsschleife Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149777 ER -