TY - THES A1 - Kiermasch, David T1 - Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells T1 - Ladungsträger-Rekombinationsdynamik in hybriden metall-halogenid Perowskit-Solarzellen N2 - In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses. N2 - Um künftig den menschlichen Energiebedarf in Zukunft mit erneuerbaren Energiequellen zu decken sind neue Konzepte und Ideen für die Stromerzeugung erforderlich. Solarzellen auf der Basis von hybriden Perowskit-Halbleitern stellen einen vielversprechenden Ansatz dar, um dieser Anforderung – beispielsweise in Tandem-Konfigurationen zusammen mit Silizium– gerecht zu werden. Trotz intensiver Forschung sind viele physikalische Eigenschaften und das Funktionsprinzip dieser neuartigen Solarzellen immer noch nicht vollständig verstanden. Insbesondere wurden die Rekombinationsverluste bisher meist nur an reinen Schichten untersucht, welche nicht in einen kompletten Solarzellenaufbau integriert waren. Die vorliegende Arbeit zielte auf die Identifizierung und Quantifizierung der Ladungsträger-Rekombinationsdynamik in voll funktionsfähigen Solarzellen unter Bedingungen, die denen im realen Betrieb entsprechen, ab. Um verschiedene PV-Systeme zu untersuchen wurden transiente elektrische Methoden, genauer gesagt OCVD, TPV und CE, angewandt. Während OCVD und TPV Informationen über die Rekombinationslebensdauer liefern, erlaubt CE die Berechnung der Ladungsträgerdichte. Die Kombination dieser Methoden hat den Vorteil, dass die erhaltenen Größen miteinander in Verbindung gesetzt werden können und somit umfangreiche Rückschlüsse auf die zugrundeliegende Rekombinationmechanismen ermöglichen. Das Ziel dieser Arbeit ist es, zu einem besseren Verständnis der Rekombinationsverluste in voll funktionsfähigen Perowskit-Solarzellen und der experimentellen Techniken, die zur Bestimmung dieser Verluste angewandt werden, beizutragen. KW - Solarzelle KW - Perovskite KW - Solar Cell KW - Recombination Dynamics KW - Transient Electrical Methods KW - Charge Carrier Lifetime KW - Capacitive Effects Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208629 ER -