TY - THES A1 - Dremel, Kilian T1 - Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen Lösungsverfahrens der Schnittbild-Rekonstruktion für die Röntgen-Computertomographie T1 - Modeling of the process of measurement and development of a model-based iterative reconstruction for X-ray computed tomography N2 - In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zurückzuführen. Gerade im Hinblick auf Artefakte durch die Energieabhängigkeit der rekonstruierten Schwächungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird häufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu verändern, sondern um das Rekonstruktionsmodell der Aufnahmerealität anzupassen. Zunächst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgewählt, der die gewünschten Modifikationen des Aufnahmemodells erlaubt. Für diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ansätze entwickelt, die in den Rekonstruktionsablauf integriert werden können. Im verwendeten Modell werden die Abhängigkeiten der rekonstruierten Werte vom polychromatischen Röntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabhängigkeit der Schwächungskoeffizienten beruhen und die Auflösung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ansätzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete Röntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die benötigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene Möglichkeit zur Rekonstruktion der Kombination von Datensätzen die mit unterschiedlichen Röntgenspektren aufgenommen wurden wird es möglich neben dem Schwächungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu berücksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zusätzlich zur detektorinternen Streustrahlung die Objektstreustrahlung während des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realität der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatensätzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen. N2 - In computed tomography, parts of the result which are not features of the measured object -- so called artifacts -- occur and thus impair the evaluability of the results. Reconstruction methods require a model of the measurement. Many artifacts are induced by the inconsistency between the model of reconstruction and the measurement. Especially with regard to artifacts due to the energy dependence of the reconstructed attenuation coefficients and deviations of the geometry information of the reconstruction model, a frequently used method is the postprocessing of the measurement data to avoid reconstruction artifacts. In this thesis a model of computed tomography measurements with focus on systems used for industrial and material science purposes is developed that is not used to change the measured data, but to adapt the reconstruction model to the reality of measurement. Firstly, iterative reconstruction methods are compared and a suitable algorithm is selected that allows the desired modifications of the model. Therefore existing methods are extended and new model-based approaches are developed that can be integrated in the reconstruction process. The dependencies of the reconstructed values ??from the polychromatic X-ray spectrum are incorporated into the simulation model of the reconstruction process and the geometry of the focal spot and detector elements are integrated. Thereby artefacts caused by the energy-dependency of the attenuation coefficients are shown to be reduced and the resolution of the resulting data is shown to be increased by geometric modelling. Alongside these approaches of modeling new methods are developed and implemented. The X-ray spectrum used for the modeling is adapted during the reconstruction. Thereby the accuracy needed for this input parameter is lowered. Due to possibility of the combination of data sets scanned using different spectra the reconstruction of the Compton- and photoelectric parts of the attenuation coefficient becomes possible. To consider deviations of the geometry model used in the reconstruction a correlation-based method is implemented and tested to automatically correct these aberrations. In addition to radiation scattered within the detector, a new method is developed to simulate the object scattering during the reconstruction process and the model is therefore adapted to the reality of the measurement. The implementation of the reconstruction model composed therefrom is tested on simulation data sets and finally applied to measurement data which show the potential of the method. KW - Dreidimensionale Rekonstruktion KW - Computertomografie KW - Modellbasierte Rekonstruktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157718 ER - TY - THES A1 - Graetz [geb. Dittmann], Jonas T1 - X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging T1 - Röntgen-Dunkelfeld-Tensor-Tomographie : ein Handbuch zur Tomographischen Rekonstruktion und Talbot-Bildgebung N2 - X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis. N2 - Die Röntgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach großen Sichtfeldern im Zentimeterbereich und der nötigen Bildauflösung zur Charakterisierung von Fasermaterialien mit Strukturgrößen im Mikrometerbereich aufzulösen. Sie bedient sich dafür der Eigenschaft von Röntgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe vollflächig abzubilden, womit eine Lücke von mehreren Größenordnung zwischen der Bildauflösung und der konstrastgebenden Strukturgröße überbrückt werden kann. Der Zusammenhang zwischen Strukturanisotropie und gerichteter Streuung ermöglicht dabei Rückschlüsse auf die Orientierung der Mikrostruktur einer Probe unterhalb der Bildauflösung. Erste Demonstrationen haben, basiered auf verschiedenen heuristischen Signalmodellen und Rekonstruktrionsansätzen, die grundsätzliche Erweiterbarkeit auf die Volumen-Bildgebung gezeigt. In der vorliegenden Arbeit wird, aufbauend auf einer umfassenden Analyse der Dunkelfeld-Bildgebung und tomographischer Rekonstruktionsmethoden, sowohl ein verifiziertes Modell der Signalanisotropie als auch eine Rekonstruktionstechnik entwickelt, die für große tensorwertige Volumina und allgemeine Abbildungsgeometrien praktikabel ist. In diesem Sinne wird ein weites interdisziplinäres Feld von Bildgebungs- und Rekonstruktionsmethoden aufgearbeitet. Zunächst werden anhand einer neuen Einführung in die mathematische Beschreibung perspektivischer Projektionen essenzielle Einsichten in die Zusammenhänge zwischen der greifbaren Realraum-Darstellung der Kegelstrahl-Geometrie und ihrer technisch relevanten Beschreibung mittels homogener Koordinaten und Projektionsmatrizen gegeben. Aufbauend auf diesen Grundlagen wird eine neue Methode zur Auto-Kalibration entwickelt, die die praktische Bestimmung von perspektivischen Abbildungsgeometrien unter minimalen Anforderungen an die experimentelle Ausführung ermöglicht. Passend dazu wird eine verallgemeinerte Formulierung des weit verbreiteten Feldkamp-Algorithmus gegeben, um eine schnelle und flexible Volumenrekonstruktion aus beliebigen tomographischen Bildgebungsgeometrien zu ermöglichen. Iterative Rekonstruktionsverfahren werden ebenfalls für allgemeine Aufnahmegeometrien eingeführt, wobei ein Schwerpunkt auf der effizienten Berechnung des mit der tomographischen Bildgebung assoziierten Vorwärtsproblems liegt. Zu diesem Zweck wird eine hochperformante 3D-Erweiterung des klassischen, linear interpolierenden Linienintegrationsalgorithmus von Joseph entwickelt und mit typischen Alternativen verglichen. In Bezug auf die anisotrope Bildmodalität, die die Grundlage der Tensortomographie bildet, wird der Röntgen-Dunkelfeld-Kontrast umfassend besprochen. Die vorhandende Literatur wird dazu in einen gemeinsamen Kontext und eine gemeinsame Nomenklatur gebracht und mit neuen Überlegungen zu einer konsistenten Darstellung der Theorie zur Dunkelfeldsignalentstehung vervollständigt. Zentrale Ergebnisse werden dabei explizit anhand experimenteller Daten verifiziert, wobei besonders die Tomographie und die Eigenschaften anisotroper, faseriger Streuer im Vordergrund stehen. Um die ausgeprägte Empfindlichkeit interferometrischer Bilder auf feinste mechanische Instabilitäten zu kompensieren, wird ein effizientes Optimierungsverfahren zur Auswertung der Rohdaten aus Talbot-Interferometern entwickelt. Schließlich wird die Anwendbarkeit von linearen Tensor-Modellen in Bezug auf die hergeleiteten Anisotropie-Eigenschaften des Dunkelfeld-Kontrastes diskutiert, und ein iteratives Verfahren für die Rekonstruktion tensorwertiger Volumen aus Projektionsbildern vorgeschlagen. Die entwickelten Methoden werden effizient implementiert und auf Proben aus faserverstärktem Kunstoff angewandt, die dafür an der Bildgebungs-Strahllinie ID19 des Europäischen Synchrotrons ESRF abgebildet wurden. Die Ergebnisse stellen eine bisher einmalige Demonstration von Röntgen-Dunkelfeld-Tensor-Tomographie mit einem Sichtfeld von 3-4cm dar, wobei lokale Faserorientierung sowohl für komplex geformte als auch kontrastarme Objekte mit einer räumlichen Auflösung von 0.1mm in 3D dargestellt werden kann. Ein unabhängiger Vergleich mit Mikro-CT basierter Faser-Analyse bestätigt die Ergebnisse. KW - Dreidimensionale Rekonstruktion KW - Tomografie KW - Faserorientierung KW - Tensor KW - Bildgebendes Verfahren KW - X-Ray Dark-Field KW - Tensor Tomography KW - Volume Reconstruction KW - Fiber Orientation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281437 ER -