TY - JOUR A1 - Spinelli, Simona A1 - Müller, Tanja A1 - Friedel, Miriam A1 - Sigrist, Hannes A1 - Lesch, Klaus-Peter A1 - Henkelman, Mark A1 - Rudin, Markus A1 - Seifritz, Erich A1 - Pryce, Christopher R. T1 - Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression JF - Frontiers in Behavioral Neuroscience N2 - In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype x developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HIT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HIT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HIT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression. KW - mouse-brain KW - white-matter integrity KW - linked polymorphic region KW - C57BL/6 mice KW - lerned helplessness KW - 5-HTTLPR polymorphism KW - childhood maltreatment KW - rhesus macaques KW - 3-dimensional MRI KW - life stress Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122240 VL - 7 ER - TY - JOUR A1 - Meyer zu Hörste, Gerd A1 - Cordes, Steffen A1 - Mausberg, Anne K. A1 - Zozulya, Alla L. A1 - Wessig, Carsten A1 - Sparwasser, Tim A1 - Mathys, Christian A1 - Wiendl, Heinz A1 - Hartung, Hans-Peter A1 - Kieseier, Bernd C. T1 - FoxP3+Regulatory T Cells Determine Disease Severity in Rodent Models of Inflammatory Neuropathies JF - PLOS ONE N2 - Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies. KW - Guillain-Barre-Syndrome KW - regulatory cells KW - C57BL/6 mice KW - demyelinating polyradiculoneuropathy KW - cytokines KW - pathogenesis KW - polyneuropathy KW - enteropathy KW - peptide KW - experimental autoimmune neuritis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115239 VL - 9 IS - 10 ER -