TY - JOUR A1 - Vogel, Jörg T1 - An RNA biology perspective on species‐specific programmable RNA antibiotics JF - Molecular Microbiology N2 - Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad‐spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic‐resistant pathogens as an alternative to standard antibiotics. There is already proof‐of‐principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off‐targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one‐fits‐all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications. KW - antibiotic KW - microbiome KW - RNA-seq KW - small RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214869 VL - 113 IS - 3 SP - 550 EP - 559 ER - TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - JOUR A1 - Wilms, Ina A1 - Overlöper, Aaron A1 - Nowrousian, Minou A1 - Sharma, Cynthia M. A1 - Narberhaus, Franz T1 - Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens JF - RNA Biology N2 - Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium. KW - regulatory RNA KW - plant-microbe interaction KW - deep sequencing KW - RNA-seq KW - small RNA Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127101 VL - 9 IS - 446-457 ER - TY - JOUR A1 - Čuklina, Jelena A1 - Hahn, Julia A1 - Imakaev, Maxim A1 - Omasits, Ulrich A1 - Förstner, Konrad U. A1 - Ljubimov, Nikolay A1 - Goebel, Melanie A1 - Pessi, Gabriella A1 - Fischer, Hans-Martin A1 - Ahrens, Christian H. A1 - Gelfand, Mikhail S. A1 - Evguenieva-Hackenberg, Elena T1 - Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation JF - BMC Genomics N2 - Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 % of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes. KW - Bradyrhizobium KW - RNA-seq KW - Promoter prediction KW - Genome re-annotation KW - Internal transcription start site KW - Nodule KW - Transcription start site KW - Proteogenomics KW - Antisense RNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164565 VL - 17 ER - TY - THES A1 - Pahlavan, Pirasteh T1 - Integrated Systems Biology Analysis; Exemplified on Potyvirus and Geminivirus interaction with \(Nicotiana\) \(benthamiana\) T1 - Integrierte Systeme Biologie Analyse, Beispiel für Potyvirus und Geminivirus Interaktion mit \(Nicotiana\) \(benthamiana\) N2 - Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus. Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV. Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls. Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability. Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens. N2 - Virale Infektionen haben einen signifikanten Einfluss auf verschiedene funktionelle Eigenschaften und biologische Prozesse im Wirt. Das Verständnis dieser komplexen Modifikation des infizierten Wirtsimmunsystems benötigt eine globale und detaillierte Einsicht in den Infektionsprozess. Diese erfordert einen leistungsfähigen Ansatz zur Identifizierung der beteiligten Komponenten, welche eine Pathogen-Erkennung und Antwort vermitteln bzw. eine kompatible Virus-Pflanze-Infektion voraussetzen. Die Anwendung der vergleichenden und integrierten Systembiologie zur Untersuchung dieser Pflanzen-Virus-Interaktionen im Infektionsverlauf kann eine neue Grundlage zum systematischen Verständnis der Modulation des Immunsystems der Pflanze und der Pathogen-Mechanismen während verschiedener Infektionen eröffnen. In dieser Arbeit wenden wir diese Ansätze an, um Pflanzen-Virus-Infektionen der zwei häufigsten viralen Pathogenen von Maniok zu untersuchen, den Cassava brown streak virus (CBSV) und den African cassava mosaic virus (ACMV). Dazu rekonstruieren wir den Infektionsprozess durch die Kombination von „omics“ basierten Datenanalysen und metabolischen Netzwerkmodellen um die wichtigen Elemente des viralen Infektionsprozesses zu verschieden Zeitpunkten aufzuklären. Metabolische Flussanalysen geben Einblick in metabolische Umsätze und deren Regulierung. Diese simultanen Untersuchungen erfassen ein breites Spektrum der Virus-vermittelten Veränderungen im Wirt über mehrere „omics“ Ebenen, einschließlich Geneexpression, Primärmetabolite und enzymatischer Aktivitäten, die mit dem charakteristischen Krankheitsentwicklungsprozess assoziiert sind, der in Nicotiana benthamiana Pflanzen aufgrund einer Infektion mit CBSV oder ACMV induziert wurde. Zuerst wurde die Dynamik des Transkriptoms infizierter Pflanzen mittels mRNA-Sequenzierung analysiert um das differentielle Expressionsprofil nach dem Symptomentwicklungsstadium zu untersuchen. Die Expressionsmuster und die biologischen Funktionen dieser Gene wurden im Hinblick auf die Infektionsstufe und den Virus Einheiten aufgelöst. Ein nächster Schritt war die Echtzeit-Expressionsmodifikation ausgewählter Schlüsselprozess-Gene, gefolgt von der Umsetzung im linearen Regressionsmodell. Anschließend wurde der funktionelle Verlust von regulatorischen Genen ermittelt, welche eine R-vermittelte Resistenz auslösen können. Es wurden erhebliche Unterschiede zwischen infizierten Mutanten / transgenen Linien und Wild-typen beobachtet und im Detail charakterisiert. Darüber hinaus entdeckten wir eine massive lokalisierte Akkumulation von reaktiven Sauerstoffspezies und quantifizierten die Expression von Abbauproteinen in den infizierten Wildtyp-Pflanzen relativ zu Mock-infizierten Kontrollen. Darüber hinaus fanden wir koordinierte regulierte Metaboliten als Reaktion auf eine virale Infektion, gemessen unter Verwendung von LC-MS / MS und HPLC-UV-MS Techniken. Dazu gehören die Analyse der Profile von Phytohormonen, Kohlenhydraten, Aminosäuren, und Phenolika zu verschiedenen Zeitpunkten der Infektion mit den RNA und DNA-Viren. Diese wurden beeinflusst durch die differentielle regulierten enzymatischen Aktivitäten entlang der Salicylat-, Jasmonat- und Chorismat-Biosynthese, der Glykolyse, Tricarbonsäure und Pentose-Phosphat-Umsetzung, der Photosynthese und Photorespiration, des Transportes und der Aminosäure sowie Fettsäure-Biosynthese. Wir berechneten die Umverteilung des metabolischen Flusses unter Berücksichtigung einer ansteigenden Beeinflussung von Enzymen in den verschiedeneren Infektionsstadien, die von Prä-Symptomen zur Infektionsstabilität reichen. Zusammengefasst beinhaltet unsere Reverse-Engineering-Studie die Generierung von experimentellen Daten und deren Modellierung mittels vergleichender und integrierter Systembiologie zum Einblick in das Modell-Pflanzen-Virus-Interaktionssystem. Wir lösten die Interaktion zwischen Transkriptom-Modifikation, Metabolitenmodulation und die Umverteilung des metabolischen Flusses während des kompatiblen Infektionsprozesses auf. Das Ergebnis zeigt die globalen Veränderungen in einem anfälligen Wirt auf, sowie die Korrelation zwischen Symptomschwere und der Stärke dieser Veränderungen. Darüber hinaus identifizieren wir im Detail die entsprechenden allgemeinen und spezifischen Reaktionen auf RNA und DNA-Viren in den verschiedenen Stadien der Infektion. Zusammenfassend lässt sich feststellen, dass die Erkenntnisse aus dieser Studie die Notwendigkeit aufzeigen, den zeitlichen Ablauf bei einer Pflanzenschutzbehandlung zu berücksichtigen, welche die pflanzliche Abwehr gegen eine Virusinfektion stark beeinflusst; und insgesamt zu einer effizienteren oder kombinierten Anwendung gegen ein breiteres Spektrum von Pflanzenpathogenen führen könnte. KW - RNA-seq KW - virus KW - next generation sequencing KW - transcriptome KW - fluxosome KW - metabolite profiling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153412 N1 - I also provided some supplementary data in digital version, which are available on-request from the dean's office. ER - TY - JOUR A1 - Abda, Ebrahim M. A1 - Krysciak, Dagmar A1 - Krohn-Molt, Ines A1 - Mamat, Uwe A1 - Schmeisser, Christel A1 - Förstner, Konrad U. A1 - Schaible, Ulrich E. A1 - Kohi, Thomas A. A1 - Nieman, Stefan A1 - Streit, Wolfgang R. T1 - Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression JF - Frontiers in Microbiology N2 - Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE. KW - xanthomonas maltophilia KW - gram-negative bacteria KW - RNA-seq KW - pseudomas aeruginosa KW - antibiotic resistance KW - colony morphotypes KW - beta-lactamases KW - K279a KW - Stenotrophomonas maltophilia KW - phenotypic heterogeneity KW - persister cells KW - streptococcus pneumoniae KW - nosocomial pathogen KW - membrane vesicles KW - sinorhizobium fredii NGR234 KW - red fluorescent protein KW - escherichia coli Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136446 VL - 6 IS - 1373 ER - TY - JOUR A1 - Michaux, Charlotte A1 - Hansen, Elisabeth E. A1 - Jenniches, Laura A1 - Gerovac, Milan A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium JF - Frontiers in Cellular and Infection Microbiology N2 - Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse. KW - transcription start sites KW - RNA-seq KW - sRNA atlas KW - Gram-positive bacteria KW - post-transcriptional regulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217947 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Venturini, Elisa A1 - Sellin, Mikael E. A1 - Förstner, Konrad U. A1 - Hardt, Wolf-Dietrich A1 - Vogel, Jörg T1 - The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium JF - mBio N2 - FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked “third domain” of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria. KW - Hfq KW - noncoding RNA KW - ProQ KW - RNA-seq KW - bacterial pathogen KW - posttranscriptional control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177722 VL - 10 IS - 1 ER - TY - JOUR A1 - Bischler, Thorsten A1 - Kopf, Matthias A1 - Voss, Bjoern T1 - Transcript mapping based on dRNA-seq data JF - BMC Bioinformatics N2 - Background: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. Results: We present RNASEG, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. Conclusions: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics. KW - transcriptional start site KW - dynamic programming KW - RNA-seq KW - differential KW - segmentation KW - transcriptional uni KW - transcriptome KW - reveals KW - model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116663 SN - 1471-2105 VL - 15 IS - 122 ER - TY - JOUR A1 - Pernitzsch, Sandy R. A1 - Sharma, Cynthia M. T1 - Transcriptome Complexity and Riboregulation in the Human Pathogen Helicobacter pylori KW - Medizin KW - RNA-seq KW - sRNA KW - Helicobacterpylori KW - post-transcriptionalregulation KW - transcriptomeanalysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75096 ER -