TY - THES A1 - Lichter, Katharina T1 - Die Ultrastruktur von Aktiven Zonen in hippocampalen Moosfaserboutons T1 - The ultrastructure of active zones in hippocampal mossy fiber boutons N2 - In nervous systems, synapses precisely orchestrate information transfer and memory formation. Active zones (AZ) are specialized subcellular compartments at the presynaptic mesoscale which process synaptic transmission on an ultrastructural level. The AZ cytomatrix including the essential scaffold protein Rab3 interacting molecule (RIM) enables exocytosis of synaptic vesicles. A deficiency of the locally most abundant protein isoform RIM1α diminishes long-term potentiation in a complex central mammalian synapse – the connection of hippocampal mossy fiber boutons (MFB) to cornu ammonis (CA)3 pyramidal neurons. Behaviourally, these mice present with learning impairment. The present MD thesis addresses the so far unknown three-dimensional (3D) AZ ultrastructure of MFBs in acute hippocampal slices of wild-type and RIM1α-/- mice. In a first set of experiments, a standardized protocol for near-to-native synaptic tissue preparation at MFBs using high-pressure freezing and freeze substitution and 3D modelling using electron tomography was developed and established. Based on the excellent preservation of synaptic tissue using this protocol, the AZ ultrastructure in both genotypes was quantified in detail up to an individual docked synaptic vesicle using custom-written programming scripts. The experiments demonstrate that deficiency of RIM1α leads to multidimensional alter-ation of AZ 3D ultrastructure and synaptic vesicle pools in MFBs. (Tightly) docked synaptic vesicles – ultrastructural correlates of the readily releasable pool – are reduced, decentralized, and structurally modified, whereas the more distant vesicle pool clusters more densely above larger and more heterogenous AZ surfaces with higher synaptic clefts. The present thesis contributes to a more comprehensive understanding regarding the role of RIM1α for (tight) vesicle docking and organization at MFBs. Furthermore, the precise 3D ultrastructural analysis of MFB AZs in this thesis provides the necessary mor-phological basis for further studies to correlate synaptic ultrastructure with presynaptic plasticity and memory dysfunction in RIM1α-/- mice using advanced electrophysiological and behavioral techniques. N2 - In Nervensystemen bedürfen Informationsweitergabe und Gedächtnisformation eines präzisen Zusammenspiels von Synapsen in Zeit und Raum. Synaptische Transmission basiert strukturell auf mesoskopischen cytosolischen Kompartimenten an der präsynaptischen Membran, sogenannten Aktiven Zonen (AZ). Ihre Cytomatrix, bestehend aus zentralen Gerüstproteinen wie Rab3 interacting molecule (RIM), ermöglicht eine schnelle Freisetzung synaptischer Vesikel. Die Defizienz der lokal häufigsten Isoform RIM1α resultiert an einer komplexen zentralen Säugersynapse, die des hippocampalen Moosfaserboutons (MFB) zu im Cornu ammonis (CA)3 befindlichen Pyramidalzellen, in einer dezimierten Langzeitplastizität. Auf Verhaltensebene zeigen diese Mäuse eine reduzierte Lernfähigkeit. Die vorliegende Dissertation widmet sich grundlegend der bisher unbekannten dreidimensionalen (3D) AZ-Ultrastruktur des MFB in akuten Hippocampusschnitten der adulten Wildtyp- und RIM1α-Knock-Out-Maus (RIM1α\(^{-/-}\)). In einer methodischen Entwicklungsphase wurde ein neuartiges, anspruchsvolles Protokoll der nahezu artefaktfreien (near to native) Synapsenpräparation am MFB mittels Hochdruckgefrierung und Gefriersubstitution sowie der 3D-Modellierung mittels Elektronentomographie etabliert. In einer zweiten Experimentier- und Analysephase ermöglichte die hochwertige synaptische Gewebeerhaltung in beiden Genotypen eine standardisierte, auf Programmierskripten basierte Quantifizierung der AZ-Ultrastruktur bis auf die Ebene eines individuell gedockten synaptischen Vesikels. Dieser Dissertation gelingt der Nachweis, dass eine Defizienz von RIM1α zu einer multidimensionalen ultrastrukturellen Veränderung der AZ und ihres Vesikelpools am MFB führt. Neben einer Reduktion, Dezentralisierung und strukturellen Veränderung (eng) gedockter Vesikel – der ultrastrukturellen Messgrößen von unmittelbar freisetzungsfähigen Vesikeln – verdichtet sich der distaler lokalisierte Vesikelpool auf zugleich größeren, heterogenen AZ-Flächen mit erweitertem synaptischem Spalt. Vorliegende Untersuchungen tragen zum Verständnisgewinn über eine zentrale Rolle von RIM1α für das Docking und die Organisation von Vesikeln der AZ im MFB bei. Darüber hinaus stellen die präzisen ultrastrukturellen Analysen eine morphologische Grundlage für weiterführende Studien mit Hilfe modernster Techniken dar, beispielsweise über die Auswirkungen der geänderten RIM1α\(^{-/-}\) AZ-Ultrastruktur auf die präsynaptische Plastizität sowie in Korrelation zum Gedächtnis und Lernen der Tiere. KW - Hippocampus KW - Neurowissenschaften KW - Exzitatorische Synapse KW - Synaptische Transmission KW - Synaptische Vesikel KW - active zone KW - presynaptic KW - mossy fiber synapse KW - RIM1α KW - CA3 KW - high-pressure freezing/freeze substitution KW - electron tomography KW - acute brain slices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303126 ER - TY - JOUR A1 - Lichter, Katharina A1 - Paul, Mila Marie A1 - Pauli, Martin A1 - Schoch, Susanne A1 - Kollmannsberger, Philip A1 - Stigloher, Christian A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse JF - Cell Reports N2 - Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. KW - active zone KW - acute brain slices KW - CA3 KW - electron tomography KW - high-pressure freezing KW - hippocampal mossy fiber bouton KW - RIM1α KW - SV pool KW - synaptic ultrastructure KW - presynaptic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300913 VL - 40 IS - 12 ER - TY - THES A1 - Weber, Tanja T1 - Untersuchung des Einflusses verschiedener Lebenserfahrungen und unterschiedlicher Serotoninhomöostase auf die Neuromorphologie von Pyramidenzellen der CA3-Region des Hippocampus in Mäusen T1 - Investigation of the influence of different life histories and varying serotonin homeostasis on the neuromorphology of pyramidal cells in hippocampal Cornu ammonis sector 3 in mice N2 - Chronischer Stress hat negative Folgen, die sich im Verhalten und auf neuronaler Ebene äußern können. Als besonders stressempfindlich gelten die Neurone der dritten Region des hippocampalen Ammonshorns CA3. Sie reagieren auch im bereits ausgereiften Zustand noch sehr sensibel auf äußere Einflüsse, was als neuronale Plastizität bezeichnet wird. Sie erfahren unter anderem durch Stress und Serotonin morphologische und funktionelle Veränderungen. Serotonin-Transporter wahren das Serotonin-Gleichgewicht, indem sie dessen Wirkung schließlich durch Wiederaufnahme in die Zellen beenden. Polymorphismen, also verschiedene Gen-Varianten, bedingen Unterschiede in der Zahl der verfügbaren Transporter. Dieses Wechselspiel zwischen Gen-Varianten des Serotonin-Transporters und Stress wurde an Serotonin-Transporter-Knockout-Mäusen untersucht. Einige Mäuse erfuhren bereits früh im Leben Stress, der entweder anhielt oder im späteren Leben positiven Erfahrungen wich; weitere Mäuse hingegen machten in frühen Lebensabschnitten positive Erfahrungen, die sich später entweder fortsetzten oder durch Stresserfahrungen ersetzt wurden. Nach Durchführung von Verhaltenstests wurde zudem in deren Golgi-imprägnierten Gehirnen die Morphologie der Apikaldendriten von CA3-Kurzschaft-Pyramidenzellen lichtmikroskopisch untersucht und in 3D-Computermodellen abgebildet. Aufgrund regionaler Eigenheiten innerhalb von CA3 wurden diese Neurone verschiedenen Subpopulationen zugeordnet. Tatsächlich konnten mithilfe der Kombination aus vier verschiedenen Lebensgeschichten und drei unterschiedlichen Serotonin-Transporter-Genotypen Unterschiede in der Morphologie der CA3-Pyramidenzellen zwischen den einzelnen Gruppen festgestellt werden. Ohne Stresserleben zeigten sich die Neurone meist signifikant verzweigter; nach Stresserleben zeigten sich, zumindest in einer bestimmten Subpopulation, signifikante Verminderungen der Spines. Mäuse mit zwei oder einem wildtypischen Serotonin-Transporter-Allel und ausschließlich späten aversiven Erfahrungen hatten signifikant längere Apikaldendriten als die Referenz mit zwei wildtypischen Allelen und ohne Stresserfahrung; homozygot Serotonin-Transporter-defiziente Mäuse der gleichen Lebensgeschichte hatten zur Referenz signifikant verkürzte Apikaldendriten. Diese Ergebnisse lassen vermuten, dass Stress in Verbindung mit genetisch bedingt geringen Mengen des Serotonin-Transporters durchaus eine erhöhte Vulnerabilität für psychische Erkrankungen bedingen könnte, aber dass ausschließlich späte Stresserfahrungen bei höheren Mengen des Serotonin-Transporters auch protektiv wirken könnten. N2 - Chronic stress has a negative impact on behavior and neuronal networks. The neurons of Cornu ammonis sector 3 (CA3) of the hippocampus are shown to be very susceptible to stress. Even when mature, they still react sensitively to their environment, which is called neuronal plasticity. Stress and serotonin tend to influence the neurons morphologically as well as functionally. Serotonin transporters preserve the serotonin homeostasis by terminating the serotonergic effects on respective receptors through reuptake into the surrounding cells. Polymorphisms, several variants of the human serotonin transporter gene, account for differences in the numbers of available serotonin transporters. This interplay between variants of the serotonin transporter gene and stress has been investigated by using the animal model of serotonin transporter knockout mice. Life history of some of these mice started with stressful events that either persisted or was replaced by positive experiences in their later life; the other mice had a pleasant early life that in their late phase of life either went on or was interrupted and henceforth contained stressful incidents. Behavioral tests took place. Afterwards, the Golgi impregnated mouse brains were light microscopically studied for the morphology of the apical dendrites of CA3 short shaft pyramidal cells, which were then transferred into digital 3D models. Due to regional differences in CA3 associated with a large variance in the morphology of these neurons located there, investigated neurons were subdivided into various subpopulations. With the combination of four different life histories and three different serotonin transporter genotypes, differences in the morphology of the CA3 pyramidal cells between the individual groups could be determined. Without the experience of stress, the neurons mostly had significantly more nodes; after stress, the spines were shown to be significantly reduced in at least one of the subpopulations. Mice with two or one wildtype serotonin transporter allele and experiencing only late aversive events had significantly longer apical dendrites than the reference with two wildtype alleles and experiencing no stress at all; homozygous serotonin transporter knockout mice of the same life history had significantly shorter apical dendrites compared to the reference. According to these findings, it can be supposed that stress in conjunction with genetically caused low amounts of the serotonin transporter can indeed increase the vulnerability for psychological disorders but that only late experiences of stress in combination with higher amounts of the serotonin transporter could also have a protective effect. KW - Ammonshorn KW - Hippocampus KW - Stress KW - Angst KW - Serotoninstoffwechsel KW - Pyramidenzelle KW - CA3 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283542 ER -