TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Wech, Tobias T1 - Compressed Sensing in der funktionellen kardialen Magnetresonanztomographie T1 - Compressed sensing in functional cardiac magnetic resonance imaging N2 - Die MRT des Herzens wird aufgrund hoher Reproduzierbarkeit und geringer Variabilität als Referenzstandard für die Bestimmung der kardialen Funktion betrachtet. Auch in der präklinischen Forschung bietet die MRT eine ausgezeichnete Charakterisierung der kardialen Funktion und ermöglicht eine exzellente Analyse modellierter Krankheitsbilder. In beiden Fällen besteht jedoch weiterhin Optimierungsbedarf. Die klinische Herz-MRT stellt ein aufwendiges Verfahren mit relativ langer Messzeit dar und ist dadurch mit hohen Untersuchungskosten verbunden. In der präklinischen Kleintierbildgebung müssen zum Erreichen der notwendigen höheren Orts- und Zeitauflösung ebenfalls lange Aufnahmezeiten in Kauf genommen werden. Um die kardiale MRT dort routinemäßig in großen Studienkollektiven anwenden zu können, ist eine schnellere Bildgebung essentiell. Neben einer Verbesserung der Tomographen-Hardware und der Optimierung von Bildgebungssequenzen standen im letzten Jahrzehnt vermehrt informationstheoretische Ansätze zur Beschleunigung der MR-Datenakquisition im Fokus der Entwicklung. Während zu Beginn des Jahrtausends die Parallele Bildgebung (PI) einen Forschungsschwerpunkt repräsentierte, spielte sich in den letzten fünf Jahren vermehrt die von Donoho und Candès eingeführte Compressed Sensing (CS) Theorie in den Vordergrund. Diese ermöglicht eine Signalrekonstruktion aus unvollständig gemessenen Koeffizienten einer linearen Messung (z.B. Fouriermessung) unter Ausnutzung der Sparsität des Signals in einer beliebigen Transformationsbasis. Da sich die MRT hervorragend für den Einsatz von CS eignet, wurde die Technik in der Forschung bereits vielfach angewendet. Die zur Rekonstruktion unterabgetasteter Aufnahmen nötigen CS-Algorithmen haben jedoch eine signifikante Veränderung des Bildgebungsprozesses der MRT zur Folge. Konnte dieser zuvor in guter Näherung als linear und stationär betrachtet werden, so repräsentiert die CS-Rekonstruktion eine nichtlineare und nichtstationäre Transformation. Objektinformation wird nicht mehr ortsunabhängig und proportional zur Intensität in die Abbildung transportiert. Das Bild ist viel mehr das Ergebnis eines Optimierungsprozesses, der sowohl die Konsistenz gegenüber der unterabgetasteten Messung als auch die Sparsität des Signals maximiert. Der erste Teil dieser Dissertation beschreibt eine Methode, die eine objektive Einschätzung der Bildqualität CS-rekonstruierter MR-Bilder ermöglicht. Die CS-Beschleunigung verspricht eine Verkürzung der Messzeit ohne Verlust an Bildqualität, wobei letztere bisher größtenteils qualitativ bzw. quantitativ nur unzureichend beurteilt wurde. Konnte der Bildgebungsprozess der klassischen MRT (linear und stationär) durch die Bestimmung einer Punktspreizfunktion (PSF) robust und effektiv validiert und optimiert werden, erlauben die CS-Algorithmen aufgrund ihres nichtlinearen und nichtstationären Verhaltens ohne Weiteres keine äquivalente Analyse. Um dennoch eine entsprechende Evaluierung des CS-Bildgebungsprozesses zu ermöglichen, wurde die Anwendung einer lokalen Punktspreizfunktion (LPSF) für den in der Folge verwendeten Iterative Soft Thresholding Algorithmus untersucht. Die LPSF berücksichtigt die Ortsabhängigkeit der CS-Rekonstruktion und muss daher für jeden Ort (Pixel) eines Bildes bestimmt werden. Darüber hinaus wurde die LPSF im linearen Bereich der CS-Transformation ermittelt. Dazu wurde das zu bewertende Bild nach Anwenden einer kleinen lokalen Störung rekonstruiert. Die Breite des Hauptmaximums der LPSF wurde schließlich verwendet, um ortsaufgelöste Auflösungsstudien durchzuführen. Es wurde sowohl der Einfluss typischer Unterabtastschemata für CS als auch der Einsatz diskreter Gradienten zur Sparsifizierung eines Phantombildes untersucht. Anschließend wurde die Prozedur zur Bestimmung der räumlichen und zeitlichen Auflösung in der Herzbildgebung getestet. In allen Beispielen ermöglichte das vorgeschlagene Verfahren eine solide und objektive Analyse der Bildauflösung CS-rekonstruierter Aufnahmen. Wurde zuvor meist ausschließlich auf Vergleiche mit einer vollständig abgetasteten Referenz zur Qualitätsbeurteilung zurückgegriffen, so stellt die vorgestellte Auflösungsbestimmung einen Schritt in Richtung einer standardisierten Bildanalyse bei der Verwendung der Beschleunigung mittels CS dar. Die Analyse der Abtastmuster zeigte, dass auch bei der Anwendung von CS die Berücksichtigung der nominell höchsten Frequenzen k_max unerlässlich ist. Frühere Publikationen schlagen Abtastfolgen mit einer teils starken Gewichtung der Messpunkte zum k-Raum-Zentrum hin vor. Die Ergebnisse der vorliegenden Arbeit relativieren ein derartiges Vorgehen, da zumindest bei den durchgeführten Untersuchungen ein Auflösungsverlust bei analoger Vorgehensweise zu verzeichnen war. Ebenso zeigten sich dynamische Aufnahmen, die unter Verwendung des x-f-Raums als sparse Basis rekonstruiert wurden, durchaus anfällig für zeitliches Blurring. Dieses resultiert aus der Unterdrückung hoher zeitlicher Frequenzen und konnte durch die ortsaufgelösten Auflösungskarten sichtbar gemacht werden. Neben der Auflösung ist für eine umfassende Analyse der Bildqualität auch die Untersuchung potentieller Aliasing-Artefakte sowie des Signal-zu-Rausch-Verhältnisses (SNR) notwendig. Während Aliasing mit Hilfe der Einträge der LPSF außerhalb des Hauptmaximums untersucht werden kann, wurde in Kap. 5 eine Modifikation der Multi-Replika-Methode von Robson et al. zur Rauschanalyse bei Verwendung nichtlinearer Algorithmen vorgestellt. Unter Einbeziehung aller genannten Qualitätsparameter ist eine robuste Bewertung der Bildqualität auch bei einer Verwendung von CS möglich. Die differenzierte Evaluierung ebnet den Weg hin zu einem objektiven Vergleich neuer Entwicklungen mit bisherigen Standard-Techniken und kann dadurch den Einzug von CS in die klinische Anwendung vorantreiben. Nach den theoretischen Betrachtungen der Bildqualität behandelt die Dissertation die erstmalige Anwendung von CS zur Beschleunigung der funktionellen Herzdiagnostik in der präklinischen MR-Kleintierbildgebung. Diese Studien wurden in Zusammenarbeit mit der British Heart Foundation Experimental Magnetic Resonance Unit (BMRU) der University of Oxford durchgeführt. Die Algorithmen für eine Beschleunigung mittels der CS-Theorie wurden anhand der dort am 9,4T Tomographen gemessenen (unterabgetasteten) Datensätze entwickelt und optimiert. Zunächst wurde eine Beschleunigung ausschließlich mittels CS untersucht. Dazu wurde die segmentierte, EKG- und Atemgetriggerte kartesische Cine-Aufnahme in Phasenkodierrichtung unterabgetastet und mittels CS rekonstruiert. Die sparse Darstellung wurde durch Ermitteln zeitlicher Differenzbilder für jede Herzphase erhalten. Durch Variation der Abtastmuster in der zeitlichen Dimension konnte ein vollständig abgetastetes zeitliches Mittelbild bestimmt werden, das anschließend von jedem einzelnen Herzphasenbild subtrahiert wurde. In einer Validierungsphase wurden an der Maus vollständig aufgenommene Cine-Akquisitionen retrospektiv unterabgetastet, um die maximal mögliche Beschleunigung mittels CS zu ermitteln. Es wurden u.a. funktionelle Herz-Parameter für jede Gruppe des jeweiligen Beschleunigungsfaktors bestimmt und mittels einer statistischen Analyse verglichen. Die Gesamtheit aller Ergebnisse zeigte die Möglichkeit einer dreifachen Beschleunigung ohne eine Degradierung der Genauigkeit der Methode auf. Die ermittelte Maximalbeschleunigung wurde in einer unterabgetastet gemessenen Bilderserie mit anschließender CS-Rekonstruktion validiert. Die Abtastschemata wurden dazu mit Hilfe der Transformations-Punktspreizfunktion weiter optimiert. In einer Erweiterung der Studie wurde zum Zweck einer noch höheren Beschleunigung die CS-Technik mit der PI kombiniert. Erneut fand eine Unterabtastung der Phasenkodierrichtung einer kartesischen Trajektorie statt. Die Messungen erfolgten mit einer 8-Kanal-Mäusespule an einem 9,4T Tomographen. Um das Potential beider Beschleunigungstechniken auszunutzen, wurden die Methoden CS und PI in serieller Weise implementiert. Für die PI-Beschleunigung wurde der vollständig abgetastete k-Raum zunächst gleichmäßig unterabgetastet. Auf dem resultierenden Untergitter wurde zusätzlich eine Unterabtastung nach Pseudo-Zufallszahlen durchgeführt, um eine Beschleunigung mittels CS zu ermöglichen. Die entwickelte Rekonstruktion erfolgte ebenfalls seriell. Zunächst wurde mittels CS das äquidistante Untergitter rekonstruiert, um anschließend mittels GRAPPA die noch fehlenden Daten zu berechnen. Um eine zusätzliche Messung zur Kalibrierung der GRAPPA-Faktoren zu umgehen, wurde das äquidistant unterabgetastete Untergitter von Herzphase zu Herzphase um je einen Phasenkodierschritt weitergeschoben. Dieses Vorgehen erlaubt die Ermittlung eines vollständig abgetasteten k-Raums mit einer geringeren zeitlichen Auflösung, der die notwendige Bestimmung der Wichtungsfaktoren ermöglicht. Folgende Kombinationen von Beschleunigungsfaktoren wurden mittels retrospektiver Unterabtastung eines vollständig aufgenommenen Datensatzes untersucht: R_CS x R_PI = 2 x 2, 2 x 3, 3 x 2 und 3 x 3. Die Analyse des Bildrauschens, des systematischen Fehlers und der Auflösung führte zu dem Schluss, dass eine sechsfache Beschleunigung mit Hilfe der hybriden Rekonstruktionstechnik möglich ist. Während mit steigender CS-Beschleunigung der systematische Fehler leicht anstieg, führte ein höherer PI-Beschleunigungsfaktor zu einer leichten Verstärkung des statistischen Fehlers. Der statistische Fehler zeigte jedoch ebenfalls eine Verringerung bei steigender Beschleunigung mittels CS. Die Fehler waren allerdings stets auf einem Niveau, das durchaus auch Beschleunigungen bis R_CS x R_PI =3 x 3 zulässt. Die LPSF-Analyse zeigte einen Verlust der räumlichen Auflösung von ca. 50 % bei R=6 sowie einen mittleren Verlust von 64 % bei R=9. Offensichtlich ging die ebenfalls beobachtete Minimierung des Bildrauschens durch den CS-Algorithmus im Falle der relativ stark verrauschten Kleintieraufnahmen zu Lasten der Bildauflösung. Die mit zunehmender Beschleunigung stärker geblurrten Grenzen zwischen Blutpool und Myokardgewebe erschweren die Segmentierung und stellen eine mögliche Fehlerquelle dar. Unter Beachtung aller Ergebnisse ist eine sechsfache Beschleunigung (R_CS x R_PI = 2 x 3, 3 x 2) vertretbar. Die Hinzunahme der PI ermöglicht somit im Vergleich zur alleinigen Verwendung von CS eine weitere Beschleunigung um einen Faktor von zwei. Zusammenfassend ermöglicht der Einsatz von CS in der präklinischen funktionellen Herzbildgebung am Kleintier eine deutliche Reduktion der Messzeit. Bereits ohne Vorhandensein von Mehrkanalspulen kann die notwendige Datenmenge ohne signifikante Beeinflussung der Messergebnisse auf ein Drittel reduziert werden. Ist der Einsatz von Spulenarrays möglich, kann die mit PI mögliche dreifache Beschleunigung um einen weiteren Faktor zwei mittels CS auf R=6 erweitert werden. Dementsprechend kann CS einen wesentlichen Beitrag dazu leisten, dass das Potential Herz-MRT am Kleintier in großen Studienkollektiven effektiver abgerufen werden kann. Im letzten Teil der Arbeit wurde eine Technik für die funktionelle klinische MR-Herzbildgebung entwickelt. Hier wurde eine Beschleunigung mittels CS verwendet, um die Aufnahme des gesamten Herzens innerhalb eines Atemstillstandes des Patienten zu ermöglichen. Bei der derzeitigen Standardmethode werden üblicherweise 10-15 2D-Schichten des Herzens akquiriert, wobei jede einzelne Aufnahme einen Atemstillstand des Patienten erfordert. Für die notwendige Beschleunigung wurde eine unterabgetastete 3D-Trajektorie verwendet. Durch Phasenkodierung einer Richtung sowie radiale Projektionen in den beiden anderen Dimensionen konnte eine effiziente Aufnahme unterhalb des Nyquist-Kriteriums erreicht werden. Die Sparsifizierung erfolgte, wie bereits in der beschriebenen präklinischen Anwendung, durch die Subtraktion eines zeitlichen Mittelbildes. In einer Simulation anhand eines retrospektiv unterabgetasteten Datensatzes konnte die theoretische Funktionalität der Rekonstruktionstechnik bei einer Beschleunigung bezüglich der Nyquist-Abtastung von R ~ 10 validiert werden. Die Unterschiede zum vollständig abgetasteten Datensatz waren vernachlässigbar klein, so dass die vorgeschlagene Abtastfolge am Tomographen implementiert wurde. Mit dieser Sequenz wurde anschließend eine funktionelle Bilderserie an einem gesunden Probanden mit vollständiger Herzabdeckung innerhalb eines Atemstopps aufgenommen. Fehlende Daten wurden analog zur Simulation mit Hilfe des vorgeschlagenen Algorithmus rekonstruiert. Im Vergleich zur Simulation ergaben sich aufgrund des Schichtprofils der 3D-Slab-Anregung zusätzliche Aliasing-Artefakte in den äußeren Partitionen. Die für radiale Aufnahmen typischen Streifenartefakte waren im rekonstruierten Bild, wenn auch mit sehr geringer Amplitude, noch erkennbar. Davon abgesehen wurde die Dynamik jedoch über das gesamte Herz hinweg gut dargestellt. Der hohe Kontrast zwischen Myokard und Blutpool bescheinigt den Bildern eine hervorragende Eignung für die Bestimmung funktioneller Herzparameter mittels einer Segmentierung. Zusammengefasst erlaubt die entwickelte Methode aufgrund der drastischen Reduktion der notwendigen Atemstopps des Patienten einen deutlich erhöhten Patientenkomfort sowie einen schnelleren Durchsatz aufgrund der verkürzten Messzeit. N2 - Because of its high reproducibility and its low variability, magnetic resonance imaging (MRI) of the heart is considered the gold-standard for assessing the cardiac function. In preclinical research, magnetic resonance imaging equally provides an accurate characterization of the cardiac function and enables an excellent analysis of modeled diseases. However, there is still a need for improvement in both applications. Clinical cardiac MRI represents a sophisticated procedure featuring long scan times. This renders the examination comparatively expensive. In preclinical imaging of small animals, long scan times have to be accepted to obtain the required high spatial and temporal resolution. Fast imaging is thus essential for an effective application of cardiac MRI in large collectives. Besides the improvement of the scanner hardware and the optimization of imaging sequences, research in the last decade concentrated on procedures to accelerate MR-data acquisition by exploiting information theory. While numerous publications were associated with parallel imaging (PI) at the beginning of this millennium, the compressed sensing theory (CS) recently gained more and more interest. The latter technique enables the reconstruction of signals from undersampled linear measurements (e.g. the Fourier basis) by exploiting the sparsity of the signal in any known transform domain. As MRI is perfectly qualified for an application of CS, a lot of publications already report on dedicated research. However, the algorithms needed for the reconstruction of undersampled data significantly alter the imaging process of MRI. Classical MRI could be assumed to be linear and stationary in a sufficiently good approximation. The introduction of CS into MRI means a change towards a non-linear and non-stationary transformation. Object information is no longer transferred into an image independently from its location and proportional to its intensity. The image is rather the result of an optimization process maximizing both the fidelity to measured data as well as the sparsity of the signal. The first chapter of this thesis describes a method to objectively evaluate the image quality of MR images reconstructed by CS algorithms. The acceleration with CS promises a reduction of scan time while preserving the image quality. The latter, however, has only been assessed qualitatively or in an insufficient quantitative manner. While classical (linear and stationary) MRI could be validated robustly and effectively by determining a point spread function (PSF), CS algorithms prohibit a corresponding analysis in an analogous manner due to their non-linear and non-stationary behavior. Therefore, the application of a local point spread function (LPSF) was investigated for the iterative soft thresholding (IST) algorithm used in this thesis, to enable a comparative evaluation for imaging systems including CS. The LPSF considers the local dependency of the CS algorithm and thus has to be determined in every location (pixel) of an image. In addition, the LPSF was defined in the linear part of the CS transformation. Small local perturbation on the image to be evaluated were reconstructed for this purpose. The width of the main lobe of the LPSF was used to perform spatially resolved studies on the resolution. The influence of typical undersampling schemes for CS as well as the usage of a discrete gradient transform for a further sparsification were investigated. Subsequently, the procedure was used to assess the spatial and temporal resolution in cardiac MRI. For all CS reconstructions performed in this work, the method allowed a solid and objective analysis of the image resolution. While up to now, comparisons to a fully sampled reference are widely used for a quality assessment, the proposed resolution evaluation represents a step towards a standardized analysis of images obtained by exploiting CS acceleration. The study on sampling schemes revealed, that also for CS accelerated acquisitions, the highest frequencies of the desired k-space have to be included. Former publications proposed undersampling patterns which partly featured a strong weight towards the center of k-space. The results of this thesis put these findings into perspective, as a loss in resolution has been observed for according approaches, at least for the simulations performed in this work. The dynamic acquisitions which were reconstructed exploiting x-f-sparsity proved to be prone to temporal blurring. This is substantiated by the suppression of high temporal frequencies and was analyzed by means of spatially resolved maps. Besides the resolution, an investigation of potential aliasing artifacts as well as the signal-to-noise-ratio (SNR) is essential for a comprehensive quality evaluation. While aliasing may also be investigated by means of the entries of the LPSF outside the main lobe, a modification of the multi-replica method proposed by Robson et al. was presented in chapter 5 to analyze the noise in CS reconstructed images. Taking into account all quality parameters, a robust evaluation of image quality is possible, even when CS is included in the imaging process. This allows a more objective comparison between new developments and present standard procedures and thus may aid the introduction of CS in clinical imaging. After the theoretical analysis on image quality, the next part of this thesis reports on the first application of CS to accelerate functional cardiac MRI of small animals. The studies were performed in cooperation with the British Heart Foundation Experimental Magnetic Resonance Unit (BMRU) of the University of Oxford. The algorithms needed for the CS acceleration were developed and optimized by means of the data acquired by the BMRU at their 9,4 T scanner.\\ An acceleration solely based on CS was investigated first. For this purpose, an ECG- and respiratory gated Cartesian cine acquisition was undersampled in phase encoding direction and reconstructed using CS. The dynamic time series was sparsified by determining temporal difference images for every time frame. A fully sampled temporal average image was obtained by varying the sampling pattern in the temporal dimension. Subsequently, this average image was subtracted from the images of individual heart phases, yielding the sparse temporal difference images. In the validation stage of the study, fully sampled cine acquisitions of mouse hearts were retrospectively undersampled in order to figure out the maximum possible CS acceleration. Cardiac functional parameters were determined for each group of a certain undersampling factor and compared by a statistical analysis. It was shown that a three-fold acceleration is possible without any degradation in the accuracy of the method. This undersampling factor was then validated in an accelerated measurement with a subsequent CS reconstruction. For this purpose, the sampling patterns were further optimized using the transform point spread function. In the subsequent chapter, the CS theory was combined with PI to further increase the acceleration. Again, the phase encoding direction of a Cartesian trajectory was undersampled. The acquisitions were performed using a 9,4 T scanner equipped with an 8 channel mouse coil. In order to exploit the potential of both techniques, CS and PI were combined in a serial manner. First, the k-space was equidistantly undersampled to enable the application of PI. An additional undersampling according to pseudo random numbers was then performed on the resulting sub-grid to allow an acceleration by CS. In consequence, the reconstruction was performed in a serial manner, too. CS was first applied to reconstruct the equidistantly undersampled sub-grid. GRAPPA was used subsequently to compute the still missing data. The equidistantly undersampled sub-grid was shifted from heart phase to heart phase in order to obtain a fully sampled low temporal resolution k-space for a calibration of the GRAPPA-weights. This procedure spares the acquisition time of a separate calibration scan. The following combinations were investigated by retrospectively undersampling a fully sampled cine dataset: R_CS x R_PI = 2 x 2, 2 x 3, 3 x 2 and 3 x 3. The analysis of the noise behavior, the systematic error and the resolution leads to the conclusion that a six-fold acceleration is possible using the proposed hybrid technique. While an increasing factor of the CS acceleration resulted in a slightly larger systematic error, a higher PI acceleration factor led to a slight noise enhancement. However, noise was suppressed for increasing CS acceleration at the same time. In summary, the deviations were at a level which allowed accelerations of up to R_CS x R_PI = 3 x 3. The determination of LPSFs showed a loss in spatial resolution of approximately 50% for a six-fold and up to 64% for nine-fold acceleration. Obviously, the observed suppression of noise was paid by a reduced image resolution for the comparatively noisy acquisitions in small animals. The increased blurring at the endocardial border impedes the segmentation and represents a possible source of error. Taking into consideration all results, a six-fold acceleration (R_CS x R_PI = 2 x 3, 3 x 2) seems reasonable. The additional usage of PI thus enables a further acceleration by a factor of 2 in comparison to an exclusive application of CS. In summary, CS enables a distinct reduction of scan time in preclinical functional cardiac MRI of small animals. Even if no phased-array-coils are available, the necessary amount of data can be reduced to one third without impairing the accuracy of left-ventricular volumes and mass measurements. For acquisitions performed with phased-array-coils, the three-fold acceleration by PI can be extended by an additional two-fold CS acceleration to a joint factor of R=6. Therefore, CS may contribute to an effective application of cardiac MRI in small animals for large collectives. In the last part of the thesis, a modality for clinical functional MRI of the heart was developed. CS was used to enable the acquisition of the whole heart in a single breath-hold of the patient. The current method of choice usually acquires 10-15 2D-slices of the heart, while each measurement requires a separate breath-hold. An undersampled 3D-trajectory was used to reach the necessary acceleration. Phase-encoding in one direction and radial projections in the two remaining ones allowed for an effective acquisition below the Nyquist-criterion. The sparsification of the image series was achieved by subtracting a temporal average image as performed for the preclinical studies. The functionality of the reconstruction technique at an acceleration factor of R ~ 10 was validated in a simulation based on a retrospectively undersampled dataset. The differences between the CS reconstructed and the fully sampled dataset were negligible and thus, the proposed trajectory was implemented at the scanner. An image series depicting the cardiac function with coverage of the full heart was acquired in a single breath-hold of a healthy volunteer using this sequence. Data not covered by the trajectory were reconstructed by the algorithm developed in the validation stage. Due to the slice profile of the fast excitation pulses, additional aliasing artifacts were present in the outer partitions with respect to the images obtained in the simulation. Streaking artifacts of a low intensity were still visible. Apart from that, the dynamics of the heart were excellently captured. The high contrast between the blood pool and the myocardium perfectly qualifies the images for the assessment of cardiac functional parameters. Therefore, the method allows for a higher patient comfort and throughput compared to the gold standard by drastically reducing the amount of necessary breath-holds to a single one. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kardiale MR-Bildgebung KW - Compressed Sensing KW - magnetic resonance imaging KW - cardiac magnetic resonance imaging KW - compressed sensing KW - Signalregenerierung KW - NMR-Tomographie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77179 ER - TY - THES A1 - Grebe, Sören T1 - Diagnose der linksventrikulären Hypertrophie bei Hämodialyse-PatientInnen anhand von Echokardiographie und EKG im Vergleich zum CMRI T1 - Diagnosis and quantification of left ventricular mass by ecg and echocardiography compared to cardiac magnet resonance imaging in hemodialysis patients N2 - In der Gruppe der Hämodialyse-PatientInnen besteht ein deutlich erhöhtes Risiko an kardiovaskulären Ereignissen zu versterben. Korrespondierend hierzu weisen Hämodia-lyse-PatientInnen eine erhöhte Prävalenz an linksventrikulärer Hypertrophie (LVH) auf. Diese gilt als starker unabhängiger Risikofaktor für kardiovaskuläre Mortalität. Auf-grund der prognostischen Aussagekraft dient die Bewertung des linksventrikulären Massenindex (LVMI) sowie die Diagnose einer LVH vor allem in prospektiven Studien als ein bedeutendes Werkzeug zur Beurteilung des kardiovaskulären Risikos. Die Be-stimmung der LVH kann anhand von bildgebenden Verfahren (u.a. Echokardiographie, CMRI) oder dem EKG erfolgen. Die CMRI-Messung wird gegenwärtig als Goldstan-dard zur Messung der LVH betrachtet. Die 2D geführte M-mode-Methode der Echokardiographie zur Bestimmung der LVM zeichnet sich durch seine einfache und schnelle Durchführbarkeit aus und wird deshalb trotz präziserer Messverfahren wie dem 3D-Verfahren sowie diverser Einschränkungen weiterhin von der American Society of Echocardiography (ASE) als Screening-Methode und zur Untersuchung großer PatientInnenpopulationen empfohlen. Die empfohlene ASE-Formel überschätzt jedoch den LVMI nachweislich im Vergleich zum CMRI-Messverfahren. Die Überschätzung zeigte sich abhängig von der Höhe des LVMI. Es wird vermutet, dass die zunehmende Überschätzung Folge der geometrischen Grundan-nahmen ist, welche den LV vereinfachend als Ellipsoid mit konstantem L/D-Verhältnis annimmt. Dieses Verhältnis scheint sich jedoch bei zunehmender Herzgröße zu verän-dern, was wiederum zu einer Fehleinschätzung des LVMI führt. Die Teichholz (Th)-Formel korrigiert das L/D-Verhältnis mithilfe einer kurvilinearen Anpassung an den linksventrikulären Durchmesser und zeigte kürzlich in einer PatientInnengruppe mit Aor-tenstenose die geringste Tendenz der Überschätzung bei PatientInnen mit LVH. In der vorliegenden Studie wurden die echokardiographischen Formeln – ASE und Th – mit dem CMRI-Messverfahren verglichen. Beide Formeln zeigten eine deutliche Überschät-zung des LVMI. Die Th-Formel demonstrierte jedoch neben einer besseren Überein-stimmung zum CMRI, eine insgesamt geringere Überschätzung des LVMI sowie eine sukzessive Abnahme der Überschätzung mit zunehmendem LVMI. Zusammenfassend kann festgehalten werden, dass die Th-Formel der ASE-Formel in Bezug auf die Be-rechnung des LVMI bei Hämodialyse-PatientInnen insbesondere bei PatientInnen mit LVH überlegen ist. Weitere Studien sind jedoch erforderlich, um die Th-Formel in grö-ßeren Hämodialyse-PatientInnen-Kohorten mit höheren LVMI-Werten zu testen sowie um den prognostischen Wert der Th-Formel im Vergleich zur ASE-Formel zu ermitteln. Die klassischen EKG-Indices und -Scores zur Feststellung einer LVH wiesen, wie be-reits in anderen CMRI-Vergleichsstudien gezeigt, eine schlechte Sensitivität bei guter Spezifität auf. Aufgrund dessen verlor das EKG zunehmend an Bedeutung als Scree-ning-Untersuchung. In dieser Studie wurde der Versuch unternommen die Sensitivität durch zwei Lösungsansätze zu verbessern, einerseits durch die Kombination verschiede-ner EKG-Kriterien und andrerseits durch eine Adjustierung der EKG-Kriterien an den mittels Bioimpedanz gemessenen Fettmassenanteil. Die Kombination verschiedener EKG-Kriterien erzielte eine deutlich erhöhte Sensitivität von >70 %. Auch die Anpas-sung der EKG-Kriterien an den individuellen Fettmassenanteil könnte ein hilfreicher Lösungsansatz zur Verbesserung der Sensitivität bei Adipositas darstellen. N2 - Left ventricular hypertrophy (LVH) is highly prevalent in patients on hemodialysis. LVH, as measured by the left ventricular mass index (LVMI), is a strong predictor of cardiovascular disease (CVD). Consequently, a reliable and valid method to detect LVH is needed for both clinical and scientific implications. For the assessment of left ventricular mass (LVM), cardiac magnetic resonance imaging (CMR) has been established as the most accurate and reproducible method. However, given its limited availability and high cost, CMR is not practical for clinical use in large-scale clinical studies. In contrast, the two-dimensional (2D) targeted M-mode transthoracic echocardiography (TTE) and ecg is preferred in the clinical context because of its widespread availability, low cost, simple handling, and extensive evidence base. Nevertheless, echocardiographic linear measurement and LVM calculation by cube function formulas have their own limitations. The current recommended formula from the American Society of Echocardiography (ASE) is based on special geometric assumptions, which may become inaccurate in the presence of asymmetric hypertrophy, eccentric remodeling, or distortion of left ventricular (LV) geometry and may lead to an incremental overestimation of LVMI. Teichholz et al. designed a formula that includes a volume-correcting function in order to minimize the error inter alia in patients with LVH. A recent CMR study investigating patients with aortic stenosis demonstrated that the Teichholz (Th) formula had a lower tendency to overestimate the value within a population with increased LVMI. Here, we investigated the performance of two echocardiographic formulas, ASE and Th, in calculating LVMI in patients on hemodialysis. TTE and CMR data for 95 hemodialysis patients who participated in the MiREnDa trial were analyzed. The LVMI was calculated by two-dimensional (2D) TTE-guided M-mode measurements employing the American Societ y of Echocardiography (ASE) and Teichholz (Th) formulas, which were compared to the reference method, CMR. LVH was present in 44% of patients based on LVMI measured by CMR. LVMI measured by echocardiography correlated moderately with CMR, ASE: r = 0.44 (0.34–0.62); Th: r = 0.44 (0.32–0.62). Compared to CMR, both echocardiographic formulas overestimated LVMI (mean ΔLVMI (ASE-CMR): 19.5 ± 19.48 g/m2, p < 0.001; mean ΔLVMI (Th-CMR): 15.9 ± 15.89 g/m2, p < 0.001). We found greater LVMI overestimation in patients with LVH using the ASE formula compared to the Th formula. Stratification of patients into CMR LVMI quartiles showed a continuous decrease in ΔLVMI with increasing CMR LVMI quartiles for the Th formula (p < 0.001) but not for the ASE formula (p = 0.772). Bland-Altman analysis showed that the Th formula had a constant bias independent of LVMI. Both methods had good discrimination ability for the detection of LVH (ROC-AUC: 0.819 (0.737–0.901) and 0.808 (0.723–0.892) for Th and ASE, respectively). The ASE and Th formulas overestimate LVMI in hemodialysis patients. However, the overestimation is less with the Th formula, particularly with increasing LVMI. The results suggest that the Th formula should be preferred for measurement of LVMI in chronic hemodialysis patients. Shown in other CMRI comparative studies the ECG indices and scores for detecting LVH had poor sensitivity with good specificity. Because of this, ECG became increasingly less important as a screening method. To improve the sensitivity by two approaches, on the one hand by combining different ECG criteria and on the other hand by adjusting the ECG criteria to the fat mass measured by bioimpedance. The combination of different ECG criteria achieved a significantly increased sensitivity of >70 %. The adjustment of the ECG criteria to the individual fat mass could also be a helpful approach to improve the sensitivity in obesity. KW - Transthorakale Echokardiographie KW - Elektrokardiogramm KW - Linke Herzkammer KW - Kernspintomografie KW - Bioimpedanz KW - Echokardiographie KW - EKG KW - MRT KW - Bioimpedanz KW - Linksventrikuläre Hypertrophie KW - Linksventrikuläre Masse KW - Kombination EKG-Kriterien KW - Teicholz-Formel KW - Fettmassenanteil Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272115 ER - TY - THES A1 - Zeller, Mario T1 - Dichtegewichtete Magnetresonanz-Bildgebung mit Multi-Echo-Sequenzen T1 - Density Weighted Magnetic Resonance Imaging with Multi-Echo Sequences N2 - Das Signal-zu-Rausch-Verhältnis (SNR) stellt bei modernen Bildgebungstechniken in der Magnetresonanz-Tomographie heutzutage oftmals die entscheidende Limitation dar. Eine Verbesserung durch Modifikation der Hardware ist kostspielig und führt meistens zu einer Verstärkung anderer Probleme, wie zum Beispiel erhöhte Energiedeposition ins Gewebe. Im Gegensatz dazu ist Dichtegewichtung eine Methode, die eine SNR-Erhöhung durch Modifikation der Aufnahmetechnik ermöglicht. In der MR-Bildgebung erfolgt oftmals eine retrospektive Filterung des aufgenommenen Signalverlaufs, beispielsweise zur Artefaktreduktion. Damit einhergehend findet eine Veränderung der Modulationstransferfunktion (MTF) bzw. ihrer Fouriertransformierten, der räumlichen Antwortfunktion (SRF), statt. Optimales SNR wird nach dem Matched Filter-Theorem erzielt, wenn die nachträgliche Filterung dem aufgenommenen Signalverlauf proportional ist. Dies steht dem Ziel der Artefaktreduktion entgegen. Bei Dichtegewichtung steht durch nicht-kartesische Abtastung des k-Raums mit der k-Raum-Dichte ein zusätzlicher Freiheitsgrad zur Verfügung. Dieser ermöglicht es, im Falle eines konstanten Signalverlaufs eine gewünschte MTF ohne Filterung zu erreichen. Bei veränderlichem Signalverlauf kann ein SNR Matched Filter angewendet werden, dessen negative Einflüsse auf die MTF durch Dichtegewichtung kompensiert werden. Somit ermöglicht Dichtegewichtung eine vorgegebene MTF und gleichzeitig ein optimales SNR. In der vorliegenden Arbeit wurde Dichtegewichtung erstmals bei den schnellen Multi-Echo-Sequenzen Turbo-Spin-Echo und Echoplanar-Bildgebung (EPI) angewendet. Im Gegensatz zu bisherigen Implementierungen muss hier der Signalabfall durch T2- bzw. T2*-Relaxation berücksichtigt werden. Dies führt dazu, dass eine prospektiv berechnete dichtegewichtete Verteilung nur bei einer Relaxationszeit optimal ist. Bei Geweben mit abweichenden Relaxationszeiten können sich wie auch bei den kartesischen Varianten dieser Sequenzen Änderungen an SRF und SNR ergeben. Bei dichtegewichteter Turbo-Spin-Echo-Bildgebung des Gehirns konnte mit den gewählten Sequenzparametern ein SNR-Vorteil von 43 % gegenüber der kartesischen Variante erzielt werden. Die Akquisition wurde dabei auf die T2-Relaxationszeit von weißer Substanz optimiert. Da die meisten Gewebe im Gehirn eine ähnliche Relaxationszeit aufweisen, blieb der visuelle Gesamteindruck identisch zur kartesischen Bildgebung. Der SNR-Gewinn konnte in der dichtegewichteten Implementierung zur Messzeithalbierung genutzt werden. Dichtegewichtete EPI weist eine hohe Anfälligkeit für geometrische Verzerrungen, welche durch Inhomogenitäten des Hauptmagnetfeldes verursacht werden, auf. Die Verzerrungen konnten erfolgreich mit einer Conjugate Phase-Methode korrigiert werden. Dazu muss die räumliche Verteilung der Feldinhomogenitäten bekannt sein. Dazu ist zusätzlich zur eigentlichen EPI-Aufnahme die zeitaufwendige Aufnahme einer sogenannten Fieldmap erforderlich. Im Rahmen dieser Arbeit konnte eine Methode entwickelt werden, welche die zur Erlangung einer Fieldmap notwendige Aufnahmedauer auf wenige Sekunden reduziert. Bei dieser Art der Fieldmap-Aufnahme müssen jedoch durch Atmung hervorgerufene Effekte auf die Bildphase berücksichtigt werden. Die Fieldmap-Genauigkeit kann durch Aufnahme unter Atempause, Mittelung oder retrospektiver Phasenkorrektur erhöht werden. Für die gewählten EPI-Sequenzparameter wurde mit Dichtegewichtung gegenüber der kartesischen Variante ein SNR-Gewinn von 14 % erzielt. Anhand einer funktionellen MRT (fMRI)-Fingertapping-Studie konnte demonstriert werden, dass die SNR-Steigerung auch zu einer signifikant erhöhten Aktivierungsdetektion in Teilen der Hirnareale führt, die bei der Fingerbewegung involviert sind. Die Verwendung von zusätzlicher EPI-Phasenkorrektur und iterativer Optimierung der dichtegewichteten k-Raum-Abtastung führt zu weiteren Verbesserungen der dichtegewichteten Bildgebung mit Multi-Echo-Sequenzen. N2 - Magnetic resonance imaging (MRI) is often limited by the signal to noise ratio (SNR). In standard Cartesian acquisition methods, the SNR can be improved by applying a so-called matched filter to the acquired raw data, which correlates with the anticipated signal profile. Unfortunately, this filter changes the spatial response function (SRF), which characterizes the imaging properties of the imaging method, in an undesired way. For example, a matched filter often amplifies undesired image artifacts and is thus normally omitted. In contrast, filters which change the SRF are typically applied, e.g., for artifact reduction. These however do not provide an optimal SNR. Density weighting is a method which allows a desired SRF and an optimal SNR at the same time. This is achieved by introducing a new degree of freedom to the SRF; the density of the acquisition steps in k-space. In this work, density weighting was adapted to turbo spin echo (TSE) and echo planar imaging (EPI). In contrast to earlier implementations of density weighting, signal relaxation has to be taken into consideration with these multi-echo sequences. As a result, the desired SRF and SNR are only obtained for one prospectively determined relaxation time. For deviating relaxation times, changes in SRF and SNR may occur. In density weighted TSE brain imaging, an average SNR gain of 43 % over Cartesian imaging could be achieved for the chosen sequence parameters. The density weighted acquisition was optimized for the T2 relaxation time of white matter. Since the relaxation times of most other tissues in the brain did not significantly differ, the overall visual impression of density weighted and Cartesian images was identical. The achieved SNR gain could be used to halve the acquisition time of the density weighted implementation. Density weighted EPI is especially prone to geometric distortions caused by inhomogeneities of the main magnetic field. The distortions could be successfully corrected with a conjugate phase method. For these methods, a time-consuming acquisition of a so-called field map is typically required. A method could be developed which greatly reduces the field map acquisition time to a few seconds. It was found that phase changes caused by respiration influence the field map accuracy of this and similar methods. A significantly higher accuracy could be achieved by an acquisition under breath-hold or by retrospective phase correction or averaging. It was demonstrated in an fMRI group study that an average SNR gain of 14 % for density weighted EPI resulted in an increased detection power in the activated brain areas. First results involving additional EPI phase correction and iterative k-space sampling optimization demonstrate further improvements of density weighted imaging with multi-echo sequences. KW - Kernspintomografie KW - Störabstand KW - Dichtegewichtung KW - Echoplanar-Bildgebung KW - Turbo Spin Echo KW - B0-Korrektur KW - Density Weighting KW - Point Spread Function KW - Echo Planar Imaging KW - Turbo Spin Echo KW - B0 correction KW - Echo planar imaging KW - NMR-Tomographie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-84142 ER - TY - THES A1 - Scheler, Maximilian Heinrich Julius T1 - Die operative Versorgung des Thoraxmagens - Eine Langzeitanalyse von 2008-2015 T1 - Surgical treatment of giant hiatal hernias - a long-term analysis from 2008-2015 N2 - Der Thoraxmagen beschreibt eine zirkuläre Schwachstelle der phrenikoösophagealen Membran mit einer schrittweisen Dislozierung der Magenkardia und des Ösophagus nach mediastinal. Die Therapie des Thoraxmagens kann konservativ im Sinne des „watchful waiting“ oder operativ erfolgen. Aufgrund der möglichen Komplikationen wird die elektive Operation durch die amerikanischen Leitlinien empfohlen. Ein zentrales Problem der Hiatushernienchirurgie stellt die hohe Anzahl an Rezidiven dar. Ob die Gründe hierfür in der Zwerchfellrekonstruktion, Speiseröhrenlänge, Fundoplicatio oder Netzaugmentation liegen, wird nach wie vor kontrovers diskutiert. In dieser Arbeit wurde die operative Versorgung des Thoraxmagens von 124 Patienten des Universitätsklinikums Würzburg im Zeitraum von September 2008 bis Juni 2015 untersucht. Hierfür war neben den perioperativen Daten auch die Rezidiv- und Letalitätsrate von Relevanz. Das Patientenkollektiv wurde sowohl in Hinblick auf das Lebensalter als auch auf die verschiedenen Versorgungsarten analysiert. Um die postoperative Lebensqualität zu beurteilen, erfolgte die Patientenbefragung mit Hilfe eines Symptomfragebogens und dem Gastrointestinalen Lebensqualitätsindex nach Eypasch (GIQLI). Zusätzlich wurden 17 Patienten postoperativ mittels MRT untersucht, um eine optimierte MRT-Sequenz zur Beurteilung der Hiatusregion zu evaluieren. Im Vergleich der Altersgruppen zeigte sich trotz einer erhöhten Komorbiditätsrate bei dem Patientenkollektiv ≥ 75 Jahre (p=0,002) kein signifikanter Unterschied bei Betrachtung der intraoperativen Komplikationen. Die Rezidivrate lag unabhängig vom Alter bei 20,2% im Untersuchungszeitraum, jedoch konnte eine verminderte Rezidivrate bei Patienten mit U-Shape Versorgung (p=0,015) festgestellt werden. In der postoperativen Patientenbefragung zeigten sich 87,0% der Patienten, unabhängig vom Alter und der Versorgungsart, zufrieden mit dem Operationsergebnis und beschrieben ihren Zustand im Vergleich zu präoperativ als gebessert. Die Ergebnisse des GIQLI erbrachten in dem untersuchten Patientenkollektiv ein gegenüber der Allgemeinbevölkerung erniedrigten Wert mit 95,4 Punkten. Die optimierte MRT-Sequenz zeichnete sich durch eine hohe diagnostische Konfidenz bei guter Bildqualität, kurzer Untersuchungsdauer und gleichzeitig hoher Akzeptanz der Patienten gegenüber dieser Art der Diagnostik aus. Zusammenfassend stellt die operative Versorgung von Thoraxmägen, unabhängig des Patientenalters, eine sichere Therapieform dar, die zu einer hohen Patientenzufriedenheit führt. Die modifizierte MRT-Untersuchung hat sich als diagnostische Methode bewährt und stellt eine Alternative zu strahlenexponierenden oder von Seiten der Patienten weniger gut tolerierten Untersuchungsmodalitäten dar. N2 - Giant hiatal hernias occur due to a circular weak point of the phrenic esophageal membrane with a gradual dislocation of the gastric cardia and the esophagus in mediastinal direction. Therapy of these giant hiatal hernias can be approached conservative, in the sense of “watchful waiting”, or surgically. Due to the possible complications however, the American guidelines highly recommend elective surgery. A central problem in hiatal hernia surgery is the high number of recurrences. Whether this is due to the art of reconstruction of the diaphragm, the length of the esophagus, the fundoplication or the mesh augmentation is still a matter of controversy. In this thesis, the surgical treatments of 124 patients with giant hiatal hernias were examined at the University Hospital Würzburg from September 2008 to June 2015. In addition to the perioperative data, the recurrence- and mortality rates were also taken into consideration. The patient collective was analyzed in regard to age, as well as the various types of care. In order to assess the postoperative quality of life, the patient survey was conducted with the help of a symptom questionnaire and the gastrointestinal quality of life index according to Eypasch (GIQLI). Furthermore, to evaluate an optimized MRI sequence for assessing the hiatus region, 17 patients were examined postoperatively using MRI. When comparing the different groups of age it appeared, that even with an increased comorbidity rate in the age ≥ 75 (p=0,002), there was no significant difference in intraoperative complications. Regardless of age, the recurrence rate was 20.2% in the study period. However, a reduced recurrence rate was found in patients with U-shape restoration (p=0.015). In the postoperative patient survey, 87.0% of the patients, regardless of age and type of care, stated to be satisfied with the result of the operation and also described their condition as improved in comparison to their preoperatively status. The results of the GIQLI showed a lower value compared to the general population, with 95.4 points in the examined patient group. The optimized MRT sequence was characterized by a high diagnostic confidence with a good image quality, short examination times and high patient acceptance for this diagnostic method. In summary, the surgical treatment of giant hiatal hernias is a safe type of therapy that leads to a high level of patient satisfaction, regardless of the patients age. The modified MRI examination was shown to be a valid diagnostic method and represents an alternative to other examination modalities that lead to radiation exposition or tend to be less tolerated by the patient. KW - Zwerchfellkrankheit KW - Zwerchfellbruch KW - Laparoskopie KW - Kernspintomografie KW - Thoraxmagen KW - Gastrointestinaler Lebensqualitätsindex nach Eypasch (GIQLI) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253018 ER - TY - THES A1 - Haug, Lukas T1 - Dynamisch-kernspintomographische Definition der Flexions-Extensionsachse des Kniegelenks T1 - Dynamic magnetic resonance imaged definition of the axis about the knee flexes and extends N2 - Es sollte eine dynamische MRT Methode entwickelt werden, welche die Berechnung und Darstellung einer Achse einer komplexen Bewegung ermöglicht. Dabei war die eigens auferlegte Definition von „Dynamik“, dass ein kompletter Bewegungsablauf als dreidimensionaler Datensatz im Zeitverlauf erfasst und ausgewertet werden soll (4 Dimensionen). Diese Methode sollte auf die komplexe Bewegung des Kniegelenks angewendet werden und mit einem Knie-Modell verglichen werden. Schlussendlich sollte die Flexion-Extensionsbewegung als vereinfacht monoaxial verifiziert werden. Für diese Ziele wurden folgende Schritte durchgeführt: Es wurden zunächst 10 Kadaver-Knie präpariert und hierbei u.a. kontrastmittelhaltige Kugeln als Tracker eingebracht. Die Knie wurden dann im Rahmen des Versuchsaufbaus in einer speziellen, pneumatischen Bewegungsschiene befestigt, welche dann automatisiert eine passive Bewegung vollzog. Diese wurde mit einer dynamischen MRT Methode festgehalten. Der entstandene 4D-Datensatz wurde eingelesen und die Kugelpositionen ausgewertet. Die Koordinaten der Positionen dienten dann als Grundlage für spezielle mathematische Algorithmen, welche die Flexion-Extensionsachse und ggf. die Innen- und Außenrotationsachse berechneten und schließlich eine graphische Darstellung ermöglichten. Zur Überprüfung wurde zudem ein Knie-Modell herangezogen und von diesem die gleichen Berechnungen durchgeführt. N2 - A dynamic MRI method should be developed which allowed the calculation and presentation of the axis of a complex motion. The specially imposed definition of "dynamics" was that a complete sequence of movement should be recorded and evaluated over time as a three-dimensional data set (4 dimensions). This method should be applied to the complex movement of the knee joint and compared with a knee model. Finally, the flexion extension movement should be verified as simplified monoaxially. The following steps have been performed: First, 10 cadaver knees were prepared and were, among other steps, provided with contrast media filled spheres as tracker. The knees were then mounted in a special pneumatic movement device as part of the experimental set-up, which then automatically performed a passive movement. This was recorded using a dynamic MRI method. The resulting 4D data set was read in and the positions of the spheres were evaluated. The coordinates of the positions then served as a basis for special mathematical algorithms, which calculated the flexion extension axis and, depending on the algorithm, the inner and outer rotational axis and finally allowed a graphical presentation. For verification, the same calculations were performed with a knee model. KW - Kniegelenk KW - Kernspintomografie KW - dynamische MRT KW - knee joint KW - dynamic magnetic resonance imaging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179799 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER - TY - THES A1 - Ratz, Valentin T1 - Entwicklung einer funktionellen 3D Magnetresonanz-Defäkographie T1 - Development of a functional 3D magnetic resonance defecography N2 - Epidemiologische Studien schätzen die Inzidenz chronischer Obstipation auf bis zu 27% der Gesamtbevölkerung. Betroffenen Patienten ist die Stuhlentleerung nicht oder nur unter großer Anstrengung und nicht selten nur unter Zuhilfenahme der Hand möglich. Häufig sind funktionelle Pathologien, welche sich nur während der Defäkation ausbilden, hierfür verantwortlich. Daher ist für die Diagnose und Evaluation dieser Pathologien ein bildgebendes Verfahren notwendig, welches die dynamische Darstellung der Defäkation ermöglicht. Der Goldstandard zur Untersuchung von Patienten mit funktionellen Beckenbodenstörungen ist die Entero-Colpo-Cysto-Defäkographie (ECCD). Diese Durchleuchtungsmethode erfordert die Applikation ionisierender Strahlung im Bereich des Beckens. Außerdem müssen für die Untersuchung Rektum und Vagina mit bariumhaltigem Kontrastmittel, der Dünndarm mit barium- und iodhaltigem Kontrastmittel und zusätzlich die Blase mit iodhaltigem Kontrastmittel gefüllt werden. Bei der MR-Defäkographie hingegen ist keine ionisierende Strahlung notwendig und nur eine rektale Füllung mit Ultraschallgel als Kontrastmittel erforderlich. Zudem ermöglichen statische Aufnahmen aufgrund des hohen Weichteilkontrasts der MR-Bildgebung eine detaillierte Darstellung des gesamten Beckenbodens. Die MR-Bildgebung ist jedoch im Vergleich zu anderen Bildgebungsmodalitäten, wie beispielsweise der radiographischen Durchleuchtung, langsam. Besonders zur Darstellung dynamischer Prozesse ist daher eine starke Beschleunigung des Akquisitionsprozesses notwendig. Bei der Standard 2D MR-Defäkographie wird für die Beschleunigung der Datenakquisition eine regelmäßige zweifache Unterabtastung des k-Raums vorgenommen. Hierdurch lassen sich aber nur drei räumlich voneinander getrennte 68 2D Schichten mit einer zeitlichen Aktualisierungsrate der drei Schichten von ca. 1s akquirieren. Dadurch ist aber besonders die Diagnose lateral lokalisierter Pathologien eingeschränkt oder gar nicht möglich. Daher wurde in dieser Arbeit eine 3D MR-Defäkographie zur dynamischen Darstellung der Defäkation innerhalb eines vollständigen 3D Volumens entwickelt, implementiert und anhand von 9 Patientenmessungen optimiert. Die letzten 4 Patienten wurden mit den optimierten Sequenzparametern untersucht. Ausgehend von der kartesischen Datenakquisition der bestehenden 2D MRDefäkographie wurden zunächst dreidimensionale kartesische Trajektorien zur Datenakquisition und dafür geeignete Algorithmen zur Datenrekonstruktion untersucht. In diesem Zusammenhang wurde ein GRAPPA Centric-Out Akquisitionsschema in Kombination mit einer GRAPPA Datenrekonstruktion vorgestellt. Es zeigte sich jedoch, dass eine Stack-of-Stars Trajektorie in Bezug auf die stabile, rauscharme, dynamische Darstellung der Defäkation, vorteilhaft gegenüber der untersuchten kartesischen GRAPPA Centric-Out Trajektorie ist. Zur weiteren Optimierung der Messsequenz wurden daher drei radiale Stackof-Stars Akquisitionsschemata untersucht: Das Standard Stack-of-Stars Schema sowie zwei mit View-Sharing und zwei unterschiedlichen Dichtegewichtungen modifizierte Stack-of-Stars Schemata (DW-Sampling 1 und DW-Sampling 2). Das View-Sharing ermöglicht durch die Umstellung der Reihenfolge der akquirierten Partitionen nahezu eine Verdopplung der rekonstruierten Zeitpunkte der dynamisch gemessenen Zeitserie. Die Dichtegewichtung bewirkt, dass in den zentralen Partitionen mehr radiale Speichen gemessen werden und damit das k-Raum Zentrum dichter abgetastet wird als in den äußeren Partitionen. Beim Dichtegewichtungsschema DW-Sampling 2 ist der Abfall der Anzahl der innerhalb einer Partition gemessenen Speichen stärker als beim DW-Sampling 1. Trotzdem führte das mit View-Sharing und DW-Sampling 2 modifizierte Stackof-Stars Akquisitionsschema in Verbindung mit der FISTA Compressed Sensing Datenrekonstruktion zum besten Kompromiss zwischen erreichbarer räumlicher 69 und zeitlicher Auflösung. Dieses optimierte Setup ermöglicht die dynamische Darstellung der Defäkation in 7 Schichten eines vollständigen 3D Volumens mit einer Volumenaktualisierungsrate von 1,3s. Im Vergleich zur standardmäßig durchgeführten 2D MR-Defäkographie ist daher eine mehr als doppelt so große Abdeckung mit einer vergleichbaren zeitlichen Aktualisierungsrate und einer etwas geringeren räumlichen Auflösung gewährleistet. Hierdurch lassen sich zusätzlich zu den gewöhnlichen zentral gelegenen Pathologien auch lateral ausgeprägte Pathologien besser abdecken und diagnostizieren. N2 - Epidemiological studies estimated that the incidence of chronic obstructive diseases is up to 27% of the general population. Affected patients suffer from incomplete obstructed defecation and in many cases defecation is only possible with manual maneuvers. Functional pathologies that only arise during the defecation process are responsible for that. Therefore, for the diagnosis and evaluation of these pathologies an imaging technique is necessary, that allows to visualize the dynamic of the defecation process. The gold-standard to evaluate patients with functional pelvic floor disorders is the radiographic method of Entero-Colpo-Cysto Defecography (ECCD). Two major disadvantages of ECCD are the application of ionizing radiation in the pelvic floor region and the displeasing measurement procedure for the patients. Barium containing contrast agent has to be administered to rectum and vagina of the patient, barium and iodine containing contrast agents have to be administered to the small intestine and in addition the bladder has to be filled with iodine containing contrast agent. However MR-defecography uses no ionizing radiation and only requires a rectal filling with sonographic gel as contrast agent. In addition static MR images provide a detailed overview over the whole pelvic floor due to the high soft tissue contrast. But compared to other imaging modalities like ECCD MR imaging is slow and thus a high acceleration of the data acquisition is necessary to visualize the fast dynamic defecation process. In the standard 2D MR-defecography a regular twofold undersampling of the kspace is performed for acceleration. Hereby only 3 spatially separated 2D slices with a temporal update rate of about 1s can be acquired. Thus especially the detection of lateral localized pathologies is limited or even impossible. 72 Therefore, a 3D MR-defecography was developed, implemented and optimized by means of a study in 9 patients. The last 4 patients were investigated with the optimized parameters. Based on the Cartesian data acquisition of the standard 2D MR-defecography, 3D Cartesian trajectories for data acquisition and suitable algorithms for data reconstruction were evaluated. In this context a GRAPPA Centric-Out acquisition scheme in combination with a GRAPPA data reconstruction was presented. It turned out however, that a Stack-of-Stars trajectory is preferable to the proposed Cartesian GRAPPA Centric-Out trajectory in regard to a stable, low-noise and dynamic visualization of the defecation. Therefore, to further optimize the measurement sequence, three different Stackof-Stars data acquisition schemes were investigated: The standard Stack-ofStars scheme as well as the two with View-Sharing and Density-Weighting modified Stack-of-Stars schemes DW-Sampling 1 and DW-Sampling 2. ViewSharing allows to almost double the number of reconstructed time frames by changing the order of the acquired partitions. The Density-Weighting results in more radial spokes in the central partitions than in the outer partitions and thereby assures a denser sampling of the k-space center than in the kspace periphery. The undersampling factors in the outer partitions are higher in DW-Sampling 2 than in DW-Sampling 1. Nevertheless the Stack-of-Stars acquisition scheme modified with View-Sharing and DW-Sampling 2 in combination with a FISTA Compressed Sensing data reconstruction led to the best trade-off between achievable spatial and temporal resolution. This optimized setup allows the dynamic visualization of the defecation within 7 slices and a volume update rate of 1,3s. Compared to the standard 2D MR-defecography a more than doubled spatial coverage and a comparable temporal update rate are provided. This offers the possibility to cover and evaluate lateral localized pathologies additionally to the standard central localized pathologies. KW - Kernspintomografie KW - Defäkographie KW - Dynamische MR-Bildgebung KW - Radiale MR-Bildgebung KW - Stack-of-Stars Sequenz KW - Dichtegewichtung KW - Schnelle MR-Bildgebung KW - Dynamic MR imaging KW - radial MR imaging KW - fast MR imaging KW - Stack-of-Stars sequence KW - density weighting Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139762 ER - TY - THES A1 - Lother, Steffen Reiner T1 - Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung T1 - Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPI N2 - Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. N2 - Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI KW - NMR-Spektroskopie KW - Erdmagnetismus KW - Kernspintomografie KW - 3D Erdfeld-NMR Tomograph KW - MR-MPI-Tomograph KW - Präpolarisationssystems KW - Gradientensystem KW - Magnetresonanztomographie KW - Systembau KW - Erdfeld KW - Magnetpartikelbildgebung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99181 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Gutberlet, Marcel T1 - K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverhältnis, Abbildungsqualität und Messzeit T1 - K-space symmetry and density weighted imaging:Optimization of magnetic resonance imaging with regard to signal-to-noise ratio, image quality and acquisition time N2 - Die Magnet-Resonanz (MR)-Bildgebung ist mit vielfältigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch führt die stark limitierte Messzeit häufig zu einer Einschränkung der erzielbaren räumlichen Auflösung und Abdeckung, einer Beschränkung des Signal-zu-Rauschverhältnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. Während in der PPA die unterschiedlichen Sensitivitäten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivität die Bildphase als zusätzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverstärkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen übertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden können. Dadurch kann die Rauschverstärkung aufgrund der Spulengeometrie ohne zusätzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelmäßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierfür liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings führt die regelmäßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachträgliches Filtern führt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung ermöglicht die Reduktion der Signal-Kontamination bei optimalem SNR, führt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erhöhung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien für die DW-Bildgebung, die eine Erhöhung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringfügige Reduktion des SNR-Vorteils der DW-Bildgebung gegenüber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zusätzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution für die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverlängerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung führt im Fall einer Unterabtastung zu deutlich geringeren, inkohärenten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die räumliche Auflösung, das SNR und das FOV erhöht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspräparation (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation während der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualität bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden. N2 - Magnetic resonance (MR) imaging has become a powerful tool in clinical diagnostics. However, long acquisition times used in MR imaging limit the available signal-to-noise Ratio (SNR), spatial resolution and coverage and cause signal contamination from neighboring tissue. Two established methods used to reduce the scan time of MR imaging are partial parallel acquisition (PPA) and partial fourier (PF) imaging. These methods use different schemes to undersample k-space and use a different kind of information to reconstruct the missing data resulting from the accelerated acquisition. While in PPA the varying sensitivities of a multi-channel receiver coil are used in the image reconstruction, PF imaging is based on the assumption of a smoothly varying image phase. In the first section of this work, the concept of virtual coil deconvolution (VIDE) imaging is proposed. This method uses the identical acquisition scheme for the accelerated measurement of k-space as PPA. However, in contrast to PPA, VIDE imaging uses the image phase instead of the varying coil sensitivities to recover the missing data of the accelerated acquisition. Reconstruction errors and noise amplification of VIDE imaging were minimized by an optimized acquisition scheme. VIDE imaging allows an acceleration of MR imaging by a factor of two. The different sampling schemes used in PF imaging and PPA are disadvantageous for the combination of PF imaging and PPA to increase the acceleration of MRI. Blaimer, Gutberlet et al. showed that the concept of VIDE imaging can be extended to multi-channel receiver coils. This allows an optimal combination of PF imaging and PPA. The noise amplification caused by the coil geometry could be significantly decreased without lengthening the scan time. Although k-space can be measured in a variety of sampling schemes, almost exclusively a Cartesian trajectory is used in clinical imaging. Reasons are the fast and simple reconstruction, the robustness against artifacts and the well-defined contrast of Cartesian imaging. However, the Cartesian acquisition results in increased signal contamination. Post-processing filtering allows reduction of contamination but at the expense of SNR. Density weighted (DW) imaging allows optimization of the spatial response function (SRF) at maximum SNR but results in a reduced effective field of view (FOV) or a lengthening of the scan time. This disadvantage of DW imaging can be eliminated by the application of PPA. In the second section new acquisition and reconstruction methods were presented allowing an increase of the effective FOV in DW imaging even without the use of PPA. The limitation of the minimum sampling density in DW imaging resulted in a significant reduction of aliasing. Moderate filtering to correct the k-space weighting resulted in low reduction of the SNR gain in comparison to Cartesian imaging with the identical scan time. On condition of a homogeneous image phase, the aliasing can be additionally reduced by using an asymmetric DW sampling. Using virtual coil deconvolution for effective density weighted (VIDED) imaging for reconstruction, aliasing could be eliminated. By applying the developed DW method, the spatial coverage of 3D imaging was increased even without a lengthening of the scan time. In case of undersampling k-space, DW acquisition results in significantly reduced incoherent aliasing in comparison to Cartesian imaging. Alternating DW sampling revealed an optimized sampling scheme for the coil geometry used in MR-mammography. In experiments the effective FOV or the spatial resolution in slice direction could be increased significantly. In the third section the extension of DW imaging to signal-weighted sequences, i.e. sequences with magnetization preparation (inversion recovery or saturation recovery) or with relaxation between the acquired echoes (multigradient echo, multi-spin echo), was presented. The method provided increased image quality at optimum SNR in comparison to Cartesian imaging. By applying the new technique to SR-sequences, its practical use could be shown in myocardial perfusion imaging. The method presented in this work allowed an optimization of the SRF with an SNR gain of 16% compared to conventional Cartesian sampling at identical scan time. KW - Kernspintomografie KW - Paralleler Prozess KW - Messprozess KW - Dichtegewichtete Bildgebung KW - Parallele Bildgebung KW - VIDE KW - VIDED KW - density weighted imaging KW - density weighting KW - parallel imaging KW - VIDE KW - VIDED KW - Optimierung KW - NMR-Bildgebung KW - NMR-Mammographie KW - Koronarperfusion Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71834 ER - TY - THES A1 - Geier, Bettina T1 - Kernspintomografische Natriumbildgebung in Haut und Muskel T1 - Magnetic resonance imaging of sodium in skin and muscle N2 - Die vorliegende Arbeit untersucht den Natriumgehalt verschiedener Kompartimente des Körpers mittels Magnetresonanztomographie (= MRT). Die Korrelation zwischen erhöhtem Salzkonsum und arterieller Hypertonie ist bereits umfangreich analysiert worden. Für das Verständnis der pathophysiologischen Zustände und deren Regulation, ist eine Quantifizierung von Natriumkonzentrationen in verschiedenen Gewebearten bedeutsam. Die exakte Messung von Natriumkonzentrationen im menschlichen Gewebe ist derzeit experimentell. Im Rahmen der hier vorgelegten Arbeit wurden die Natriumkonzentrationen von Haut und Skelettmuskel mittels 23Na Magnetresonanztomographie (= 23 Na MRT) im menschlichen Körper quantifiziert. Natriummessungen wurden bei Patienten mit primärem Hyperaldosteronismus (= PHA), bei Patienten mit essentieller Hypertonie (= EH), sowie einer gesunden Kontrollgruppe vorgenommen. Die Ergebnisse zeigten, dass Haut und Skelettmuskel Speicherorgane für Natrium im menschlichen Körper darstellen. Durch gezielte Therapie waren die Natriumkonzentrationen in beiden Speicherorganen modulierbar N2 - The present work investigates the sodium content of different compartments of the body by means of magnetic resonance imaging (= MRI). The correlation between increased salt consumption and arterial hypertension has already been extensively analyzed. For the understanding of pathophysiological states and their regulation, quantification of sodium concentrations in different tissue types is significant. Accurate measurement of sodium concentrations in human tissues is currently experimental. In the work presented here, sodium concentrations of skin and skeletal muscle were quantified using 23Na - magnetic resonance imaging (= 23 Na-MRI) in the human body. Sodium measurements were made in patients with primary hyperaldosteronism (= PHA), in patients with essential hypertension (= EH), and in a healthy control group. The results showed that skin and skeletal muscle are storage organs for sodium in the human body. Sodium concentrations in both storage organs could be modulated by targeted therapy. KW - Natrium-23 KW - Kernspintomografie KW - Haut KW - Muskel KW - MRI KW - sodium-23 KW - Skin KW - Muscle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249429 ER - TY - THES A1 - Fey, Philipp T1 - KI-gestützte MR-Klassifizierung von Zellen und zellulärer Differenzierung T1 - AI-assisted MR classification of cells and cellular differentiation N2 - Für die Verwendung von zellbasierten Therapeutika ist vor allem die korrekt Identifikation sowohl vom Ausgangsmaterial wie auch dem produziertem Material von zentraler Wichtigkeit. In dieser Arbeit wurde eine Methodik entwickelt, welche eine nicht-invasive Klassifizierung von Zellen und zellulärer Entwicklung aufgrund ihrer zweidimensionalen Magnetresonanz-Korrelationsspektren ermöglichte. Hierzu wurde ein mobiler MR-Scanner mit einer Feldstärke von 0.5T und einem Isozentrum von 1 cm3 verwendet. Aufgrund der kompakten und leichten Bauweise war es möglich, das System in normalen Zellkulturlaboren zu verwenden. Von den Proben wurde ein zweidimensionales T1/T2 -Korrelationsspektrum aufgenommen, anhand dessen die Zellen klassifiziert werden sollten. Mithilfe von Agarose-Dotagraf® -Zell- Phantomen konnte die Stabilität und Reproduzierbarkeit des Messsystems und der verwendeten Sequenz validiert werden. Aufgrund der unter Umständen recht langen Messzeiten der MR-Technologie war auch die Handhabung und Kultur der Zellproben während des Messprozesses von großer Bedeutung. Um hierfür den Durchsatz an Proben zu erhöhen, wurde eine kostengünstige und ebenfalls mobile Robotikanlage entwickelt. Diese basierte auf dem kommerziell erhältlichen Roboterarm Braccio, welcher durch einen Arduino Mega Mikrocontroller gesteuert wurde. Mit bis zu 24 Proben pro Tag konnte durch die Automatisierung der Durchsatz an Proben um den Faktor 3 – 4 gesteigert werden. Durch den entwickelten Prozess war es möglich, eine umfangreiche Datenbank – bestehend aus 362 unabhängigen Messungen (biologische Replikate) – aufzubauen. Die Datenbank enthielt Messungen von zehn unterschiedlichen Zelllinien. Zusätzlich wurden T1/T2 -Korrelationsspektren von mesenchymalen Stromazellen (MSCs) vor und nach deren Differenzierung zu Adipocyten aufgenommen, um ihre zelluläre Entwicklung nicht-invasiv charakterisieren zu können. Die aufgenommenen Daten wurden mithilfe einer geeigneten Support Vector Machine wie auch angepassten künstlichen neuronalen Netzwerken klassifiziert. Mithilfe dieser Methoden konnten die Zelllinien und MSCs anhand ihrer aufgenommenen Korrelationsspektren mit einer Genauigkeit von bis zu 98% klassifiziert werden. Diese hohe Treffsicherheit legte den Schluss nahe, dass die Kombination aus nichtinvasiver, zweidimensionaler T1/T2 -MR-Relaxometrie und der Verwendung von geeigneten Methoden des machine learning und der künstlichen Intelligenz eine effiziente Methodik für die nicht-invasive Klassifizierung von Zellen sowie zellulärer Entwicklung darstellt. N2 - For the use of cell-based therapeutics, the correct identification of both the starting material and the produced material is of central importance. In this work, a methodology was developed that allowed non-invasive classification of cells and cellular development based on their two-dimensional magnetic resonance correlation spectra. For this purpose, a mobile MR scanner with a field strength of 0.5T and an isocenter of 1 cm3 was used. Due to its compact and lightweight design, it was possible to use the system in normal cell culture laboratories. A two-dimensional T1/T2 - correlation spectrum was recorded from the samples, which was used to classify the cells. Agarose-Dotagraf® cell phantoms were used to validate the stability and reproducibility of the measurement system and the sequence used. Due to the possibly quite long measurement times of the MR technology, the handling and culture of the cell samples during the measurement process was also of great importance. To increase the throughput of samples for this purpose, a low-cost and also mobile robotic system was developed. This was based on the commercially available Braccio robotic arm, which was controlled by an Arduino Mega microcontroller. With up to 24 samples per day, the automation increased the throughput of samples by a factor of 3 - 4. Through the developed process it was possible to build an extensive database – consisting of 362 independent measurements (biological replicates) . The database contained measurements from ten different cell lines. In addition, T1/T2 -correlation spectra of mesenchymal stromal cells (MSCs) before and after their differentiation into adipocytes were recorded to characterize their cellular development non-invasively. The recorded data were classified using an appropriate Support Vector Machine as well as adapted artificial neural networks. Using these methods, the cell lines and MSCs could be classified based on their recorded correlation spectra with an accuracy of up to 98 %. This high accuracy suggested that the combination of non-invasive, two-dimensional T1/T2 -MR relaxometry and the use of appropriate machine learning and artificial intelligence methods is an efficient methodology for the non-invasive classification of cells as well as cellular development. KW - MRT KW - NMR KW - Künstliche Ingelligenz KW - Kernspintomografie KW - Stammzelle Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-345164 ER - TY - THES A1 - Ott, Martin T1 - Lautstärkereduzierte Magnetresonanztomographie T1 - Acoustic noise reduced MRI N2 - Messungen mit Magnetresonanztomographen sind seit jeher mit hohen Lautstärken verbunden. Deshalb wird das Gerät im Volksmund auch als „laute Röhre“ bezeichnet. Bisher wurde das Problem mit Kopfhörern, Ohrenstöpseln und akustischer Dämmung des MRT-Scanners angegangen. Auch in der Fachliteratur wird das Problem als gegeben angesehen und es werden kaum wissenschaftliche Lösungsansätze zur Lautstärkereduktion beschrieben. Das Ziel der vorliegenden Arbeit war es, Bildgebungs-Sequenzen für schwer‑optimierbare Bildkontraste und sogenannte Standard-Kontraste aus dem klinischen Umfeld hinsichtlich der Lautstärke zu optimieren. Viele dieser Kontraste können bereits mit einfachen Algorithmen wie dem Gradientenglättungsalgorithmus erfolgreich in Hinblick auf die Lautstärke optimiert werden. Allerdings existieren auch Sequenzen beziehungsweise Kontraste, die aufgrund ihrer Eigenschaften nicht von einem solchen Algorithmus profitieren können. Die Optimierungen und Änderungen sollten software-seitig erfolgen, das heißt durch Änderung der Gradientenformen und Datenakquisition. In der Arbeit wurden die grundlegenden Zusammenhänge zwischen den verwendeten Geräteparametern und der Lautstärke untersucht und zudem die physikalischen Ursachen der Lautstärkeentwicklung hergeleitet. Diese konnten anhand der Lorentz-Kräfte quantitativ beschrieben werden. Somit konnten die Hauptursachen der Lautstärkeentwicklung identifiziert werden. Diese sind abhängig von der Gradienten-Steig-Rate, aber auch von der Amplitude der Gradienten. Es konnte gezeigt werden, dass eine Minimierung dieser Gradientenparameter zu einer geringeren Lautstärkeentwicklung führt. Allerdings führt diese Minimierung in den meisten Fällen auch zu einer systematischen Verlangsamung des Sequenzablaufs, was das Erreichen bestimmter Echozeiten und Bildkontraste unmöglich macht. Zu den problematischen Kontrasten bezüglich der Lautstärkereduktion zählten der T1- und PD‑Kontrast einer Turbo-Spin-Echo-Sequenz. Durch die Kombination von mehreren Maßnahmen, wie der Adaption der k-Raum-Akquisition, der HF-Pulse-Parameter und den Gradientenformen, war es möglich, die Lautstärke in Beispielmessungen um bis zu 16,8 dB(A) zu reduzieren. Wie bei der kürzlich veröffentlichten Methode zur Reduktion für die T2‑gewichteten Kontraste, wurde dies zulasten einer Messzeitverlängerung von bis zu 50% erreicht. Die Endlautstärke betrug dabei circa 81 dB(A). Mit der Lautstärkeoptimierung der klinisch bedeutsamen T1- und PD‑Kontraste wurde die Palette an leisen, mit der Turbo-Spin-Echo‑Sequenz erzielbaren, Standard-Kontrasten (T1, T2 und PD) nun vervollständigt. In einem anderen Ansatz wurde die Anwendbarkeit des CAT-Konzepts auf die Lautstärkereduktion untersucht. Beim CAT-Konzept wird die Messung in Einzelmessungen mit verschiedenen Parametern unterteilt. Bisher wurde dieser Ansatz zur SAR-Reduktion verwendet. Das Zentrum des k-Raums wird mit einer SAR-intensiven, kontrastgebenden Messung aufgenommen. Der verbleibende Teil des k-Raums wird mit einer SAR-reduzierten, bildstrukturrelevanten Messung aufgenommen. In dieser Arbeit wurde die Übertragung des CAT-Konzepts auf die Lautstärkereduktion untersucht. Anstelle von SAR-intensiven und SAR‑reduzierten Messungen, wurde hier die Unterteilung in „laute“ und „leise“ Messungen untersucht. Dabei wurden Überlegungen angestellt, die es für eine Vielzahl an Messungen ermöglichen, einen großen Teil der Messung leise zu gestalten ohne die Bildqualität oder den Bildkontrast zu verändern. In einem weiteren Schritt wurden Überlegungen für die Lautstärkereduktion der lauten Messungen vorgestellt. Anschließend wurden für eine GRE- und TSE-Sequenz Optimierungsschritte evaluiert und die Lautstärke gemessen. Der hinsichtlich der Lautstärkeoptimierung herausforderndste Bildkontrast ist die diffusionsgewichtete Bildgebung. Diese besitzt eine Diffusions-Präparation zur Sichtbarmachung der Diffusivität, bei der die maximal mögliche Gradienten-Amplitude verwendet wird. Ebenso werden nach der Präparation die Daten mit einem EPI‑Akquisitionsmodul mit Blip-Gradienten akquiriert, das mit einem charakteristischem „Pfeifton“ einhergeht. Zum einen wurden die Gradientenformen konsequent angepasst. Zum anderen wurde eine Segmentierung der k-Raum-Akquisition in Auslese-Richtung verwendet, um die Gradienten‑Steig-Raten zu reduzieren. Auch hier konnte eine deutliche Lautstärkereduktion von bis zu 20,0 dB(A) erzielt werden. Dies wurde zulasten einer Messzeitverlängerung von 27% ‑ 34% im Vergleich zur Standard-Sequenz erreicht. Durch eine weitere Messzeitverlängerung um bis zu 23% kann die Lautstärke um weitere 0,9 dB(A) reduziert werden. Dabei hängt die genaue Messzeitverlängerung vom verwendeten GRAPPA-Faktor und der Anzahl der Auslese-Segmente ab. Die entstandene Sequenz wurde in mehreren Kliniken erfolgreich erprobt. Bisher mussten bei MRT-Messungen stets Kompromisse zwischen „hoher Auflösung“, „hohem SNR“ und „geringer Messzeit“ getroffen werden. Als Anschauung dafür wurde das „Bermuda‑Dreieck der MRT“ eingeführt. Da alle drei Größen sich gegenseitig ausschließen, muss stets ein Mittelweg gefunden werden. Einige der in dieser Arbeit erzielten Erfolge bei der Lautstärkereduktion wurden auf Kosten einer verlängerten Messzeit erreicht. Daher ist es naheliegend, das „Bermuda-Dreieck der MRT“ um die Dimension der „geringen Lautstärke“ zu einer „Bermuda-Pyramide der MRT“ zu erweitern. Damit muss die Lautstärkeentwicklung in die Mittelweg‑Findung miteinbezogen werden. Die in dieser Arbeit erzielten Lautstärken liegen in der Größenordnung zwischen 80 ‑ 85 dB(A). Somit können Messungen bei Verwendung von Gehörschutz angenehm für den Patienten durchgeführt werden. Durch neue Techniken der Zukunft wird es wahrscheinlich sein, höhere Auflösungen, höheres SNR oder kürzere Aufnahmedauern zu erzielen, beziehungsweise stattdessen diese in eine geringe Lautstärke „umzuwandeln“. Ebenso werden möglicherweise auf der hardware-technischen Seite Fortschritte erzielt werden, so dass in neueren MRT-Scannergenerationen mehr Wert auf die Lärmdämmung gelegt wird und somit der softwarebasierten Lautstärkereduktion einen Schritt entgegen gekommen wird. Damit könnten zukünftige Patienten-Messungen gänzlich ohne störenden Gehörschutz durchgeführt werden. N2 - Magnetic resonance imaging (MRI) measurements have always been related to high acoustic noise. Therefore, in common parlance MRI is referred to as the “loud tube”. Until now, the acoustic noise was mitigated by the use of headphones and ear plugs as well as acoustic dampening of the MR system. In literature, the problem is more or less acknowledged and solutions to the acoustic noise are rarely provided. The aim of this work was to optimize MR sequences, which generate so-called standard clinical MRI contrasts, for acoustic noise. Many of these contrasts could be optimized for acoustic noise by a gradient smoothing algorithm. Nevertheless, there are sequences and contrasts which cannot benefit from such algorithms and therefore need manual optimization. Software-based optimizations are performed by adapting the gradient waveforms and data acquisition. In this work, the main relationships between parameter settings of the MRI machine and acoustic noise were explored. The physical origin of acoustic noise in the form of Lorentz forces was derived from fundamental equations. The main acoustic noise sources are gradient slew rate and gradient amplitude. It was shown that minimization of these quantities leads to reduced acoustic noise. However, this is mostly accompanied by slowing down the sequence and thus certain echo times and contrasts cannot be reached. T1- and PD-weighted contrasts, acquired with a turbo spin-echo sequence, are problematic contrasts regarding acoustic noise reduction. This problem was tackled by a combination of several approaches such as an adaption of the k-space acquisition, changes to the RF-pulse parameters, and modifications of the gradient waveform. An acoustic noise reduction of up to 16.8 dB(A) was achieved. As for the previously published method for acoustic noise reduction in T2-weighted contrasts, this success came at the cost of an increase of measurement time by 50%. The target acoustic noise level was around 81 dB(A). With this optimization, the palette of quiet standard clinical contrasts, consisting of T1-, T2- and PD-weighted contrasts, can be realized with the turbo spin-echo sequence. In a different approach, the Combined-Acquisition (CAT) concept was applied to acoustic noise reduction. In implementing the CAT concept, each measurement is divided into two measurements with different parameters. This approach was previously used for SAR reduction. The center of k space is acquired using a high-SAR measurement in which contrast is relevant. The remaining k-space area is acquired using a low SAR, contrast-irrelevant measurement. In this work, the CAT concept was applied to acoustic noise reduction. Each measurement was divided into ‘quiet’ and ‘loud’ segments instead of dividing into high-SAR and low-SAR measurements. Considerations allowed for acoustic noise reduction without disrupting the image quality or contrast. In successive steps, the approach was applied to the remaining loud segment of the measurement. This process was executed for a GRE and a TSE sequence. Corresponding acoustic noise measurements were performed. One of the most challenging contrasts in terms of acoustic noise reduction is diffusion weighted imaging. It employs maximum gradient amplitudes in the preparation pulses which sensitize the MR signal to diffusivity. Data acquisition is performed by an EPI readout including blipped gradients. This readout is known for its whistling sound. Therefore, the gradient waveforms were consequently adapted. A k-space segmentation in the readout direction was employed to reduce the gradient slew rates. In this work, an acoustic noise reduction of up to 20.0 dB(A) could be achieved using an adapted readout segmented EPI sequence. This reduction in acoustic noise came at the cost of an increase of measurement time by 27% to 34% compared to the standard sequence. Spending additional 23% of acquisition time can further reduce the acoustic noise by 0.9 dB(A). The exact increase in measurement time depends on the employed GRAPPA factor and the number of readout segments. The optimized sequence was successfully validated in various clinical sites. Until now, compromises had to be made between high resolution, high SNR, and short acquisition time. This compromise can be described as the “Bermuda triangle of MRI”. Trade-offs exist between all three quantities. A compromise has to be chosen in all cases. In this work, some of the achieved acoustic noise reductions came at the cost of increased measurement time. Therefore, the dimensionality of the Bermuda triangle is extended with the addition of low acoustic noise. This yields the “Bermuda triangular pyramid of MRI”. Thus, acoustic noise has to be included in achieving a balance of desired properties in MR image acquisition. In this work, the obtained acoustic noise levels were on the order of 80–85 dB(A). Upon the use of ear protection, measurements became comfortable for the patients. As further advancements in imaging technology are made, it may be likely to achieve higher resolution, higher SNR, or shorter acquisition times, which could instead be traded for lower acoustic noise levels. In addition, it is possible that MRI machine manufacturers will put more effort into hardware based acoustic noise dampening of the devices in order to meet software-based acoustic noise reduction. Therefore, patient measurements could be possible without the need for additional acoustic noise protection in the future. KW - Kernspintomografie KW - Biophysik KW - Magnetische Kernresonanz KW - Lautstärkereduktion KW - Lärm KW - Krach KW - Patientenkomfort KW - Lärmbelastung KW - Geräuschminderung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133921 ER - TY - THES A1 - Hopfgartner, Andreas T1 - Magnetresonanztomographie in der Zahnheilkunde - hochauflösende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur T1 - Magnetic Resonance Imaging in Dentistry – high-resolution dental applications in MRI with development of a method for motion correction N2 - Die zahnmedizinische Behandlung von Erkrankungen der Zähne oder im Bereich der Mundhöhle erfolgt bei Weitem nicht immer aus optischen Gründen. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes führen können. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen über einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings zählt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt für sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gefährliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Auflösung. Während man beim Röntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Gerät zu wechseln) eine Verlängerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder gänzlich unbrauchbar machen. Die grösste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberflächen in der Prothetik. Dieses Verfahren kann eine aufwändige und unangenehme manuelle Abformung der Zähne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberflächen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildauflösung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empfängerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder Rücken liegen. Weiterhin muss die Bewegungserkennung ohne zusätzliche externe Geräte wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchführbar sein. Die vorliegende Arbeit deckt also zwei größere Themenblöcke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu eröffnen. Kapitel 4 beschreibt die Möglichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikuläre Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugehörige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden können. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen Möglichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxillären Bildgebung . Die diagnostischen Möglichkeiten der MRT für die kieferorthopädische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthopädie sind Kinder und Jugendliche. Die Abwesenheit von gewebsschädigender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Auflösung in den gerenderten Bildern beträgt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfläche (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberflächen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundhöhle ist mit Kontrastmittel befüllt. Durch die Verwendung einer präparierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in Rückenlage das Patienten ist somit problemlos möglich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse wäre durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzgeräten ermöglicht, die Bewegung eines Subjekts während der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gestützt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einflüsse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzuschätzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeinträchtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik ermöglichen weitere hochauflösende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen während einer Messung beschäftigt. Für eine hochauflösenden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design für eine Empfängerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgeführt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zurückgeschlossen werden. N2 - The treatment of the teeth or diseased of the oral cavity is by far not only administered for aesthetic reasons. These diseases are sometimes also associated with other serious diseases. Studies have shown that some diseases of the mouth, the gingiva or the surrounding area can lead to heart and lung disease or diabetes. Oftentimes the pathology or symptomatology of dental or oral diseases extends to a wide area. In the dental clinic many different diagnostic devices are used. However, magnetic resonance imaging, which has developed in other areas as the most important diagnostic imaging tool, is not frequently used in dentistry to the present day, although their advantages are obvious: it is known for excellent image contrast, mainly between different soft tissues and comes without hazardous ionizing radiation. The former is probably the reason why the MRI is not yet a standard method in dentistry: here in most cases the contrast of hard tissues is of relevance. However, recent developments and studies demonstrated the versatile advantages of MRI in this area. The aim of this work as seen from the perspective of application, was to continuously show the enormous potential of MRI in the diverse areas of dentistry. However, many of these applications put very high requirements on the systems. Usually structures to display are very small and require very high resolution. To improve the resolution while using the X-ray method, e.g., one can increase the beam energy (dose). In MRI (without changing the MRT scanner) this results in an extension of measurement time. Especially in the area of the head this oftentimes leads to unwanted movements during the measurement time that worsen the outcome and reproducibility of the obtained diagnostic information or making it completely useless. The biggest challenge is the measurement of a three-dimensional impression of the tooth surfaces in prosthetics. This process can replace a complex and unpleasant manual impression of the teeth and avoid the production of an intermediate plaster model. Using MRT techniques, a direct three- dimensional model of the tooth surfaces can be produced. By modern CAD/CAM technology, a dental restoration can be directly manufactured by the dental technician using the digital 3D model. Therefore, an important task of the project was the development of a dental MRT method for the detection and correction of movements. Various requirements were imposed on the method. Firstly, the method must be able to detect movements in the range of ~100 µm to fall below the requirements of the final image resolution. For the acquisition of the contrast agent’s signal, a 1-channel receiver coil is used and depending on the measurement, the patient can lie prone or supine. Furthermore, the motion detection system must work without extensive external devices such as cameras, whose direct vision may be obscured by the patient, e.g. This thesis covers two major subject areas. Firstly, new applications and methods have been developed and further developed in order to provide the various fields of dentistry access to MRT techniques. Chapter 4 describes the possibility to image the motion of the temporomandibular joint dynamically in real-time. In this work it turned out that both, the movement of the soft tissue components were represented, as well as the intra-articular distance in the TMJ could be measured during mastication (under load) in real-time. Here, the imaging sequence and the corresponding reconstruction algorithm were designed such that the data can be acquired without a prioiri knowledge and processed flexibly. MRT showed different pathologies in the images and dynamic MRT could detect some diseases that could not be diagnosed by other means. The emerging diagnostic possibilities should be investigated and the results verified by large-scale studies. Chapter 5 describes the results of dento-maxillary MRT imaging, supported by a large-scale study. The diagnostic capabilities of MRI for orthodontic applications are obvious. The typical patient in orthodontics are children and adolescents. The absence of tissue-damaging radiation is a particular advantage of MRI here. After various developments, the acquisition time of a measurement lasted depending on the method only 2 (4) minutes. The resolution in the rendered images was 0.25x0.25x0.50 mm3. Using the proposed method, among other things a geminisation of a tooth root could be shown and the distance of the dental pulp to the tooth surface (enamel) measured. Chapter 6 presents new developments in the field of digital impressions of tooth surfaces. Here, a new method was developed in order to increase patient comfort during the measurement. This approach helps to prevent movements of the subject in advance. With the old method, the patient lies prone and a large part of the oral cavity is filled with contrast agent. By using a prepared dental cast, the contrast agent can be applied locally and hence the patient may lay supine during the measurement. The associated reproducibility of dental impressions should be shown through a large-scale study. The main task of this thesis was to develop a method for motion correction that allows to detect the movement of a subject during the measurement without a large number of additional devices and correct the acquired data accordingly. This new navigator method, based on the measurement of a MRT-active marker attached to the subject, makes use of MRT hardware only, except for the additional marker. The method is described in chapter 8. Since this is a new development, it was important to primarily estimate the effects of the various parameters and their impact on the positioning accuracy. This has been evaluated in several preliminary studies, experiments and computer simulations. By validation experiments it was shown in the studies that the image-based navigator detects movements with an accuracy of ~50 µm(translation) and ~0.13◦ (rotation). With the position information obtained from the navigator, the MRT data can be corrected retrospectively or the volume of interest can be adjusted in real-time during the imaging process to prevent inconsistencies in the data in advance. In-vivo MRT data impaired by motion of a subject during the measurement could be corrected using the MoCoLoCo method. By using an appropriate phantom and simulation a movement, it could be shown that using the proposed method, the quality of edge detection (as used in dental impressions, e.g.) could be restored. Various new high-resolution applications emerged due to the continuous development in hardware, software and algorithms. In chapter 9, the results of a study are presented, which deals with the analysis of shivering movements of the hand during a measurement. For a high-resolution depiction of hand anatomy at 7 T, a suppression of the hand movement is very important. In order to develop an optimal design for a hand receiver coil, a qualitative analysis of the hand movement in several different positions was performed. By comparison of the results, a suitable coil design could be developed. KW - Kernspintomografie KW - Kernspintomografie KW - Zahnmedizin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122557 ER - TY - THES A1 - Weber, Daniel T1 - Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode T1 - Morphological and functional MRI infarct characterization and development of a diffusion-weighted MRI method N2 - Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden für die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Klärung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgeführt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Ischämie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsmöglichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Veränderung der Narbe im Zeitverlauf. Oxygenierungsmessung am Mäuseherz in vivo Die Charakterisierung einer Infarktnarbe kann auch über die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft über die Vaskularisierung und Viabilität des Gewebes geben kann. Zugang zu diesem Parameter erhält man über T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten Mäusen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgeführt. Die Auflösung war ausreichend, um auch nach Infarkt extrem ausgedünnte Myokardwände gut auflösen und charakterisieren zu können. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde darüber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus veränderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte größer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen völlig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen über die Diffusion unabhängig von der limitierenden T2-Zeit gewonnen werden können. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Präparation werden zunächst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort gesättigt. Bis zur nächsten Sättigung ist das Verhalten der Magnetisierung abhängig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abhängt. Im Rahmen dieser Arbeit wurden die Abhängigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgeführt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte. N2 - Diffusion tensor imaging for the characterization of myocardial infarction in comparison to other methods The aim of this part of this work was to evaluate the potential of different MR sequences for the characterization of myocardial infarction in both the acute and chronic case. Therefore a study of acute as well as chronic infarcted rat hearts was performed, and the parameters T1, T2, T2* and the parameters ADC, FA, cs, cp and cl calculated from the diffusion tensor images were investigated. It turned out that there is no equivalent to the ischemia. Neither in the acute nor in the chronic case, a notably difference inside the affected area was detectable between different sequences. All in all, for detailed characterization of the infarct scar a T2* or a diffusion tensor sequence are most suitable. The T2* sequence provides a more informative visual image, whereas the more time-consuming diffusion tensor sequence provides a surplus of information due to the multiple display options in post-processing and shows the remodelling of the scar tissue over time. Oxygen level measurements in mouse hearts in vivo The characterization of an infarct scar can also go beyond the representation of morphological structure. The oxygenation is a complex parameter that can provide functional information of the vascularization and viability of the tissue. Access to this parameter is obtained by T2*-measurements, as the parameter T2* is sensitive to chemically bound oxygen. The influence of pure oxygen breathing in contrast to normal room air breathing on the oxygenation level in healthy and infarcted mice have been explored. Despite the difficulties caused by the movement due to respiration and heartbeat the measurements were implemented and carried out at 17.6 Tesla in vivo. The resolution was sufficient to resolve and investigate extremely thinned heart walls after infarction. The effect on the oxygenation level varies considerably between normal and infarcted hearts; that may be caused by a not yet advanced revascularization of the scar. In addition, the method was implemented to a 7.0 Tesla magnet for use in rats and adapted to the respiration of rats, which is different to the respiration of mice. The first reason was that the influence of the higher magnetic field on the measurement of the oxygenation level could be examined. Second, the heart as the examined object is larger in rats. Diffusion weighting using hole burning The MR diffusion method used in this work for the characterization of myocardial infarctions could be limited by extremely short T2 relaxation times. With the strong magnetic fields used here the measurable signal decays very fast due to the relaxation time T2. Therefore, a method for a completely new approach to diffusion-weighted imaging was developed, where the diffusion weighting can be obainted without being limited by the time constant T2. The so-called hole-burning diffusion sequence uses only the longitudinal magnetization for the diffusion weighting in a preliminary experiment. The signal is then acquired with a fast read-out sequence. During the preparation stripes will be "burned" into the magnetization on a subvoxel level, i.e. the magnetization is saturated there. Until the next saturation pulse the behavior of the magnetization depends first on the T1 relaxation time in this area and second on the diffusion. By rapidly repeating the selective pulse train a steady state magnetization dependend on the diffusion constant D and the T1 relaxation time is reached. In this work the dependencies between different sequence parameters were investigated and optimized using simulations. In addition, the sequence was implemented on a MR scanner and first experiments were carried out. With simulated lookup-tables we were able to quantify both the diffusion coefficient D and the T1 relaxation time in the case of not too short relaxation times T1. KW - Kernspintomografie KW - Infarkt KW - MRI KW - infarct KW - characterization KW - diffusion KW - hole-burning KW - NMR-Tomographie KW - Anisotrope Diffusion KW - Diffusion KW - Spektrales Lochbrennen KW - Herzinfarkt Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71157 ER - TY - THES A1 - Gutjahr, Fabian Tobias T1 - Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast T1 - Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange Measurements N2 - Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich. Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden. Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. N2 - The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired. Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement. Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice. The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified. A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses. In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI. KW - Kernspintomografie KW - Physioloische MRT KW - Modellbasierte Rekonstruktion KW - FAIR-ASL KW - Chemischer Austausch KW - Regionales Blutvolumen KW - Extrazellularvolumen KW - T1-Quantifizierung KW - Kernspinresonanz KW - Myokardiale Perfusion KW - Niere KW - Perfusionsmessung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161061 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER -