TY - THES A1 - Reddy, Edamakanti Chandrakanth T1 - Role of differential phosphorylation of c-Jun N-terminal domain in degenerative and inflammatory pathways of CNS T1 - Die Rolle der unterschiedlichen Phosphorylierung von c-Jun N-terminale Domäne bei degenerativen und entzündlichen Wirkungen im Nervengewebe N2 - In this study we have investigated the possible role of c-Jun and it’s activation by the JNK pathway in neuronal cell death and in the inflammatory response of activated astrocytes. The first part of this thesis focuses on the role of site specific phosphorylation of c-Jun in neuronal cell death. The second part focuses on the function of c-Jun in LPS-mediated activation of Bergmann glia cells. In the nervous system, activation of c-Jun transcription factor by different isoforms of c-Jun N-terminal kinase (JNK) functions in various cellular programs, including neurite outgrowth, repair and apoptosis. Yet, the regulatory mechanism underlying the functional dichotomy of c-Jun remains to be elucidated. Serine (S) 63/73 and threonine (T) 91/93 of c-Jun are the target phosphorylation sites for JNKs in response to various stimuli. Yet, these two groups of phosphorylation sites are differentially regulated in vivo, as the S63/73 sites are promptly phosphorylated upon JNK activation, whereas T91/93 phosphorylation requires a priming event at the adjacent T95 site. In our study, we used cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation as a model system to investigate the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK-sites in neuronal cell death. In this model system, JNK induces pro-apoptotic genes through the c-Jun/Ap-1 transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/Ap-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. We found that TK-deprivation led to c-Jun phosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of cerebellar granular cells (CGCs). Furthermore, we observed that lithium impaired c-Jun phosphorylation at T91/93, without interfering with S63/73 phosphorylation or JNK activation, suggesting that T91/T93 phosphorylation triggers c-Jun pro-apoptotic activity. Notably, expression of a c-Jun mutant lacking the T95-priming site for T91/93 phosphorylation (c-Jun A95) mimicked the effect of lithium on both cell death and c-Jun site-specific phosphorylation, whereas it was fully able to induce neurite outgrowth in naïve PC12 cells. Vice-versa, a c-Jun mutant bearing aspartate-substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass-spectrometry analysis confirmed that c-Jun is phosphorylation at T91/T93/T95 in cells. Moreover, recombinant-JNK phosphorylated c-Jun at T91/T93 in a T95-dependent manner. Based on our results, we propose that T91/T93/T95 phosphorylation of c-Jun functions as a sensitivity amplifier of the JNK cascade, setting the threshold for c-Jun pro-apoptotic activity in neuronal cells. In the central nervous system (CNS), the c-Jun transcription factor has been mainly studied in neuronal cells and coupled to apoptotic and regenerative pathways following brain injury. Besides, several studies have shown a transcriptional role of c-Jun in activated cortical and spinal astrocytes. In contrast, little is known about c-Jun expression and activation in Bergmann glial (BG) cells, the radial cerebellar astrocytes playing crucial roles in cerebellar development and physiology. In this study, we used neuronal/glial cerebellar cultures from neonatal mice to assess putative functions of c-Jun in BG cells. By performing double immunocytochemical staining of c-Jun and two BG specific markers, S100 and GLAST, we observed that c-Jun was highly expressed in radial glial cells derived from Bergmann glia. Bergmann glia-derived cells expressed toll-like receptor (TLR 4) and treatment with bacterial lipopolysaccharide (Le et al.) induced c-Jun phosphorylation at S63, exclusively in BG cells. Moreover, LPS induced IL-1β expression and inhibition of JNK activity abolished both c-Jun phosphorylation and the increase of IL-1β mRNA. Notably, we also observed that LPS failed to induce IL-1β mRNA in neuronal/glial cerebellar cultures generated from conditional knockout mice lacking c-Jun expression in the CNS. These results indicate that c-Jun plays a central role in c-Jun in astroglial-specific induction of IL-1β. Furthermore, we confirmed in vivo that c-Jun is expressed in BG cells, during the formation of the BG monolayer. Altogether, our finding underlines a putative role of c-Jun in astroglia-mediated neuroinflammatory dysfunctions of the cerebellum. N2 - In dieser Studie wurde die Rolle des Transkriptionsfaktors c-Jun sowie seine Aktivierung durch den JNK Signalweg beim neuronalen Zelltod und bei der entzündlichen Reaktion von aktivierten Astrozyten untersucht. Der erste Teil dieser Arbeit beschäftigt sich mit der Rolle von mehrfacher c-Jun Phosphorylierung an den Aminosäuren Threonin 91/93/95 beim neuronalen Zelltod. Der zweite Teil konzentriert sich auf die Rolle von c-Jun und seine Transaktivierung in LPS-vermittelter Aktivierung von Bergmann Gliazellen. Als Modellsystem für den neuronalen Zelltod wurde die Apoptose von cerebellären Granularzellen (CGC) durch trophische Granulazellen Kaliumkonzentration-Erniedrigung (TK) verwendet, da es ein Modell der Um das ist, das Zusammenspiel von pro-apoptotischen und pro-Überleben Signalwegen beim neuronalen Zelltod zu studieren. In diesem Modell induziert die c-Jun N-terminale Kinase (JNK) pro-apoptotische Gene durch den c-Jun/Ap-1 Transkriptionsfaktor. Auf der anderen Seite, führt ein Lithium-induzierter Überleben-Signalweg zur Unterdrückung der pro-apoptotischen c-Jun/Ap-1 Zielgene, ohne Interferenz mit JNK Aktivität. Es blieb jedoch der Mechanismus zu klären, durch den Lithium c-Jun-Aktivität hemmt. In der Arbeit wurde dieses Modellsystem benutzt, um die Regulation und Funktion der c-Jun-Phosphorylierung durch JNK an den Stellen S63 und T91/T93 beim neuronalen Zelltod zu studieren. Es wurde gefunden, dass TK-Kaliumerniedrigung zu c-Jun phosphorylierung führte und zwar an allen drei durch JNK phosphorylierbaren Ser/Thr (JNK-Stellen). Immunfluoreszenzanalyse von c-Jun Phosphorylierung auf Einzel-Zell-Ebene ergab jedoch, dass die S63-Stelle in allen c-Jun-exprimierenden Zellen phosphoryliert wurde, während T91/T93 Phosphorylierung empfindlicher war, analog zur Schalter-ähnlichen apoptotischen Antwort von CGCs. Umgekehrt verhinderte Lithium T91 und T93 Phosphorylierung und Zelltod ohne Wirkung auf die S63-Seite, was darauf hindeutet, dass T91/T93 Phosphorylierung durch c-Jun eine pro-apoptotische Aktivität auslöst. Dementsprechend schützte eine c-Jun-Mutation, der die T95 Priming-Stelle für T91/93 Phosphorylierung fehlt (T95A), CGCs vor Apoptose, wohingegen T95A Neuriten-wachstum in PC12-Zellen induzieren konnte. Umgekehrt führte eine c-Jun Mutante mit Aspartat-Substitution von T95 (T95D ) zur Aufhebung der schützenden Wirkung von Lithium auf CGC Apoptose, wodurch bestätigt wurde, dass die Inhibierung der T91/T93/T95 Phosphorylierung der Wirkung von Lithium auf den Zelltod zugrundeliegt. Massenspektrometrie-Analyse bestätigte multiple Phosphorylierung von c-Jun an T91/T93/T95 in den Zellen. Außerdem wurde rekombinantes c-Jun durch JNK an T91/T93 in einer T95-abhängigen Weise phosphoryliert. Basierend auf diesen Ergebnissen wird vorgeschlagen, dass T91/T93/T95 phosphorylierung von c-Jun als Empfindlichkeit-Verstärker der JNK-Kaskade fungiert, der die Schwelle für die pro-apoptotische Aktivität von c-Jun in neuronalen Zellen einstellt. Im zentralen Nervensystem (ZNS) wurde die Rolle des c-Jun Transkriptionsfaktors hauptsächlich bei neuronalem Zelltod und bei neuronaler Regeneration nach Hirnschädigung untersucht. Außerdem wurde auch eine Rolle für c-Jun bei der Transkription in aktivierten kortikalen und spinalen Astrozyten beschrieben. Im Gegensatz dazu ist wenig bekannt über die Expression von c-Jun und dessen Transaktivierung in Bergmann Gliazellen (BG)-Zellen, die eine entscheidende Rolle bei der Entwicklung des Kleinhirns und dessen Physiologie spielen. In dieser Arbeit wurde die putative Rolle von c-Jun bei kultivierten neuronalen/BG-Zellen aus dem Maus-Kleinhirn untersucht. Immunfluoreszenzanalyse von c-Jun und zwei für BG-Zellen spezifische Marker, S100 und GLAST, ergab, dass c-Jun in BG-Zellen hoch exprimiert wurde. Außerdem wurde gefunden, dass der Toll-like Rezeptor TLR4 in BG-Zellen exprimiert ist und dass die Behandlung mit bakteriellem Lipopolysaccharid (Le et al.) die c-Jun- Phosphorylierung an S63 induziert. Zusätzlich wurde gefunden, dass LPS IL-1b Expression induziert und die Inhibierung von JNK Aktivität verhinderte sowohl c-Jun-Phosphorylierung, als auch die Zunahme von IL-1 b mRNA. Insbesondere konnte LPS die IL-1b mRNA-Produktion in neuronalen / BG-Kulturen aus konditionellen Knockout Mäusen, denen c-Jun im ZNS fehlte, nicht induzieren, womit gezeigt wurde, dass c-Jun bei der Astroglia-spezifischen Induktion von IL-1 b essentiell ist. Immunohistochemische Analyse von c-Jun-exprimierenden Zellen im postnatalen Kleinhirn bestätigte in-vivo die Expression von c-Jun in BG Zellen und förderte eine dynamische Expression von c-Jun während der Entwicklung der BG Monolayer zutage. Insgesamt unterstreichen die Befunde dieser Arbeit eine wahrscheinliche Rolle von c-Jun bei Astroglia-vermittelten neuroinflammatorischen Funktionsstörungen des Kleinhirns. KW - Jun KW - c-Jun Phosphorylierung KW - JNK KW - neuronal cell death KW - Licl KW - degeneratives Nervengewebe KW - Zelltod KW - Zentralnervensystem KW - Astrozyt Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90748 ER - TY - THES A1 - Förtsch, Christina T1 - Pneumolysin: the state of pore-formation in context to cell trafficking and inflammatory responses of astrocytes T1 - Pneumolysin: Einfluss der Porenbildung auf zelluläre Transportprozesse und inflammatorische Antworten in Astrozyten N2 - Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated. N2 - Das Protein-Toxin Pneumolysin ist einer der entscheidenden Virulenzfaktoren von Streptococcus pneumoniae. Dieses Protein-Toxin gehört zur Familie der cholesterinabhängigen Zytolysine, die Membrancholesterol für ihre Aktivierung und Bindung benötigen. Nach der Membranbindung ordnen sich die Toxinmonomere kreisförmig an und ändern ihre Konformation, wodurch eine Pore entsteht, die dann zu einer Lyse der Zelle führt. Vor kurzem wurde nach Pneumolysinbehandlung in einer humanen Neuroblastomzelllinie eine Aktivierung kleiner GTPasen gefunden, die für zytoskelettale Veränderungen entscheidend sind (z.B. Zellbewegungen). Deshalb wurde die Hypothese aufgestellt, dass Pneumolysin diese zytoskelettalen Veränderungen auch in primären neuronalen Zellen auslösen könnte. Das Ziel dieser Arbeit war, die Effekte von Pneumolysin auf primäre Mausastrozyten im Hinblick auf Porenbildung, zelluläre Transportprozesse und immunologische Antworten zu untersuchen. Im ersten Teil wird die Bedeutung der Porenbildung auf zytoskelettale Veränderungen untersucht. Hierbei wurden lytische Fähigkeiten, Membranbindung, Membrandepolarisation, Porenbildung im künstlichen Bilayer und Effekte auf das Zytoskelett untersucht. Sowohl der Wildtyp als auch die Varianten zeigten die gleiche Stärke an Membranbindung. Diese Untersuchungen weisen darauf hin, dass die Porenbildung für die Zell-Lyse, Membrandepolarisation und zytoskelettale Veränderungen in Mausastrozyten wichtig ist und führt zu der Schlussfolgerung, dass nicht die Membranbindung, sondern die Porenbildung entscheidend für die beobachteten zytoskelettalen Veränderungen ist. Im zweiten Teil dieser Arbeit wurde der Effekt des Pneumolysin auf zelluläre Transportprozesse untersucht. Erneut zeigten die Pneumolysinvarianten keine Wirkung, während der Wildtyp die Gesamtrate der Endozytose erhöhte. Weiterhin wurde nur der Wildtyp internalisiert. Um einen möglichen Mechanismus für die Internalisierung des Toxins vorschlagen zu können, wurde Pneumolysin als GFP-markiertes Toxin genutzt. Weiterhin wurden einige Marker für unterschiedliche endozytotische Transportprozesse genutzt um eine Ko-lokalisation mit Pneumolysin-GFP zu ermöglichen. Des Weiteren wurden Inhibitoren für zwei Schlüsselproteine endozytotischer Vorgänge, Dynamin und Myosin II, genutzt. Die Ergebnisse dieser Untersuchungen zeigten, dass Pneumolysin wahrscheinlich durch dynamin- und caveolin-unabhängige Pinozytose in die Zelle aufgenommen wird. Dieser Mechanismus führt zu der Bildung von Caveosomen, deren weiterer Transport, und somit das Schicksal des internalisierten Toxins, bis heute noch nicht aufgeklärt ist. Die Beobachtung, dass Pneumolysin die Gesamtrate an Endozytose erhöht, führte zum dritten Teil dieser Arbeit. Wenn das Toxin die Gesamtrate an Endozytose erhöht, stellt sich die Frage, ob dieser Vorgang der Zerstörung des Toxins – also einer Abwehr der Zelle – dient, oder ob diese Internalisierung eine Strategie des Pathogens ist, um tiefer in das Wirtsgewebe einzudringen. Aktuelle Studien belegen, dass Pneumolysin einen Einfluss auf inflammatorische Antworten des Immunsystems hat. Aus diesem Grund wurden unterschiedliche proinflammatorische Zytokine untersucht. Überraschenderweise zeigte sich nur eine Erhöhung des Interleukin 6 nach der Toxinbehandlung. Weiterhin hatten die Endozytoseinhibitoren keinen Effekt auf die Produktion dieses proinflammatorischen Zytokins. Pneumolysin führt also zu einem Anstieg der Interleukin 6 Produktion, diese Produktion ist jedoch unabhängig von der Internalisierung dieses Toxins. Die Produktion dieses Interleukins würde zur Produktion der Akute-Phase Proteine, der Aktivierung der T-Zell Antwort, zu Wachstum und Zelldifferenzierung führen. Einerseits könnte diese Aktivierung die Infektion durch das Pathogen bekämpfen. Andererseits könnte S. pneumoniae die erhöhte Produktion durch PLY an Interleukin 6 nutzen um weiter in das Wirtsgewebe vordringen zu können. Diese Frage sollte noch durch weitere Experimente untersucht werden. KW - Streptococcus pneumoniae KW - Toxin KW - Hirnhautentzündung KW - Entzündung KW - Astrozyt KW - Pore KW - Pneumolysin KW - Meningitis KW - Inflammation KW - Zelltransport KW - Porenbildung KW - Pneumolysin KW - Meningitis KW - Inflammation KW - cellular-trafficking KW - Pore-formation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70892 ER -