TY - THES A1 - Obel, Kerstin T1 - Synthese und Charakterisierung partiell degradierbarer Hybridpolymere für biomedizinische Anwendungen T1 - Synthesis and Characterization of partially degradable hybrid polymers for biomedical applications N2 - Zur Züchtung von Gewebe außerhalb des Körpers wird ein struktureller und biologischer Ersatz für die natürliche Extrazelluläre Matrix (ECM) benötigt, der durch künstliche Gerüst-struk¬tu¬ren, sogenannte Scaffolds, realisiert wird. Aktuell werden einige natürliche und synthe-tische biodegradierbare Polymere als Scaffold¬materialien verwendet, die jedoch alle noch signifi¬kante Nachteile aufweisen, weshalb verstärkt an Alternativen geforscht wird. Das Ziel dieser Arbeit war daher, auf Basis klassischer anorganisch-organischer Hybridpolymere, neuartige biodegradierbare Hybridpolymere zu synthetisieren, die ebenfalls durch einfache Variationen in ihrem strukturellen Aufbau gezielt modifiziert werden können. In diesem Zusammen¬hang sind Untersuchungen zur Erstellung grundlegender Struktur-Eigenschafts-beziehungen dieser sogenannten partiell degradierbaren Hybridpolymere von besonderer Bedeutung und daher ein wesentlicher wissen¬schaft¬licher Grundbestandteil dieser Arbeit, um dementsprechend anwendungs¬bezo¬gene Eigen¬schaften wie beispielsweise das E-Modul und die Degradationsrate definiert einstellen zu können. N2 - In order to grow tissue outside of the body a structural and biological substitute for the natural extracellular matrix (ECM) is needed which can be realized by so-called scaffold structures. Currently some natural and synthetic biodegradable polymers are used as materials for these scaffolds, but all of them have significant disadvantages, which is why there is a strong need for alternative materials. Therefore, the objective of this work was to synthesize novel biodegradable hybrid polymers which can be varied in their structural setup by simple modifications using the material concept of conventional inorganic-organic hybrid polymers as a starting point. In this context the fundamental relations between the structure of these so-called partially degradable hybrid polymers and their properties are of outstanding importance and therefore form a further fundamental academic element of this work. Thus, it is possible to adjust use-oriented properties, i. e. the Young’s modulus and the degradation rate, as predefined by the specific application. KW - Metallorganische Polymere KW - Biologischer Abbau KW - Sol-Gel-Verfahren KW - anorganisch-organische Hybridpolymere KW - biodegradierbar KW - Scaffoldmaterialien KW - Implantate KW - Sol-Gel-Prozess KW - Hybridpolymere Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124026 ER - TY - THES A1 - Mishra, Shambhavi T1 - Structural and Functional Characterization of the Enzymes Involved in the Menaquinone Biosynthesis and Benzoate Degradation T1 - Strukturelle und funktionelle Charakterisierung von Enzymen, die an der Menaquinon-Biosynthese und der Biodegradation von Benzoat beteiligt sind N2 - The present work illustrates the structural and biochemical characterization of two diverse proteins, BadI and MenD from Rhodopseudomonas palustris and Staphylococcus aureus, respectively. BadI or 2-ketocyclohexanecarboxyl-CoA is one of the key enzymes involved in the anaerobic degradation of aromatic compounds. The degradation of aromatic compounds is a vital process for the maintenance of the biogeochemical carbon cycle and bioremediation of xenobiotic compounds, which if present at higher concentrations can cause potential hazards to humans. Due to the relatively inert nature of aromatic compounds, enzymes catalyzing their degradation are of special interest for industrial applications. BadI is one of the key enzymes involved in the anaerobic degradation of aromatic compounds into an aliphatic moiety. The major focus of this study was to provide mechanistic insights into the reaction catalyzed by BadI. BadI belongs to the crotonase superfamily and shares high sequence homology with the family members of MenB or dihydroxynaphthoate synthase. BadI is known to catalyze the cleavage of the cyclic ring of 2-ketocyclohexane carboxyl-CoA by hydrolyzing the C-C bond leading to the formation of the aliphatic compound pimelyl CoA. On the other hand MenB catalyzes the condensation reaction of o-succinylbenzoyl-CoA to dihydroxylnaphthoyl-CoA. A comprehensive amino acid sequence analysis between BadI and MenB showed that the active site residues of MenB from Mycobacterium tuberculosis (mtMenB) are conserved in BadI from Rhodopseudomonas palustris. MenB is involved in the menaquinone biosynthesis pathway and is a potential drug target against Mycobacterium tuberculosis as it has no known human homologs. Due to the high homology between MenB and BadI and the inability to obtain MenB-inhibitor complex structures we extended our interest to BadI to explore a potential substitute model for mtMenB as a drug target. In addition, BadI possesses some unique mechanistic characteristics. As mentioned before, it hydrolyzes the substrate via a retro Dieckmann’s reaction contrasting its closest homolog MenB that catalyzes a ring closing reaction through a Dieckmann’s reaction. Nevertheless the active site residues in both enzymes seem to be highly conserved. We therefore decided to pursue the structural characterization of BadI to shed light on the similarities and differences between BadI and MenB and thereby provide some insights how they accomplish the contrasting reactions described above. We determined the first structures of BadI, in its apo and a substrate mimic bound form. The crystal structures revealed that the overall fold of BadI is similar to other crotonase superfamily members. However, there is no indication of domain swapping in BadI as observed for MenB. The absence of domain swapping is quite remarkable because the domain swapped C-terminal helical domain in MenB provides a tyrosine that is imperative for catalysis and is also conserved in the BadI sequence. Comparison of the active sites revealed that the C-terminus of BadI folds onto its core in such a way that the conserved tyrosine is located in the same position as in MenB and can form interactions with the ligand molecule. The structure of BadI also confirms the role of a serine and an aspartate in ligand interaction, thus validating that the conserved active site triad participates in the enzymatic reaction. The structures also reveal a noteworthy movement of the active site aspartate that adopts two major conformations. Structural studies further illuminated close proximity of the active site serine to a water and chlorine molecule and to the carbon atom at which the carbonyl group of the true substrate would reside. Biochemical characterization of BadI using enzyme kinetics validated that the suggested active site residues are involved in substrate interaction. However, the role of these residues is very distinct, with the serine assuming a major role. Thus, the present work ascertain the participation of putative active site residues and demonstrates that the active site residues of BadI adopt very distinctive roles compared to their closest homolog MenB. The MenD protein also referred to as SEPHCHC (2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylic acid) synthase is one of the enzymes involved in menaquinone biosynthesis in Staphylococcous aureus. Though S. aureus is usually considered as a commensal it can act as a remarkable pathogen when it crosses the epithelium, causing a wide spectrum of disorders ranging from skin infection to life threatening diseases. Small colony variants (SCVs), a slow growing, small sized subpopulation of the bacteria has been associated with persistent, recurrent and antibiotic resistant infections. These variants show autotrophy for thiamine, menaquinone or hemin. Menaquinone is an essential component in the electron transport pathway in gram-positive organisms. Therefore, enzymes partaking in this pathway are attractive drug targets against pathogens such as Mycobacterium tuberculosis and Bacillus subtilis. MenD, an enzyme catalyzing the first irreversible step in the menaquinone biosynthetic pathway has been implicated in the SCV phenotype of S. aureus. In the present work we explored biochemical and structural properties of this important enzyme. Our structural analysis revealed that despite its low sequence identity of 28%, the overall fold of staphylococcal MenD (saMenD) is similar to Escherichia coli MenD (ecMenD) albeit with some significant disparities. Major structural differences can be observed near the active site region of the protein and are profound in the C-terminal helix and a loop near the active site. The loop contains critical residues for cofactor binding and is well ordered only in the ecMenD-ThDP structure, while in the apo and substrate bound structures of ecMenD the loop is primarily disordered. In our saMenD structure the loop is for the first time completely ordered in the apo form and displays a novel conformation of the cofactor-binding loop. The loop adopts an unusual open conformation and the conserved residues, which are responsible for cofactor binding are located too far away to form a productive complex with the cofactor in this conformation. Additionally, biochemical studies in conjugation with the structural data aided in the identification of the substrate-binding pocket and delineated residues contributing to its binding and catalysis. Thus the present work successfully divulged the unique biochemical and structural characteristics of saMenD. N2 - Die vorliegende Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung der beiden unterschiedlichen bakteriellen Enzyme BadI von Rhodopseudomonas palustris und MenD von Staphylococcus aureus. Die 2-Ketocyclohexancarboxyl-CoA-Hydrolase BadI ist eines der Schlüsselenzyme des anaeroben Abbaus aromatischer Verbindungen. Der Abbau aromatischer Verbindungen ist essentiell für die Aufrechterhaltung des biogeochemischen Kohlenstoffkreislaufs und der biologischen Beseitigung von Xenobiotika, welche in höheren Konzentrationen eine Gefahr für den menschlichen Organismus darstellen können. Wegen des inerten Charakters aromatischer Verbindungen sind Enzyme, welche deren Abbau katalysieren, von besonderem Interesse für industrielle Anwendungen. BadI ist eines der Schlüsselenzyme für den anaeroben Abbau aromatischer Verbindungen zu aliphatischen Gruppen. Das Hauptaugenmerk dieses Projekts lag auf der Aufklärung des Reaktionsmechanismus, welcher von BadI katalysiert wird. BadI gehört zur Überfamilie der Crotonasen und zeigt hohe Sequenzhomologie mit der zugehörigen Dihydroxynaphthoat-Synthase MenB. Durch die Hydrolyse einer C-C Bindung katalysiert BadI den Schnitt des zyklischen Rings von 2-Ketocyclohexancarboxyl-CoA, welcher zur Bildung der aliphatischen Verbindung Pimelyl-CoA führt. MenB, andererseits, katalysiert die Kondensationsreaktion von O-Succinylbenzyl-CoA zu Dihydronaphthoyl-CoA. Ein umfassender Aminosäuresequenzvergleich zwischen BadI und MenB zeigt, dass die Reste des aktiven Zentrums von MenB aus Mycobacterium tuberculosis (mtMenB) in BadI von R. palustris konserviert sind. MenB ist Teil des Menaquinon Biosynthesewegs und ein potentielles Wirkstoffziel gegen M. tuberculosis, da kein humanes Homolog existiert. Wegen der ausgeprägten Homologie zwischen MenB und BadI und der Tatsache, dass bisher keine MenB-Inhibitor Komplex Strukturen gelöst werden konnten, erweiterten wir unser Interesse auf BadI, da es als Model für mtMenB als Wirkstoffziel dienen könnte. Darüber hinaus besitzt BadI einige einzigartige mechanistische Charakteristika. Wie zuvor erwähnt, hydrolysiert es das Substrate durch eine reverse Dieckmanns Reaktion in Gegensatz zu seinem ähnlichsten Homolog MenB, das einen Ringschluss durch eine Dieckmanns Reaktion katalysiert. Dennoch scheinen die Reste des aktiven Zentrums streng konserviert zu sein. Daher entschieden wir die strukturelle Charakterisierung von BadI anzugehen um Gemeinsamkeiten und Unterschiede zwischen BadI und MenB aufzuzeigen und einen Einblick zu erhalten, wie sie die gegenläufigen Reaktionen durchführen. Wir lösten die ersten Strukturen von BadI in seiner Apo-Form und einer Substrat-Mimik gebundenen Form. Die Kristallstrukturen von BadI zeigten die gleiche Gesamtfaltung wie andere Mitglieder der Crotonase Familie. Allerdings gibt es in BadI kein Anzeichen für Domain-Swapping, wie es in MenB beobachtet wurde. Das Fehlen des Domain-Swappings ist bemerkenswert, da die vertauschte C-terminale helikale Domäne in MenB ein Tyrosin enthält, welches essentiell für die Katalyse ist und auch in BadI konserviert vorliegt. Der Vergleich des aktiven Zentrums zeigt, dass der C-Terminus von BadI so auf seinen Kern/Hauptteil faltet, dass das konservierte Tyrosin an der gleichen Stelle positioniert ist wie in MenB und mit dem Liganden interagieren kann. Die Struktur von BadI bestätigt auch die Rolle eines Serin- und eines Aspartatrests für die Ligandenbindung und bekräftigt damit, dass das konservierte aktive Zentrum an der enzymatischen Reaktion teilnimmt. Die Strukturen zeigen auch eine bemerkenswerte Verschiebung des aktiven Aspartats, welches zwei Hauptkonformationen einnimmt. Strukturelle Analysen zeigten auch die Nähe des Serinrests zu einem Wasser- und Chlormolekül, sowie einem Kohlenstoffrest, an dessen Stelle der Carbonylrest des eigentlichen Substrats läge. Die biochemische Charakterisierung von BadI in enzymkinetischen Untersuchungen bestätigte dass die vorgeschlagenen Reste des aktiven Zentrums an der Substratbindung beteiligt sind. Jedoch ist die Rolle der verschiedenen Reste sehr verschieden, wobei dem Serin eine herausragende Rolle zugedacht wird. Die hier dargestellte Arbeit bestätigt die Mitwirkung des mutmaßlichen aktiven Zentrums und zeigt, dass die Reste des Aktiven Zentrums von BadI eine unterschiedliche Rolle, im Vergleich zu ihrem ähnlichsten Homolog MenB, spielen. MenD, eine SEPHCHC (2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carbonsäure) Synthase, ist an der Menaquinonbiosynthese von S. aureus beteiligt. Obwohl S. aureus gewöhnlich als Kommensale betrachtet wird, kann es als bemerkenswertes Pathogen auftreten, wenn es die Epithelwand durchbricht und eine Vielzahl an Erkrankungen, von einfachen Hautinfektionen bis zu lebensbedrohlichen Zustanden, verursachen. Sogenannte „Small colony variants“ (SCVs), eine langsam wachsende, kleinzellige Subpopulation der Bakterien wurde mit persistenten, rezidivierenden und antibiotika-resistenten Infektionen assoziiert. Diese Varianten weisen einen Mangel von Thiamin, Menaquinon und Hämin auf. Menaquinon ist ein essentieller Bestandteil der Elektronentransport-Kette in grampositiven Organismen. Daher sind Enzyme dieses Stoffwechselwegs attraktive Wirkstoffziele gegen Krankheitserreger wie M. tuberculosis oder Bacillus subtilis. MenD, das Enzym, welches den ersten irreversiblen Schritt des Menaquinon-Biosynthesewegs katalysiert, wurde mit dem SCV Phänotyp von S. aureus in Verbindung gebracht. In dieser Arbeit werden die biochemischen und strukturellen Eigenschaften dieses wichtigen Enzyms untersucht. Unsere strukturelle Untersuchung zeigte, dass trotz einer niedrigen Sequenzidentität von 28%, die Gesamtfaltung von S. aureus MenD (saMenD) mit derjenigen von Escherichia coli MenD (ecMenD), trotz einiger signifikanter Abweichungen, übereinstimmt. Größere strukturelle Unterschiede können nahe des aktives Zentrums des Proteins beobachtet werden, vor allem in der C-terminalen Helix und einer Schleife nahe dem aktiven Zentrum. Die Schleife enthält kritische Reste für die Kofaktorbindung und liegt nur in der ecMenD-ThDP Komplexstruktur definiert vor, während die in der Apo-Form und der Substrat-gebundenen Struktur von ecMenD ungeordnet ist. In unserer saMenD Struktur zeigt sich die Schleife erstmals komplett geordnet in der Apo-Form und stellt eine neue Konformation der Kofaktor-Bindeschleife dar. Die Schleife nimmt eine ungewöhnlich offene Konformation an und die konservierten Reste, welche für die Kofaktorbindung verantwortlich sind, sind zu weit entfernt, um in dieser Position einen produktiven Komplex mit dem Kofaktor zu bilden. Zudem haben biochemische Studien in Verbindung mit den strukturellen Daten zur Identifizierung der Substratbindetasche und der an der Bindung und Katalyse beteiligten Aminosäuren beigetragen. In der vorliegenden Arbeit wurden die biochemischen und strukturellen Charakteristika von saMenD erfolgreich aufgeklärt. KW - Benzoate KW - Menaquinon-BIosynthese KW - SEPHCHC Synthase KW - Menaquinone Biosynthesis KW - Benzoate degradation KW - Biologischer Abbau KW - Enzym KW - Rhodopseudomonas palustris KW - Staphylococcus aureus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90848 ER - TY - THES A1 - Walter, Christina T1 - Quantifizierung des postmortalen RNA-Status im Gehirn mittels Real-time-PCR: Ein Beitrag zur Bestimmung der Leichenliegezeit T1 - Quantification of the postmortem RNA-status in human brain by means of real-time-PCR: A contribution to the determination of the postmortem interval N2 - Quantifizierung des postmortalen RNA-Status im Gehirn mittels Real-time-PCR: Ein Beitrag zur Bestimmung der Leichenliegezeit Der postmortale Nukleinsäureabbau verläuft unterschiedlich: während DNA im Allgemeinen als stabil angesehen wird und erst mit Einsetzen von Fäulniserscheinungen stärkerer Degradation unterliegt, wird RNA mit dem Sistieren der Kreislauftätigkeit relativ rasch abgebaut. Eine Reihe von Studien hat aber gezeigt, dass RNA in bestimmten Geweben eine höhere Stabilität besitzt als ursprünglich angenommen. Dies könnte Bedeutung für die molekulare Medizinforschung besitzen, die auf Genexpressionsstudien in postmortalem Gewebe angewiesen ist. Außerdem könnte eine Quantifizierung der RNA-Degradation z.B. durch Real-time-PCR zur Eingrenzung der Leichenliegezeit genutzt werden. In dieser Studie wurde ein quantitativer Vergleich verschiedener sog. Haushaltsgene (u.a. GAPDH, ß-Actin, FASN) in Gehirngewebe mit einer Leichenliegezeit zwischen 0 und 96 Stunden und unter alternativen Ansätzen zur reversen Transkription (oligo-(dT)-Primer mit und ohne sog. Anker, Random Hexamer Primer) durchgeführt. Zunächst erfolgten systematische Untersuchungen zur Effektivität der RNA-Isolierung, reversen Transkription und der PCR im Hinblick auf eine möglichst präzise Quantifizierung. Es zeigte sich, dass die Resultate der Real-time-PCR ein Maß für die ursprünglich in der Probe vorhandene mRNA-Menge darstellen. Weiterhin stellte sich heraus, dass eine deutliche und evtl. auch zur Liegezeitbestimmung nutzbare RNA-Degradation erst nach 24h einsetzt. Ein wesentlicher Unterschied zwischen Random- und oligo-(dT)-priming der reversen Transkription war dabei nicht festzustellen. Diese Ergebnisse belegen zum einen, dass RNA im frühen postmortalen Intervall relativ stabil ist und als Substrat für quantitative Untersuchungen dienen kann, zum anderen, dass ein zeitabhängiger Abbau besteht, der eine Eingrenzung der Leichenliegezeit z.B. mittels Grenzwerten in ein frühes und mittleres Postmortalintervall zulässt. N2 - Quantification of the postmortem RNA-status in human brain by means of real-time-PCR: A contribution to the determination of the postmortem interval The postmortem degradation of nucleic acid proceeds differently: whereas DNA is generally considered as stable and is only subject to stronger degradation with the beginning of putrefaction, RNA degrades very fast when the circulation is suspended. A series of studies, however, has shown that RNA has a greater stability in certain tissues than originally expected. This could be important for molecular medical research which is dependent on gene expression studies using postmortem tissue. Furthermore, the quantification of RNA-degradation by means of real-time-PCR could be used for the limitation of the postmortem interval. In this study, a quantitative comparison has been made between different so-called housekeeping-genes (e.g. GAPDH, ß-Actin, FASN) in human brain and a postmortem interval between 0 and 96 hours. Different alternative approaches have been used for the reverse transcription (oligo-(dT)-Primer with and without Anker, Random Hexamer Primer). At first, systematic examinations concerning the effectiveness of RNA isolation, reverse transcription and PCR have been undertaken with regard to a preferably exact quantification. It turned out that the results of the real-time-PCR represent a measure for the mRNA amount originally present in the specimen. Moreover, it emerged that a clear RNA degradation, which could possibly be used for the determination of the postmortem interval, begins after 24 hours. An important difference between random and oligo-(dT) priming of the reverse transcription could not be stated. These results demonstrate, on the one hand, that RNA is relatively stable during the early postmortem interval so that it can serve as substrate for quantitative examinations. On the other hand, it is shown that a time-dependent degradation exists which allows a limitation of the postmortem interval into an early and middle postmortem interval by means of threshold values for example. KW - Quantifizierung KW - Messenger-RNS KW - Real time quantitative PCR KW - Gehirn KW - Housekeeping-Gen KW - Biologischer Abbau KW - Leichenliegezeit KW - Postmortem interval Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28570 ER - TY - THES A1 - Ulbricht, Juliane T1 - Insights into Polymer Biodegradation - Investigations on oxidative, hydrolytic and enzymatic Pathways T1 - Einblicke in die Bioabbaubarkeit von Polymeren - Untersuchungen zu oxidativen, hydrolytischen und enzymatischen Abbauwegen N2 - The present work aims towards the investigation of polymer degradation under biologically relevant conditions. In order to assess a potential degradation of polymers of interest for biomedical applications in vivo and associated effects on living tissue, representatives of poly(2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) and poly(N-vinylpyrrolidone) for reference purposes are examined regarding their stability under oxidative and hydrolytic conditions as well as towards enzymatic degradation. The polymers investigated in the framework of this thesis are generally considered to be non-biodegradable. Both poly(ethylene glycol) and poly(N-vinylpyrrolidone) are or were applied intensively in vivo provoking seriously harmful side effects like fatal blood poisoning from the oxidation of poly(ethylene glycol) chain ends or poly(N-vinylpyrrolidone) storage disease. Poly(2-alkyl-2-oxazoline)s and polypeptoids, both promising polymeric biomaterials for a wide variety of in vivo applications, are not clinically applied yet but undergo thorough investigations. However, comprising amide bonds within the backbone or the appending side chain, poly(2-alkyl-2-oxazoline)s and polypeptoids potentially offer a higher susceptibility towards (bio-)degradation. Representing the three most impactful initiators of degradation in vivo, the present study is focused on polymer deterioration by oxidative species, hydrolytic conditions and enzymes. Oxidative species are generated in a variety of processes in vivo, both on purpose and as an unintentional by-product. Previous investigations revealed the susceptibility of poly(ethylene glycol), poly(N-vinylpyrrolidone), poly(2-alkyl-2-oxazoline)s and polypeptoids to deterioration by hydroxyl radicals deriving from hydrogen peroxide and copper ions. The obtained data confirm previous results of an apparent degradation rate increasing with increasing chain length due to self-inhibitory end group effects for all investigated polymer species. Although the exact concentrations of oxidative species in vivo are very controversial, with respect to their great variety and wide distribution the investigated polymers are likely prone to oxidative deterioration to some extent, with rates, mechanisms and degradation products strongly depending on the respective reactive species, polymer structure and chain length. Like blood, most tissues of the human body benefit from a slightly alkaline pH value. Nevertheless, specific areas like the human stomach or tumor tissues possess acidic conditions potentially capable to cleave amide bonds comprised by poly(2-alkyl-2-oxazoline)s and polypeptoids. Unlike the hydrolysis of poly(2-alkyl-2-oxazoline)s resulting in side chain cleavage, the hydrolysis of polypeptoids induces backbone scission decreasing the polymer chain length tremendously and releasing, if performed exhaustively, the respective amino acids. Hydrolysis of polysarcosine is monitored by quantification of the released sarcosine via 1H-NMR spectroscopy and determination of the residual Mw via GPC. Its cyclic dimer sarcosine anhydride is formed as an intermediate product in this process via cyclization of unstable linear dimers of sarcosine. Modification and degradation of bio(macro)molecules is an essential part of human metabolism. Polymers bearing amide bonds and showing a great similarity to natural occurring and widely distributed polypeptides, like poly(2-alkyl-2-oxazoline)s and polypeptoids, bear the potential of an enzymatic biodegradability by (more or less specific) peptidases. Just like the acidic hydrolysis described previously, peptidase activity would result in the cleavage of polymer amide bonds. The aim of the present thesis was to evaluate the stability of poly(2-alkyl-2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) for the sake of reference under circumstances resembling in vivo conditions as closely as possible. Initial experiments focused on the degradation of dye-labeled upon incubation with homogenates of freshly harvested rat liver and kidney. However, although the obtained results are promising for the most part, they are considered rather unreliable and non-reproducible for various reasons. More conclusive data are attained from the incubation of non-labeled polymers in freshly laid chicken eggs. While no evidence for an enzymatic digestion of poly(ethylene glycol) in chicken egg white is found and deterioration of poly(2-methyl-2-oxazoline) upon incubation apparently derives from non-enzymatic hydrolysis, incubated polysarcosine samples reveal distinct elugram patterns depending on the respective C- and N-terminal end groups indicating both exopeptidase and endopeptidase activity. It has to be kept in mind though, that an enzymatic digestibility of polysarcosine does not necessarily imply the digestion of polypeptoids bearing longer side chains by peptidases as well, which should be investigated in further studies. N2 - Die vorgestellte Arbeit befasst sich mit der Untersuchung des Abbauverhaltens von Polymeren unter biologisch relevanten Bedingungen. Vertreter der Poly(2-alkyl-2-oxazolin)e und Polypeptoide sowie Polyethylenglycol und Poly(N-vinylpyrrolidon) als Referenzpolymere werden im Hinblick auf ihre Stabilität unter oxidativen und hydrolytischen Bedingungen sowie gegen enzymatische Verdauung untersucht, um Rückschlüsse auf ihren potentiellen Abbau in vivo ziehen und die damit verbundenen Auswirkungen auf lebendes Gewebe abschätzen zu können. Poly(2-alkyl-2-oxazolin)e und Polypeptoide, zwei vielversprechende, jedoch noch wenig untersuchte Polymerklassen, sind als Biomaterialien für eine Vielzahl von in vivo Anwendungen interessant, werden aber bisher nicht kommerziell eingesetzt. Wie auch Polyethylenglycol und Poly(N-vinylpyrrolidon) werden Poly(2-alkyl-2-oxazolin)e und Polypeptoide als nicht bioabbaubar angesehen, was in Anbetracht der im Polymerrückgrat bzw. der davon abgehenden Seitenkette enthaltenen Amidbindungen kritisch zu hinterfragen ist. Reaktive Sauerstoff- und Stickstoffspezies werden in vivo in einer Vielzahl von Prozessen gezielt oder auch als unerwünschtes Nebenprodukt gebildet. Vorangegangene Untersuchungen konnten bereits die Anfälligkeit von Polyethylenglycol, Poly(N-vinylpyrrolidon), Poly(2-alkyl-2-oxazolin)en und Polypeptoiden für Modifikationen durch in situ durch Reaktion von Wasserstoffperoxid und Kupferionen gebildete Hydroxylradikale zeigen. Desweiteren wiesen die Resultate auf eine starke Abhängigkeit der scheinbaren Abbaurate von der Polymerkettenlänge hin. Die erhaltenen Daten bestätigen die früheren Ergebnisse zum Anstieg der scheinbaren Abbaurate mit steigender Kettenlänge durch selbstinhibitorische Endgruppeneffekte für alle untersuchten Polymerspezies. Die tatsächlichen Konzentrationen reaktiver Sauerstoffspezies in vivo werden kontrovers diskutiert, hinsichtlich ihrer großen Vielfalt und breiten Verteilung im Körper ist es jedoch durchaus wahrscheinlich, dass die untersuchten Polymere in vivo in unterschiedlichem Maße dem oxidativen Abbau unterliegen. Dabei sind nicht nur die Abbauraten, sondern auch der Mechanismus und die entsprechend gebildeten Abbauprodukte von der Art der reaktiven Spezies, der Polymerstruktur und der entsprechenden Kettenlänge abhängig. Blut und die meisten Gewebe des menschlichen Körpers sind auf einen leicht alkalischen pH-Wert angewiesen. Dennoch weisen spezifische Regionen wie den Magen oder Tumorgewebe ein saures Milieu auf, welches eventuell in der Lage ist, Amidbindungen, wie sie in Poly(2-alkyl-2-oxazolin)en und Polypeptoiden enthalten sind, zu spalten. Im Gegensatz zur Hydrolyse von Poly(2-alkyl-2-oxazolin)en, welche in Abspaltung der Seitenkette resultiert, kommt es bei der Hydrolyse von Polypeptoiden zur Spaltung des Polymerrückgrates, welche mit einer drastischen Verringerung der Kettenlänge und, mit fortschreitender Hydrolyse, mit der Freisetzung der entsprechenden Aminosäure einhergeht. Die Hydrolyse von Polysarkosin wird durch Quantifizierung des freigesetzten Sarkosins via 1H-NMR Spektroskopie sowie durch Bestimmung des Mw via GPC verfolgt. Dabei zeigt sich, dass sich das zyklische Dimer Sarkosinanhydrid als Zwischenprodukt der Hydrolyse durch Zyklisierung instabiler linearer Dimere bildet. Die Modifikation und der Abbau von Bio(makro)molekülen sind essentieller Bestandteil des menschlichen Metabolismus. Polymere, die wie die Poly(2-alkyl-2-oxazolin)e und Polypeptoide Amidbindungen und damit große Ähnlichkeit zu den natürlich vorkommenden und weit verbreiteten Polypeptiden aufweisen, bergen das Potential einer möglichen Bioabbaubarkeit durch Peptidasen. Ziel der vorliegenden Arbeit war die Evaluierung der Stabilität von Poly(2-alkyl-2-oxazolin)en und Polypeptoiden sowie Polyethylenglycol als Referenzpolymer ohne Amidbindungen unter Bedingungen, welche den in vivo vorliegenden Verhältnisse möglichst ähnlich sind. In ersten Experimenten liegt der Schwerpunkt auf der Inkubation Farbstoff-markierter Polymere in Homogenaten von frisch entnommenen Rattenlebern und -nieren. Obwohl die erhaltenen Ergebnisse zum Großteil vielversprechend sind, bestehen aus einer Vielzahl von Gründen Zweifel an ihrer Zuverlässigkeit und Reproduzierbarkeit. Die Inkubation von nicht marktierten Polymeren in frisch gelegten Hühnereiern liefert aussagekräftigere Ergebnisse. Es sind keine Hinweise auf einen enzymatischen Abbau von Polyethylenglycol in Hühnereiweiß ersichtlich. Abweichungen der Elugramme des Poly(2-methyl-2-oxazolin)s deuten auf eine Modifikation während der Inkubation hin, die jedoch vermutlich nicht enzymatischen Ursprungs ist. Im Gegensatz dazu zeigen die Polysarkosin-Proben in Abhängigkeit der entsprechenden C- und N-terminalen Gruppen charakteristische Elugrammmodifikationen, welche auf die Aktivität von Exo- und Endopeptidasen hindeuten. KW - Biologischer Abbau KW - Polymere KW - Bioabbaubarkeit KW - Polyethylenglycol KW - Polypeptoide KW - Poly(2-oxazolin)e KW - Biodegradability KW - Polyethylene glycol KW - Polypeptoids KW - Poly(2-oxazoline)s Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158683 ER - TY - THES A1 - Keßler, Martina T1 - Biodegradable solvent cast films and solution electrospun meshes for the prevention of postsurgical adhesions T1 - Bioabbaubare aus der Lösung gegossene Filme und elektrogesponnenen Vliese zur Prävention von Gewebeadhäsionen N2 - Intraperitoneal adhesions are fibrous bands that connect tissues in the peritoneal cavity that are usually separated. These adhesions form as a consequence of trauma, inflammation or surgical interventions and often result in severe consequences such as chronic pain, small bowel obstructions or female infertility. The aim of this thesis was to develop a synthetic barrier device for adhesion prevention made of modified poly(lactide) [PLA]. Solid PLA films (SurgiWrap®) are already successfully in clinical use due to the good biocompatibility and the biodegradability of the material resulting in non-toxic degradation products since lactic acid is naturally part of the metabolic circles of the human body. Considering the brittleness and stiffness of the films, the long degradation time of several months as well as the need for suturing, there is potential for optimization. Through a copolymerization with the hydrophilic poly(ethylene glycol) [PEG], a reduction of the degradation time was intendend. Moreover, the copolymerization should also lead to an improvement of the mechanical properties of the films since PEG acts as plasticizer for PLA. Linear PLA-PEG-PLA triblock copolymers as well as star-shaped PEG-PLA copolymers were synthesized via standard ring opening polymerization to tailor the barrier properties. Besides solid films, solution electrospun meshes from PLA and the synthesized PEG-PLA copolymers were investigated for a potential application as well. Since suturing of a barrier additionally induces adhesion formation, alginate coated membranes were prepared in order to achieve self-adhesiveness. With the intention to reduce infections and consequently inflammation, electrospun meshes and solvent cast films were loaded with the antibacterial drug triclosan and drug release as well as antibacterial efficacy was investigated. Mechanical tests confirmed that through the variation of the PEG content and branching the mechanical properties can be tailored and are in good accordance with the glass transition temperatures [Tg] of the polymers. Consequently, potentially adequate mechanical properties for surgical handling as well as for the performance within the patient’s body were successfully achieved. Degradation studies revealed that the degradation time was significantly shorter for PEG-PLA membranes than for PLA films and with an appropriate PEG content could be adjusted to the intended time frame. Cell adhesion and viability tests confirmed the non-toxicity of the clinically used PLA films as well as of PEG-PLA films and meshes. With a bioadhesion test the benefit of an alginate coated side towards the pure PLA film concerning self-adhesiveness was successfully demonstrated. Moreover, optical evaluations and a T-peel test of different alginate coated PLA films showed that the cohesion between the chemically different layers was distinctly enhanced by the use of an appropriate PEG-PLA mesh as intermediate cohesion promoting layer. In in vitro release studies with triclosan loaded films a higher release was determined for PEG-PLA than for PLA films. In agar diffusion tests a higher and longer inhibition of staphylococcus aureus growth was observed confirming the release results. Moreover, drug loaded meshes (especially drug loaded after electrospinning) showed enhanced and elongated bacterial inhibition in comparison to films. N2 - Intraperitoneale Adhäsionen sind fibröse Bänder, die Gewebe in der Peritonealhöhle miteinander verbinden, die normalerweise voneinander getrennt sind. Diese Adhäsionen entstehen als Folge von Trauma, Entzündung oder chirurgischen Eingriffen und bringen oft schwerwiegende Folgen mit sich wie chronische Schmerzen, Dünndarmobstruktionen oder Unfruchtbarkeit bei Frauen. Ziel dieser Arbeit war es, synthetische Barrieren aus modifiziertem Poly(laktid) [PLA] für die Adhäsionsprävention zu entwickeln. PLA-Filme (SurgiWrap®) werden bereits erfolgreich klinisch eingesetzt aufgrund der guten Biokompatibilität und der Bioabbaubarkeit des Materials mit seinen ungiftigen Abbauprodukten, da Milchsäure natürlicher Bestandteil der metabolischen Zyklen im menschlichen Körper ist. Betrachtet man jedoch die Sprödigkeit und Steifigkeit der Filme, die lange Abbauzeit von mehreren Monaten sowie die Notwendigkeit des Annähens, erkennt man noch Verbesserungspotential. Durch eine Copolymerisation mit hydrophilem Poly(ethylen glykol) [PEG] wurde eine Reduktion der Abbauzeit angestrebt. Zusätzlich sollte die Copolymerisation zu einer Verbesserung der mechanischen Eigenschaften der Filme führen, da PEG als Weichmacher von PLA dient. Lineare PLA-PEG-PLA-Triblock-Copolymere sowie sternförmige PEG-PLA-Copolymere wurden über eine Standard-Ringöffnungspolymerisation synthetisiert um die Barriereeigenschaften maßzuschneidern. Neben massiven Filmen wurden aus der Lösung elektrogesponnene Vliese aus PLA und den synthetisierten PEG-PLA-Copolymeren für eine potentielle Anwendung untersucht. Da das Annähen einer Barriere zusätzlich Adhäsionsbildung hervorruft, wurden mit Alginat beschichtete Membranen hergestellt um eine Selbsthaftung zu erreichen. Mit der Intention, Infektionen und damit Entzündungen zu reduzieren, wurden elektrogesponnene Vliese und aus der Lösung gegossene Filme mit dem antibakteriellen Arzneistoff Triclosan beladen und die Freisetzung sowie die antibakterielle Wirksamkeit untersucht. Mechanische Tests bestätigten, dass mit der Variation von PEG-Gehalt und Verzweigung die mechanischen Eigenschaften zugeschnitten werden können und gut mit den Glasübergangstemperaturen der Polymere in Einklang stehen. Folglich konnten potentiell passende mechanische Eigenschaften für die chirurgische Handhabung sowie für das Verhalten im Körper des Patienten erfolgreich erreicht werden. Abbaustudien zeigten, dass die Abbauzeit von PEG-PLA-Membranen signifikant kürzer war als von PLA-Filmen und mit geeignetem PEG-Gehalt erfolgreich auf den erzielten Zeitraum hin angepasst werden konnte. Zelladhäsion und Zellviabilitätstests bestätigten die Ungiftigkeit der klinisch eingesetzten PLA-Filme sowie der PEG-PLA-Filme und –Vliese. Mit einem Bioadhäsionstest konnte der Nutzen einer Alginatbeschichtung gegenüber einem reinen PLA-Film bezüglich einer Selbsthaftung erfolgreich gezeigt werden. Außerdem ergaben visuelle Begutachtungen und ein T-Peeltest von verschiedenen mit Alginat beschichteten PLA-Filmen, dass die Kohäsion zwischen den chemisch unterschiedlichen Schichten durch den Einsatz eines geeigneten PEG-PLA-Vlieses als kohäsionsfördernde Zwischenschicht deutlich verstärkt wurde. In in vitro Freisetzungsstudien mit Triclosan-beladenen Filmen wurde eine höhere Freisetzung für PEG-PLA- als für PLA-Filme bestimmt. In Agardiffusionstests wurde eine höhere und längere Wachstumshemmung von Staphylococcus aureus beobachtet, was die Freisetzungsergebnisse bestätigt. Weiterhin zeigten Arzneistoff-beladene Vliese (insbesondere mit Arzneistoffbeladung nach dem Elektrospinning) eine verstärkte und verlängerte bakterielle Inhibition im Vergleich zu Filmen. KW - Polymere KW - Biologischer Abbau KW - Polyethylenglykole KW - postsurgical adhesion KW - biodegradable polymer KW - Polymilchsäure KW - Adhäsion KW - polylactid KW - polyethylenglykole KW - Blockcopolymere Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129358 ER -