TY - THES A1 - Weismann, Julia T1 - Methandiid-basierte Cabenkomplexe: Von ihrer Synthese und elektronischen Struktur zur Anwendung in Bindungsaktivierungsreaktionen und katalytischen Umsetzungen T1 - Methandiide based carbene complexes: from their Synthesis and electronic structure to their application in bond activation reactions and catalytic transformations. N2 - Die vorliegende Arbeit beschäftigt sich mit der Anwendung des Sulfonyl-stabilisierten Methandiids 20-Li2 als Ligand in Übergangsmetallkomplexen. Dabei konnte 20-Li2 mit ver-schiedenen Übergangsmetallhalogeniden in Salzmetathesereaktionen umgesetzt werden. Insgesamt wiesen die synthetisierten Methandiid-basierten Komplexe flexible Bindungsverhältnisse bezüglich der MC-Bindung und unterschiedliche Koordinationsmodi der Sulfonyl-Gruppe auf, die die Stabilität und Reaktivität der Komplexe signifikant beeinflussten. In Abhängigkeit von der chemischen Natur des Metallfragmentes und der Co Liganden konnten Carbenkomplexe mit einer ylidischen M-C-Wechselwirkung (A) und solche mit einer echten M=C-Doppelbindung (B) zugänglich gemacht werden. Dabei gelang die Etablierung einer Vielzahl an neuen Komplexen sowohl mit frühen (Zirkonium) als auch späten (Palladium, Ruthenium, Iridium) Übergangsmetallen. Die synthetisierten Verbindungen zeigten dabei unterschiedliche strukturelle und elektronische Eigenschaften, was zu deren Unterteilung in die zwei Komplexklassen A und B führte. So konnte bei der Umsetzung von Methandiid 20-Li2 mit Zirkonocendichlorid die selektive Bildung des Zirkonocenkomplexes 50 beobachtet werden, bei dem NMR spektroskopische (z.B. Hochfeldverschiebung des 13C NMR-Signals des Carben-Kohlenstoffatoms) und röntgenstrukturanalytische (z.B. Pyramidalisierung des „Carben“-Kohlenstoffatoms) Untersuchungen erste Hinweise darauf lieferten, dass sich 50 nicht als Carbenkomplex mit einer Zr=C-Doppelbindung beschreiben lässt. Dies konnte durch quantenchemische Rechnungen bestätigt werden, wobei die „Natural Bond Orbital“-Analyse (NBO-Analyse) eine deutliche negative Ladung am zentralen Kohlenstoffatom (qc = 1.42) und somit dessen nukleophilen Charakter aufdeckte. Zusätzlich lieferten die Rechnungen eine deutlich positive Ladung am Zirkoniumatom (qZr = 1.35), weshalb die Zr-C-Interaktion in 50 am besten mit einer ylidischen Wechselwirkung beschrieben wird. Ähnliche Resultate konnten auch bei den aus den Umsetzungen von 20-Li2 mit [(PPh3)2PdCl2] bzw. [(PPh3)3RuCl2] erhaltenen Komplexen 51a bzw. 52-Int beobachtet werden. Wie für Verbindung 50 ergab die NBO-Analyse von 51a bzw. 52-Int zwar eine  Bindung zwischen Metall- und Kohlenstoffatom, interessanterweise aber keine  Wechselwirkung. Aufbauend auf der elektronischen Struktur von 51a bzw. 52-Int zeichnen sich die beiden Komplexe durch eine hohe Instabilität und Reaktivität aus. Dabei bildete 51a in Lösung diverse Zersetzungsprodukte, während der Ruthenium-Carbenkomplex 52-Int selektiv die Phenylgruppe des Sulfonyl-Substituentens in ortho Position unter Ausbildung der cyclometallierten Spezies 52 intramolekular deprotonierte. Das Cyclometallierungsprodukt 52 konnte in einer Ausbeute von 62% isoliert und vollständig charakterisiert werden. Die schwache -Interaktion zwischen Metall- und Kohlenstoffatom konnte im Falle der Palladium- und Rutheniumkomplexe auf den Elektronenreichtum der späten Übergangsmetalle zurückgeführt werden, welcher durch die guten  Donor- und schlechten  Akzeptoreigenschaften der Phosphan-Liganden zusätzlich verstärkt wurde. Durch Austausch der Triphenylphosphan-Liganden in der Rutheniumdichlorid-Vorstufe gegen das Aren p-Cymol konnte die elektronische Natur am Metallfragment derartig beeinflusst werden, dass ein selektiver Zugang zu Ruthenium-Carbenkomplex 53 gelang. Verbindung 53 konnte in einer guten Ausbeute von 86% in Form eines dunkelvioletten Feststoffes isoliert und vollständig charakterisiert werden. Dass es sich bei 53 tatsächlich um einen Carbenkomplex mit einer M=C-Doppelbindung handelt, konnte mithilfe der Molekülstruktur im Festkörper, den NMR-spektroskopischen Daten und der berechneten elektronischen Struktur bestätigt werden. So wies 53 eine kurze Ru=C-Bindung und eine planare Koordinationsumgebung des zentralen Kohlenstoffatoms [Winkelsumme: 358.9(1) Å] auf. Zusätzlich sprachen die im Vergleich zu Methandiid 20-Li2 verlängerten P-C- und C-S-Abstände für geschwächte elektrostatische Wechselwirkungen im Ligand-Rückgrat und somit für einen effizienten Elektronentransfer vom Methandiid zum Metall. Die NBO-Analyse ergab sowohl eine - als auch -Wechselwirkung der M-C-Bindung mit einer nur leichten Polarisierung zum Kohlenstoffatom. Ähnliche Beobachtungen (kurzer Ir-C-Abstand, Planarität am Kohlenstoffatom, reduzierte elektrostatische Wechselwirkungen im Ligand-Rückgrat, NBO-Analyse) wurden ebenfalls für den Iridium-Carbenkomplex 53 gemacht.Die negativere Ladung am Carben-Kohlenstoffatom wies hierbei allerdings auf einen leicht ylidischeren Charakter der MC-Bindung als im Ruthenium-Analogon 53 hin. Aufbauend auf der elektronischen Natur der M=C-Bindung ergaben sich unterschiedliche Reaktivitäten der Carbenkomplexe. Während der Zirkonocenkomplex 50 gegenüber Aldehyden, Ketonen und Disulfiden entweder keine Reaktivität oder Zersetzung zum zweifach protonierten Liganden zeigte, erfolgte ausgehend von Ruthenium-Carbenkomplex 52-Int die intramolekulare CH-Aktivierung zu 52. Im Gegensatz dazu konnte der Ruthenium-Carbenkomplex 53 in einer Vielzahl von EH-Bindungsaktivierungen eingesetzt werden. Dabei konnten zahlreiche E-H-Bindungen bei Raumtemperatur aktiviert und das nicht-unschuldige Verhalten des Methandiid-Liganden unter Beweis gestellt werden. So konnten die O-H- und N-H-Bindungen in einer Serie von Alkoholen und Aminen, die P-H-Bindung in sekundären Phosphanoxiden und die hydridischen SiH- und BH-Bindungen in Silanen und Boranen durch 53 gespalten werden. Durch röntgenstrukturanalytische Aufklärung der Molekülstrukturen im Festkörper konnte gezeigt werden, dass die Bindungsaktivierung im Allgemeinen unter 1,2-Addition der Substrate auf die Ru=C-Doppelbindung unter Bildung der entsprechenden cis-Additionsprodukte erfolgte. Die Aufhebung der Metall-Kohlenstoffdoppel- zu einer -einfachbindung machte sich in einer Verlängerung der Ru=C-Bindung von 1.965(2) Å in 53 auf etwa 2.2 Å bemerkbar. Zudem konnte in allen Molekülstrukturen der Aktivierungsprodukte eine Pyramidalisierung des ehemals planaren Carben-Kohlenstoffatoms detektiert werden. Bezüglich der Regioselektivität verliefen die Umsetzungen mit Substraten, in denen das Wasserstoffatom einen protischen (O-H, N-H-Bindungen) bzw. mäßig protischen/hydridischen (P-H-Bindungen) Charakter aufweist, erwartungsgemäß unter Protonierung des nukleophilen Carben-Kohlenstoffatoms. Interessanterweise führten die O-H- und N-H-Aktivierungsreaktionen z.T. zur Ausbildung eines Gleichgewichts zwischen Carbenkomplex und Additionsprodukt. Dabei konnte ein derartiger Gleichgewichtsprozess in der Chemie Methandiid-basierter Carbenkomplexe bisher nicht beobachtet werden, was die außerordentliche Stabilität des Rutheniumkomplexes 53 unterstreicht. Diese Reversibilität wurde bspw. anhand der Umsetzung von Komplex 53 mit p Methoxyphenol mittels VT-NMR-Studien untersucht. Dabei konnte gezeigt werden, dass sich das Gleichgewicht beim Abkühlen auf 80 °C gemäß entropischer Effekte fast vollständig auf die Seite des Additionsproduktes verschieben lässt, während beim Erwärmen auf Raumtemperatur das Gleichgewicht auf der Seite des Carbenkomplexes liegt. Ähnliche Gleichgewichtsprozesse konnten bei der N-H-Aktivierung beobachtet werden. Bei der Aktivierung von Ammoniak konnte das Additionsprodukt 60 nicht isoliert werden, da auch hier ein stark temperaturabhängiges Gleichgewicht vorlag, wobei erst ab 90 °C das Gleichgewicht vollständig auf der Seite des Aktivierungskomplexes 60 lag. Daher konnte 60 nicht isoliert und eindeutig identifiziert werden. In folgenden Arbeiten sollte die Isolierung von 60 im Festkörper angestrebt und somit dessen Existenz nachgewiesen werden. Zudem könnten auch hier Übertragungsreaktionen des aktivierten Ammoniaks auf ungesättigte Substrate durchgeführt werden. Überraschenderweise zeigte die Si-H-Bindungsaktivierung von unterschiedlich substituierten aliphatischen und aromatischen Silanen ein analoges Reaktionsmuster und führte zur selektiven Bildung der entsprechenden Silylkomplexe 66a-66f anstelle der aufgrund der Polaritäten zu erwartenden Hydrido-Spezies. Mittels DFT-Rechnungen konnte gezeigt werden, dass der Reaktionsmechanismus der SiH-Aktivierung nicht über eine konzertierte 1,2-Addition, sondern über einen zweistufigen Prozess verläuft. Dabei ermöglichen die flexiblen Koordinationseigenschaften des Liganden in 53 eine oxidative Addition der Si-H-Bindung an das Ruthenium-Zentrum, auf die ein Hydrid-Transfer zum Methandiid-Kohlenstoffatom folgt. Neben einfachen Bindungsaktivierungen wurde das Potential der synthetisierten Silylkomplexe 66a-66c in Hydrosilylierungsreaktionen untersucht. In diesem Zusammenhang wurde die Hydrosilylierung von Norbornen angestrebt. Während bei Raumtemperatur keine Reaktion stattfand, konnte nach Erhöhung der Temperatur auf 80 °C das gewünschte Hydrosilylierungsprodukt 68 zwar mittels GC-MS-Analytik nachgewiesen werden, jedoch entstand bei den gewählten Reaktionsbedingungen das ROMP-Produkt 69 als Hauptprodukt. In weiterführenden Arbeiten müssen noch Optimierungsversuche der Reaktionsbedingungen zu einem selektiveren Umsatz zum Hydrosilylierungsprodukt durchgeführt werden. Interessante Ergebnisse lieferten zudem die Umsetzungen des Ruthenium-Carbenkomplexes 53 mit Boranen und verschiedenen Boran-Lewis-Basen-Addukten. Dabei führte die Reaktion von 53 mit Catecholboran zur Bildung des Hydridokomplexes 73, dessen Molekülstruktur im Festkörper bestimmt werden konnte. Jedoch konnte der Komplex aufgrund seiner Instabilität in Lösung bisher nicht vollständig NMR-spektroskopisch und mittels Elementaranalytik charakterisiert werden. Im Gegensatz zur Si-H-Aktivierung findet hier die Addition entsprechend der Polarität der B-H-Bindung statt. Erstaunlicherweise führte die BH Bindungsaktivierung in Pinakolboran jedoch nicht zu einer zu 73 analogen Hydrid-Spezies. Der NMR-spektroskopische Verlauf der Umsetzung deutete zunächst auf die Bildung des BH-Additionsproduktes unter Protonierung des PCS-Rückgrats hin, welches sich in eine andere, bisher nicht identifizierbare Spezies umwandelte. Wiederum zu einem anderen Ergebnis führte die Umsetzung von 53 mit BH3∙SMe2. Durch Insertion eines Borans in die Thiophosphoryl-Einheit unter Aktivierung der B-H-Bindung wurde hierbei Komplex 76 gebildet, der als zentrales Strukturmotiv einen P–B–S–Ru–C-Fünfring aufwies. Neben der Spaltung polarer E-H-Bindungen gelang außerdem die Aktivierung der unpolaren Bindung in Diwasserstoff unter Bildung des Hydridokomplexes 77. Mittels Röntgenstrukturanalyse konnte auch hier eine cis-Addition von H2 auf die RuC-Doppel-bindung bestätigt und das Signal des hydridischen Wasserstoffatom eindeutig im 1H NMR-Spektrum der Verbindung bei H = 6.62 ppm detektiert werden. Interessanterweise konnte Verbindung 77 ebenfalls durch Dehydrierung von iso Propanol bzw. Ameisensäure (HCOOH) unter Abspaltung von Aceton bzw. CO2 synthetisiert werden. Aufbauend auf der beobachteten Dehydrierung von iPrOH unter Bildung des Hydridokomplexes 77 wurde der Frage nach einer möglichen Anwendung des Carbenkomplexes 53 in der katalytischen Transferhydrierung von Ketonen zu Alkoholen nachgegangen. Obgleich die Aktivierung von H2 bzw. die Dehydrierung von iPrOH keine Reversibilität aufwies, sollte ein Katalysezyklus basierend auf einem Wechselspiel zwischen Carben- 53 und Hydridokomplex 77 mit iPrOH als Wasserstoffquelle realisierbar sein. Diesbezüglich lieferten erste Reduktionsversuche von Acetophenon zu 1 Phenylethanol mit 53 und KOtBu als Hilfsbase allerdings schlechte Alkohol-Ausbeuten im Vergleich zu literaturbekannten, übergangsmetallkatalysierten Transferhydrierungen. Ein Katalyseansatz mit 0.50 mol-% 53 und 19 mol-% KOtBu ergab nach 24 h bei 75 °C eine Alkohol-Ausbeute von gerade einmal 55%. Zudem konnte eine starke Abhängigkeit der Umsätze von der eingesetzten Basenmenge beobachtet werden, was auf eine konkurrierende, Basen-induzierte Reduktion hindeutete. Eine Optimierung der Katalysebedingungen gelang durch Zugabe von Triphenylphosphan. Mithilfe des Additivs konnte innerhalb von 12 h bei 75 °C mit 0.50 mol-% 53, 6.20 mol-% KOtBu und 6.20 mol-% PPh3 ein nahezu quantitativer Umsatz (94%) von Acetophenon zu 1-Phenylethanol beobachtet werden. Sogar eine Verringerung der Basen- und Phosphanmenge auf 1.60 und 1.10 mol-% reichte aus, um Ausbeuten von 90% zu erreichen (Abb. 4.5., rechts). Dabei konnte Rutheniumkomplex 53 als erster Methandiid-basierter Carbenkomplex mit katalytischem Potential in Transferhydrierungen etabliert werden. Außerdem beschränkte sich die katalytische Aktivität von 53/PPh3 nicht nur auf die Reduktion von Acetophenon, sondern konnte auch erfolgreich auf weitere aromatische und aliphatische Ketone übertragen werden. Mittels NMR-spektroskopischer Untersuchungen des Katalyseverlaufs gelang ein Nachweis der katalytisch aktiven Spezies im Katalysezyklus. So konnte bei 75 °C zunächst die erwartungsgemäße Entstehung des Hydridokomplexes 77 beobachtet werden. Dieser setzte sich anschließend mit PPh3 zum cyclometallierten Phosphankomplex 52 um. Aufbauend auf diesen Beobachtungen wurde ebenfalls Komplex 52 hinsichtlich seines katalytischen Potentials in der Reduktion von Acetophenon untersucht, wobei noch bessere Umsätze als mit dem Katalysator 53/PPh3 beobachtet wurden. Hierbei konnte bereits nach 3 h mit 0.50 mol-% 52 und 1.60 mol-% KOtBu eine Ausbeute von 95% erzielt werden. Zudem führten Ansätze mit 52 auch ohne Zugabe einer Base zu Umsätzen von ca. 40%. Eine Übertragung der Katalysebedingungen auf die Reduktion weiterer Keton-Derivate lieferte ebenfalls gute Ergebnisse und ergab Alkohol-Ausbeuten zwischen 72% und 96%. Die für Ruthenium-Carbenkomplex 53 gefundene Reaktivität und das nicht-unschuldige Verhalten des Methandiid-Liganden konnten außerdem auch für Iridium-Carbenkomplex 55 beobachtet werden. So konnten analoge NH, PH- und SiH-Additionsprodukte selektiv synthetisiert und in guten Ausbeuten (etwa 60-90%) analysenrein erhalten werden. In Analogie zu Rutheniumkomplex 53 führte die Aktivierung von Substraten mit unterschiedlichen E-H-Bindungen entsprechend der Ladungsverteilung im Ir+C--Fragment zur Protonierung der PCS-Brücke in 55. Dabei wiesen auch hier die Additionsprodukte im Allgemeinen eine cis-Anordnung der vorherigen E-H-Einheit auf. Einzige Ausnahme stellte das mit p-Nitroanilin gebildete NH-Aktivierungsprodukt 61b dar. Hierbei konnte mittels Röntgenstrukturanalyse eine trans-Anordnung der Amido-Einheit und des PCHS-Brückenprotons detektiert werden, die durch Ausbildung einer Wasserstoffbrückenbindung zwischen der Amido-NH- Einheit und dem Sauerstoffatom des Sulfonyl-Substituentens begünstigt wird. Zudem konnte für die Bildung von 61b ein bei Raumtemperatur reversibler Reaktionsprozess unter Rückbildung des Carbenkomplexes 55 und Abspaltung von p-Nitroanilin beobachtet werden. In künftigen Experimenten sollte untersucht werden, ob aufgrund der Reversibilität katalytische Hydroaminierungen mit 61b realisierbar sind. Trotz des hydridischen Charakters des Si-H-Wasserstoffatoms in Silanen wurden auch mit Carbenkomplex 55 ausschließlich die SiH-Bindungsaktivierungskomplexe 71a-71c gebildet. Zudem konnte bei der Aktivierung von Triphenylsilan zwar das Additionsprodukt 71a mittels NMR-spektroskopischer Untersuchungen in der Reaktionslösung nachgewiesen werden, jedoch setzte sich dieses bereits bei Raumtemperatur zum cyclometallierten Komplex 72 um. Interessanterweise resultierten die Aktivierung von H2 und die Dehydrierung von iPrOH ebenfalls in 72. Mittels NMR-spektroskopischer Untersuchungen des Reaktionsverlaufes konnte hierbei gezeigt werden, dass die Cyclometallierung ausgehend von dem in situ gebildeten Iridium-Hydridokomplex 79 stattfindet. Deuterierungsexperimente mit iPrOH-d8 belegten außerdem, dass die Protonierung der PCS Brücke durch iPrOH und nicht durch direkte ortho-C-H-Aktivierung der Sulfonyl-Phenyl-Gruppe erfolgt. Die Isolierung des Iridium-Hydridokomplexes 79 war aufgrund seiner schnellen Umsetzung zu 72 daher nicht möglich. Die Nukleophilie des Carben-Kohlenstoffatoms und die ausgezeichnete M=C-Wechselwirkung in Ruthenium-Carbenkomplex 53 ermöglichten neben EH-Bindungsaktivierungen außerdem [2+2]-Cycloadditionsreaktionen mit Iso- und Thioisocyanaten. In diesem Zusammenhang konnten mit tert-Butyl- und Phenylisocyanat die Cycloadditionsprodukte 80a und 80b synthetisiert, in guten Ausbeuten isoliert (79% bzw. 80%) und vollständig charakterisiert werden. Die mittels Röntgenstrukturanalyse durchgeführte Aufklärung der Molekülstruktur von 80a im Festkörper bestätigte die Ausbildung eines C-Ru-N-C-Vierringes als zentrales Strukturmotiv, was mit literaturbekannten Umsetzungen dieser Art übereinstimmt. Mit tert-Butyl- und Phenylthioisocyanat hingegen wurden die Iminkomplexe 81a/b unter Addition der Ruthenium-Kohlenstoff-Doppelbindung an das CS-Fragment im Thioisocyanat erhalten. Dabei konnte die Ausbildung eines C-Ru-S-C-Vierringes als zentrales Strukturmotiv beobachtet werden. Insgesamt folgte die Selektivität der gebildeten [2+2]-Cycloadditionsprodukte 80a/b und 81a/b den Prinzipien des HSAB-Konzeptes, wonach jeweils das weichere Atom des Heteroallens an das Ruthenium-Zentrum bindet. Obgleich die Reaktivität Methandiid-basierter Carbenkomplexe mit verschiedenen Heteroallenen bereits in der Literatur beschrieben wurde, stellte die Umsetzung mit Thioisocyanaten zu 81a/b ein bisher unbekanntes Reaktionsverhalten dieser Verbindungsklasse dar. Neben der Anwendung des Methandiids 20-Li2 als Ligand für die Synthese neuer Übergangsmetallkomplexe erwies sich das Dianion außerdem als geeignet für die Darstellung des Li/Cl-Carbenoids 83. Dabei konnte 83 zum einen durch Oxidation von 20-Li2 mit Hexachlorethan (C2Cl6) und zum anderen durch Metallierung des chlorierten Liganden 82 synthetisiert und in guten Ausbeuten (67-82%) als farbloser, kristalliner Feststoff isoliert werden. Verbindung 83 erwies sich dabei als ein seltenes, bei Raumtemperatur stabiles Li/Cl-Carbenoid. Aufgrund der Stabilität im Festkörper als auch in Lösung bei Raumtemperatur konnte 83 zudem NMR-spektroskopisch und mittels Elementaranalytik vollständig charakterisiert werden. Ebenfalls gelang die Aufklärung der Molekülstruktur von 83 im Festkörper. Diese zeigte keinen direkten Kontakt zwischen dem Carbenoid-Kohlenstoff- und Lithiumatom und lieferte damit neben der elektronischen Stabilisierung eine Erklärung für die beobachtete Stabilität von 83. Dabei beteiligt sich das Ligandsystem durch Koordination der Sulfonyl-Gruppen an das Lithiumatom erheblich an der Stabilisierung, sodass eine Lithiumchlorid-Eliminierung erschwert wird. Außerdem zeigte die Molekülstruktur keine Verlängerung der C-Cl-Bindung, wie es für unstabilisierte Carbenoide in der Literatur beschrieben wird. Diese Tatsache und die im 13C-NMR-Spektrum beobachtete Abschirmung des Carbenoid-Kohlenstoffatoms im Vergleich zur chlorierten Vorstufe 82 lieferten erste Anzeichen für einen geringen carbenoiden Charakter von 83. Außerdem bestätigten quantenchemische Rechnungen keine signifikante Polarisierung der CCl-Bindung. Die durch die Stabilisierung resultierende Verringerung des carbenoiden Charakters und somit der Ambiphilie spiegelte sich auch in der Reaktivität von 83 wider. So konnte Verbindung 83 nicht als Cyclopropanierungsreagenz verwendet werden, wie es zumeist für klassische Carbenoide der Fall ist. Gegenüber Elektrophilen wie Methyliodid oder Chlordiphenylphosphan reagierte 83 in Analogie zu Organolithiumbasen zu den Verbindungen 84a und 84b. Jedoch konnte 83 als Carbenvorstufe zur Synthese des Palladium-Carbenkomplexes 51a unter LiCl-Eliminierung eingesetzt werden, was den leicht vorhandenen carbenoiden Charakter von 83 wiedergibt. Zudem wurde 83 hinsichtlich seines Aktivierungspotentials von EE-Bindungen untersucht. Während die Aktivierung der BH-Bindung in Boranen und die BB-Bindung in Diboranen nicht gelang, konnte die SS-Bindung in 2,2‘-Dipyridyl- und 4,4‘-Dipyridyldisulfid gespalten und Verbindung 90 analysenrein erhalten werden (Schema 4.8.). Studien zur Aufklärung dieses Reaktionsverhaltens stehen jedoch noch aus. Bezüglich der Aktivierung von P-H-Bindungen in unterschiedlich substituierten aromatischen Phosphanen konnte für 83 eine zu einem Silyl-stabilisierten Carbenoid analoge Reaktivität gefunden werden. Hierbei erfolgte keine Addition der P-H-Bindung an das carbenoide Kohlenstoffatom, sondern die selektive Dehydrokupplung der Phosphane zu Diphosphanen unter LiCl-Eliminierung. Diese überraschende und bis dato für Carbenoide unbekannte Reaktivität erfolgte unter milden Reaktionsbedingungen (Raumtemperatur) und ohne Einsatz von Übergangsmetallkatalysatoren. Insgesamt konnte für Verbindung 83 ein vielfältiges Reaktionsverhalten gefunden werden. Neben dessen Eignung als Carbenvorstufe bei der Synthese von Übergangsmetall-Carbenkomplexen, konnte die Spezies in der Aktivierung von SS- und PH-Bindungen eingesetzt werden. In zukünftigen Reaktivitätsstudien sollte das beobachtete Potential auf weitere Substrate übertragen werden. N2 - This thesis deals with the application of the sulfonyl stabilized methandiide 20-Li2 as a ligand in transition metal complexes. In this context, 20-Li2 reacted with several transition metal halides to the corresponding carbene complexes via salt metathesis reaction. The obtained systems exhibited flexible bonding situations concerning the nature of the MC bond and revealed different coordination modes of the sulfonyl moiety. This flexibility significantly influenced the stability and the reactivity of these complexes. Depending on the nature of the metals and co-ligands, carbene complexes with a more ylidic interaction (A) and such with a real MC double bond (B) could be obtained. In this context, a variety of novel complexes with both early (zirconium) and late (palladium, ruthenium, iridium) transition metals were establishe.The synthesized compounds revealed different structural and electronic properties, enabling their classification into the categories A and B. For example, the reaction of methandiide 20-Li2 with zirconocene dichloride led to the selective formation of zirconocene complex 50. NMR spectroscopy (e.g. high-field shift of the 13C NMR signal of the carbene carbon atom) and the molecular structure (e.g. pyramidalisation of the “carbene“ carbon atom) led to the conclusion, that 50 could not be described as a carbene complex with a ZrC double bond. This could also be confirmed by theoretical studies. Thus, the “Natural Bond Orbital“ analysis (NBO analysis) showed a significant negatively charged carbon atom (qc = 1.42), in line with the nucleophilicity of 50 and a positive charge at the zirconium atom (qZr = 1.35). Hence, the nature of the ZrC bond in 50 is best described by an ylidic interaction. Similar results were obtained when methandiide 20-Li2 was treated with [(PPh3)2PdCl2] or [(PPh3)3RuCl2] to form the complexes 51a and 52-Int. Comparable to 50, NBO analysis of 51a and 52-Int revealed only a  bond between the metal and the carbon atom, but no  interaction. According to the electronic structure of 51a and 52-Int, both complexes turned out to be instable and highly reactive while compound 51a decomposed in solution under the formation of several decomposition products and the ruthenium carbene intermediate 52-Int underwent an intramolecular CH-activation of the phenyl group of the sulfonyl moiety to the cyclometalated complex 52. Product 52 could be isolated in a yield of 62% and fully characterized. In the case of the palladium and ruthenium complexes, the observed weak  interaction between metal and carbon atom can be referred to the electron rich metal centers. Here, the electron density of the late transition metals was additionally increased by strong  donor and poor  acceptor abilities of the phosphine ligands. Hence, substitution of the phosphines in the ruthenium dichloride precursor by an arene ligand (p-cymene) resulted in a change of the electronics of the metal fragment, allowing the selective access to ruthenium carbene complex 53. Compound 53 could be isolated in 86% yield as a purple solid and fully characterized. X-ray diffraction analysis, NMR spectroscopy and theoretical studies confirmed the double bond character of the MC interaction in 53. The molecular structure of 53 revealed a short RuC bond and a planar coordination environment of the central carbon atom [sum of angles: 358.9(1) Å]. In comparison with the bond lengths of the PCS backbone in methandiide 20-Li2, elongated PC and CS bonds were found in 53, indicating weaker electrostatic interactions within the ligand framework and thus an efficient electron transfer from the methandiide to the metal fragment. Additionally, the NBO analysis revealed both  and  contribution of the MC bond with only a slight polarization to the carbon atom. Similar observations (short IrC distance, planar coordination environment of the carbon atom, reduced electrostatic interactions within the ligand framework, NBO analysis) were made for iridium carbene complex 55. Nevertheless, the carbene carbon atom in 55 was found to exhibit a higher negative charge, indicating a more pronounced ylidic character of the MC bond compared to ruthenium complex 53. According to the electronic nature of the MC bond, different reactivity patterns could be observed for the carbene complexes. Whereas the reaction of zirconocene complex 50 with aldehydes, ketones or disulfides was either unsuccessful or led to decomposition under formation of the protonated ligand 20, an intramolecular CH activation to 52 could be observed in the case of ruthenium carbene complex 52-Int. On the contrary, ruthenium carbene complex 53 could be applied in a variety of EH bond activation reactions at room temperature. The reactions proved the non-innocent behaviour of the methandiide ligand which serves as nucleophilic center. Hence, the OH and NH bonds in a series of alcohols and amines (products 56, 58 and 59), the PH bond in secondary phosphine oxides and the hydridic SiH and BH bonds in silanes and boranes could be splitted using complex 53. X-ray diffraction analyses of the activation products revealed a 1,2-addition of the substrates across the RuC double bond to the corresponding cis-addition products. Thereby, the change from a metal carbon double to a metal carbon single bond was acoompanied by an elongation of the RuC bond from 1.965(2) Å in 53 to about 2.2 Å. Additionally, a pyramidalization of the carbon atom could be detected, instead of a planar coordination environment as in carbene complex 53. All activation reactions performed with substrates containing a protic (OH, NH bonds) or a slightly protic/hydridic (PH bonds) hydrogen occurred via protonation of the nucleophilic carbene carbon atom. Interestingly, some OH and NH activation reactions resulted in an equilibrium between the carbene and the activation complex. It is important to note, that such an equilibrium has so far not been observed for methandiide based carbene complexes and thus underlines the extraordinary stability of ruthenium complex 53. The reversibility could be confirmed by VT NMR experiments, such as of the reaction of 53 with p methoxyphenol. These studies showed that the equilibrium can almost completely be shifted towards the addition product at 80 °C due to entropical reasons. On the contrary, warming the sample to room temperature led to the re-formation of carbene complex 53. A reversible reaction process could also be observed for the activation of NH bonds. For example, in the case of the activation of ammonia the amido complex 60 could not be isolated due to a strong temperature dependency of the equilibrium. Temperatures as low as 90 °C were necessary to move the equilibrium to the side of the activation product. Future studies will focus on the isolation of 60 in solid state in order to confirm the existence of 60. Furthermore, a transfer of the activated ammonia to unsaturated substrates will be tested. Surprisingly, reactions of a series of aliphatic and aromatic silanes with 53 led to an analogous bond activation and to the selective formation of the silyl complexes 66a 66f. According to the polarity of the SiH bond in silanes, a reverse reactivity with formation of the corresponding hydrido complexes was expected, but could not be observed at all. The reaction mechanism could be elucidated by DFT studies and was found to proceed via a stepwise process. Thereby, the flexible MC bond in 53 enabled an oxidative addition of the SiH bond to the ruthenium center, followed by a hydride transfer to the methanide carbon atom. Besides the isolation and characterization of the silyl complexes 66a-66f, those complexes were also tested in the catalytic hydrosilylation of norbornene. Whereas no reaction was observed at room temperature, hydrosilylation product 68 was formed at 80 °C. Nevertheless, the formation of 68 was only accomplished in small amounts as confirmed by GC-MS analysis. Instead, the ROMP product turned out to be the main product under the reaction conditions. Future studies should concentrate on the optimisation of the reaction conditions in order to improve the selectivity of the hydrosilylation reaction. In contrast to the so far discussed EH bond activation reactions, carbene complex 53 showed diverse reactivities towards boranes and different borane Lewis base adducts. The reaction of 53 with catechol borane gave hydrido complex 73, which could be characterized by X-ray diffraction analysis. In contrast to the activation of the SiH bond, the BH bond activation complex 73 reflects the expected reactivity due to the polarity of the BH and the MC bond. Surprisingly, the activation of the BH bond in pinacol borane did not lead to a hydrido complex similar to 73. In this case, NMR studies of the reaction process confirmed the formation of the BH addition product under protonation of the PCS backbone, followed by a rapid conversion to a novel, so far unidentified complex. The formation of a completely different product was again observed within the reaction of 53 with BH3∙SMe2. Here, complex 76 could be isolated, which is formed by activation of the BH bond, accompanied by an insertion of one borane into the thiophosphoryl moiety. The molecular structure of 76 revealed a five-membered P–B–S–Ru–C ring as the central structural motif. Besides its activation potential concerning polar EH bonds, carbene complex 53 was also applied in the activation of non polar bonds like the one in dihydrogen giving way to hydrido complex 77. The molecular structure of 77 could be confirmed by X-ray diffraction analysis and revealed a cis-addition of H2 across the RuC double bond. Additionally, the signal for the hydridic hydrogen atom could be detected in the 1H NMR spectrum at H = 6.62 ppm. Interestingly, compound 77 could also be obtained by dehydrogenation of iso propanol or formic acid (HCOOH) via formation of acetone or CO2. Based on the observed dehydrogenation of iPrOH, an application of carbene complex 53 as catalyst in catalytic transfer hydrogenations of ketones to alcohols was assumed. Despite the fact that the activation of H2 and the dehydrogenation of iPrOH did not show any reversibility, a catalytic cycle including both carbene complex 53 and hydrido complex 77 with iPrOH as hydrogen source should be realizable (Fig. 4.5., left). First attempts aiming at the catalytic reduction of acetophenone to 1 phenylethanol with 53 and KOtBu as base delivered poor yields of the alcohol in comparison with literature-known transition metal catalysts. For example, 0.50 mol-% 53 and 19 mol-% KOtBu gave 1 phenylethanol in only 55% yield after 24 h at 75 °C. Additionally, the conversions turned out to depend on the amount of base indicating a competing base induced reduction. Optimization of the reaction conditions by adding triphenylphosphine as additive led to almost quantitative conversions (94%) to 1 phenylethanol within 12 h at 75 °C using 0.50 mol-% 53, 6.20 mol-% KOtBu and 6.20 mol % PPh3. Yields of about 90% could still be achieved when decreasing the KOtBu and PPh3 loadings to 1.60 and 1.10 mol. Overall, ruthenium complex 53 is the first methandiide based carbene complex applied in catalytic transfer hydrogenations. Thereby, the catalytic activity of 53/PPh3 was not only limited to the reduction of acetophenone, but could also be transferred to further aromatic and aliphatic ketones. The reaction process of the catalytic transfer hydrogenation was studied by NMR spectroscopy to determine the catalytic active species formed during the reaction process. These studies showed that at first the hydrido complex 77 is formed at 75 °C, followed by its reaction with PPh3 to the cyclometalated phosphine complex 52. Studies on the catalytic ability of 52 itself in the transfer hydrogenation of acetophenone to 1 phenylethanol revealed even better performances. Overall, better yields could be obtained when using 52 as catalyst. A yield of 95% could already be obtained after 3 h using 0.50 mol-% 52 and 1.60 mol-% KOtBu. Additionally, a test reaction using only 52 without any additional base led to a remarkable yield of about 40%. Comparable to the catalytic system 53/PPh3, complex 52 could also be applied in the catalytic reduction of further ketones giving yields of about 72% to 96%. The observed reactivity of ruthenium carbene complex 53 and the non-innocent behavior of the methandiide ligand could also be established for iridium carbene complex 55. Here, similar NH, PH and SiH addition products could be synthesized selectively and isolated in good yields of 60-90%. Analogous to ruthenium complex 53, the activation of substrates with different EH bonds led to protonation of the PCS bridge in 55. This is in line with the polarization distribution of the Ir+C- bond in 55. The activation products again revealed a cis-addition of the EH unit on the IrC fragment. However, one exception was observed in the case of the reaction of 55 with p-nitro-aniline, which led to the formation of the N H activation product 61b with a trans-arrangement of the amido ligand relative to the PCHS hydrogen atom. Here, the trans-arrangement is favoured due to the formation of a hydrogen bond between the amido and the sulfonyl units. Additionally, complex 61b showed a reversible reaction process at room temperature, leading to the re-formation of carbene complex 55 and of p-nitroaniline. Due to the reversibility of 61b in solution, further studies should concentrate on the potential of 61b as catalyst for hydroamination reactions. Despite the hydridic character of the hydrogen atom in silanes, SiH bond activation reactions of carbene complex 55 exclusively led to the formation of the silyl complexes 71a-71c under protonation of the nucleophilic carbene carbon atom in 55. Interestingly, 71a was found to be instable and further reacted to the cyclometalated complex 72 already at room temperature. Additionally, the activation of H2 and the dehydrogenation of iPrOH also resulted in the formation of 72. Here, the reaction process was studied by NMR spectroscopy. These experiments revealed that the cyclometalation occurs from hydrido complex 79, which is formed in situ during the reaction process. Furthermore, deuteration experiments with iPrOH d8 evidenced that the protonation of the PCS fragment results from the reaction of 55 with iPrOH and is not formed via an intramolecular cyclometalation via CH activation of the sulfonyl phenyl group. Due to the rapid transformation of hydrido complex 79 to the cyclometalated species 72, the isolation of 79 was not possible. The nucleophilicity of the carbene carbon atom and the special MC interaction in ruthenium carbene complex 53 also allowed for [2+2] cycloaddition reactions with iso- and thioisocyanates. In this context, reaction of 53 with tert-butyl and phenyl isocyanate afforded the cycloaddition products 80a and 80b. The complexes 80a/b could be isolated in good yields (about 80%) as well as fully characterized. X-ray diffraction analysis of 80a confirmed the formation of a four-membered CRuNC ring as the central structural motif of 80a. These findings were in line with literature-known cycloaddition reactions of methandiide based carbene complexes with isocyanates. On the contrary, reaction of 53 with tert-butyl and phenyl thioisocyanate afforded the complexes 81a/b. Here, addition of the heteroallene to the ruthenium carbon double bond occurred via the CS fragment of the thioisocyanate. Hence, the [2+2] cycloaddition resulted in the formation of a four-membered CRuSC ring as central structural motif. Overall, the observed selectivity of the [2+2] cycloaddition reactions to 80a/b and 81a/b can be explained by the HSAB concept. Accordingly, the softer atom of the heteroallene is connected to the soft ruthenium center. Despite the fact that the reactivity of methandiide based carbene complexes with different heteroallenes has already been reported in literature, cycloaddition reactions with thioisocyanates affording complexes such as 81a/b has so far been unknown. Besides its application as ligand for the synthesis of novel transition metal complexes, methandiide 20-Li2 was found to be suitable for the synthesis of Li/Cl carbenoid 83. On the one hand, compound 83 could be obtained by oxidation of 20-Li2 with hexachloroethane (C2Cl6) and on the other hand by metalation of the chloro derivative 82. Carbenoid 83 could be isolated as a colorless, crystalline solid in good yields (67 82%) and represents a rare example of a room temperature stable Li/Cl carbenoid. Due to the stability of 83 both in solid state and in solution at room temperature, the carbenoid could be characterized by NMR spectroscopy and elemental analysis. Moreover, the molecular structure of 83 could be determined by X-ray diffraction analysis, revealing no direct contact between the carbenoid carbon and the lithium atom. Instead, the sulfonyl group of the ligand system coordinates to the lithium atom and thus inhibits the elimination of lithium chloride. This and the electronic stabilisation by the α substituents result in the observed stability of 83. Furthermore, the molecular structure did not reveal an elongation of the CCl bond as often described for unstabilised carbenoids. These findings and the observed deshielding of the carbenoid carbon atom in the 13C NMR spectrum relative to the chlorinated precursor 82 suggested a reduced carbenoid character of 83. This reduced carbenoid character of 83 could also be observed in reactivity studies. Contrary to classical carbenoids, 83 could thus not be used as reagent for cyclopropanation reactions. However, the still present nucleophilicity could be proven by treatment of 83 with electrophiles like methyl iodide or chlorodiphenylphosphine. Here, the compounds 84a and 84b could be obtained via salt elimination reactions. Additionally, 83 could be applied as carbene precursor for the synthesis of palladium carbene complex 51a under elimination of lithium chloride. The observed reactivity underlined the still present carbenoid character of 83. Furthermore, the potential of 83 in the activation of EE bonds in different substrates was tested. Whereas the activation of the BH bond in boranes and the BB bond in diboranes was not possible with 83, the SS bond in 2,2‘-dipyridyl and 4,4‘ dipyridyl disulfide could be splitted. The mechanism of this reaction, however, still has to be elucidate A remarkable reactivity was also observed in the reaction of carbenoid 83 with various secondary phosphines. Here, no addition of the PH bond to the carbenoid carbon atom occurred, but instead the selective dehydrocoupling of the phosphines to diphosphines via elimination of lithium chloride. It is important to note that this unexpected and so far unknown reactivity could be carried out unter mild reaction conditions (room temperature) using different functionalized phosphines and did not require the use of transition metal complexes. Overall, compound 83 exhibits a huge variety of reactivity patterns. Besides its function as carbene precursor for the synthesis of transition metal carbene complexes, the carbenoid behaviour could also be applied in the activation of SS and PH bonds. Future investigations should aim at the extension of the activation potential of 83 to further substrates. KW - Carbenkomplexe KW - Dianion KW - Chemische Bindung KW - nicht-unschuldiges Ligandverhalten KW - Aktivierung KW - Methandiide KW - Methandiid-basierte Carbenkomplexe KW - Bindungsaktivierungsreaktionen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121549 ER - TY - THES A1 - Nagel, Christoph T1 - Novel manganese- and molybdenum-based photoactivatable CO-releasing molecules: synthesis and biological activity T1 - Neue Mangan- und Molybdän-basierte CO-releasing molecules: Synthese und biologische Aktivität N2 - Since its discovery as a small signaling molecule in the human body, researchers have tried to utilize the beneficial cytoprotective properties of carbon monoxide in therapeutic applications. Initial work focused on the controlled direct application of CO gas. However, to circumvent the disadvantages of this method such as requirement for special equipment, hospitalization of the patient and the risk of overdosing, metal-carbonyl complexes were developed as CO-releasing molecules (CORMs) which are able to deliver CO in a tissue-specific manner. However, upon the release of CO from the metal coordination sphere, complex fragments termed inactivated CORMs (iCORMs) with free coordination sites remain which can undergo nonspecific follow-up reactions under physiological conditions. Thus, the first aim of the present thesis was the coordination of tetradentate ligands such as tris(2-pyridylmethyl)amine (tpa), bis(2-pyridylmethyl)(2-quinolylmethyl)amine (bpqa), bis(2-quinolylmethyl)(2-pyridylmethyl)amine (bqpa) and tris(2-quinolylmethyl) amine (tmqa) in a tridentate facial manner to a fac-Mn(CO)3 moiety previously established as a photoactivatable CO-releasing molecule (PhotoCORM). The desired coordination of the pedant donor group upon photolytic CO release at 365 nm was demonstrated by UV/Vis-, IR- und 1H NMR experiments and verified by DFT calculations. All complexes of the series showed long-term dark stability in phosphate-buffered saline (PBS), but released between two and three equivalents of carbon monoxide with half-lives of around 5-10 minutes upon illumination at 365 nm. Although the photolytic properties of the complexes were quite similar besides the differences in type of hetereoaromatic ligands, the determination of the logP values showed an increase of lipophilicity with the number of quinoline groups, which might enable tissue-specific uptake. A significant cellular manganese uptake as well as the binding of CO released upon photolysis to the cytochrome c oxidases in E. coli cells was demonstrated for [Mn(CO)3(tpa)]+. Furthermore, this complex exhibited photoinduced bactericidal activity when the cells were grown in succinate-containing medium and thus unable to change their metabolism to mixed acid fermentation. In the second part of the project, the hexadentate ligand 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (py3tacn) was coordinated to a facial Mn(CO)3 moiety. The resulting [Mn(CO)3(py3tacn-3N)]+ complex has one pedant donor group per labile carbonyl ligand and thus is a significant improvement over the 1st generation tpa-complexes. The metal-coligand inactivated CORM (iCORM) fragment expected to be generated upon complete photolytic CO release, [Mn(py3tacn-6N)]2+, was synthesized independently and will serve as a well-defined negative control in upcoming biological tests. The corresponding CORM has long-term dark stability in pure dimethylsulfoxide or phosphate-buffered myoglobin solution, with three equivalents of CO released with a half-life of 22 minutes upon illumination at 412 nm. The photolysis was also followed by IR spectroscopy and the intermediates, in line with a stepwise release of carbon monoxide, and occupation of vacated sites by the pedant pyridine group were verified by DFT calculations. Due to possible tissue damage by energy-rich light and the inverse correlation of tissue penetration depth and illumination wavelength, the absorption maxima of PhotoCORMs should ideally be in the phototherapeutic window between 600 and 1200 nm. Thus, in the third part of this work, a series of heterobinuclear Mn(CO)3/Ru(bpy)2 PhotoCORMs was prepared to shift the absorption of these compounds into the red region of the UV/Vis spectrum. For the synthesis of such Mn(I)/Ru(II) complexes, the bridging ligands 2,3-di(2-pyridyl)quinoxaline (dpx) and 3-(pyridin-2-yl)-1,2,4-triazine[5,6-f]-1,10-phenanthroline (pytp) were prepared and the two binding pockets subsequently filled with a Ru(bpy)2 and a fac-Mn(CO)3 moiety. The resulting two heterobinuclear metal complexes [Ru(bpy)2(dpx)MnBr(CO)3]2+ and [Ru(bpy)2(pytp)MnBr(CO)3]2+ as well as [Ru(etx)(tbx)MnBr(CO)3]2+ with etx = ethyl(2,2':6',2''-terpyridine)-4'-carboxylate and tbx = N-((2,2’:6’,2’’-terpyridin)-4’-yl)2,2’-bipyridine-5-carboxamide which was prepared by a metal precursor provided by the group of Prof. Dr. Katja Heinze showed a significant shift of the main absorption bands to higher wavelengths as well as two times higher extinction coefficients than the analogous mononuclear Mn(I) compounds. However, both the Mn(I)/Ru(II) and Mn(I) complexes had a reduced stability in phosphate-buffered myoglobin solution even in the absence of light. The efficiency of the CO-release from [Ru(etx)(tbx)MnBr(CO)3]2+ and [Ru(bpy)2(dpx)MnBr(CO)3]2+ could be controlled by proper choice of the excitation wavelength. A change from 468 to 525 nm or even 660 nm led to a decrease of the number of CO equivalents released from two to one and an elongation of the half-lives. Finally, since nitric oxide also serves as a small messenger molecule in the human body with its signaling pathways interacting with those of CO, a mixed-ligand CO/NO metal complex was sought. [Mo(CO)2(NO)(iPr3tacn)]+ with iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonane was selected from the literature and its molecular structure determined by single crystal diffraction, demonstrating the presence of an NO+ ligand in the coordination sphere as indicated by a MO-N-O angle close to 180°. Photolysis of [Mo(CO)2(NO)(iPr3tacn)]+ required high-energy UV light, which prevented a quantification of the CO release due to photolytic decomposition of the myoglobin. However, solution IR experiments showed that the complex lost the two carbon monoxide ligands upon illumination at 254 nm while the NO remained tightly bound to the metal. The structures observed of the intermediates were also verified by DFT calculations. In conclusion, in this project, four different classes of novel transition metal-based photoactivatable CO-releasing molecules (PhotoCORMs) were prepared and studied. The first group incorporated one additional free donor group per LMn(CO)3 moiety but varied in the number of coordinated pyridyl and quinolinyl groups which allows the control of the lipophilicity of these compounds. As an extension of this concept, the second series incorporated one free donor group per labile carbonyl ligand which gives rise to well-defined photolysis products that can be independently prepared and assayed. The third class was based on a Ru(II) photosensitizer unit connected to a MnBr(CO)3 PhotoCORM moiety. This shifts the absorption maximum from 500 nm to about 585 nm in [Ru(bpy)2(dpx)MnBr(CO)3]2+. Finally, a first mixed-ligand CO/NO carrier molecule was evaluated for its photolytic behavior. However, while the carbonyl ligands were photolabile at low excitation wavelengths, release of the NO ligand was not observed under the conditions studied. In a next step, detailed studies on the bioactivity of the different classes of PhotoCORMs need to be carried out with partner groups from biochemistry to fully explore their biomedical potential. N2 - Seit der Entdeckung als von Kohlenstoffmonoxid small signaling molecule im menschlichen Körper stehen seine zellschützenden Eigenschaften im Interesse der Forschung, die für therapeutische Anwendungen nutzbar gemacht werden könnten. Anfangs lag hierbei der Fokus auf einer kontrollierten Verabreichung von gasförmigem Kohlenstoffmonoxid. Um die Nachteile dieser Methode, wie beispielsweise spezielle klinische Ausrüstung sowie das Risiko einer Überdosierung zu umgehen wurden Metallkomplexe mit CO-Liganden als CO-releasing molecules (CORMs) entwickelt, welche in der Lage sind Kohlenstoffmonoxid gewebespezifisch im Körper abzugeben. Durch die Freisetzung von CO aus der Koordinationssphäre eines Metallzentrums entstehen jedoch auch Komplexfragmente, sogenannte inactivated CORMs (iCORMs), welche unter physiologischen Bedingungen unbekannte Folgereaktionen eingehen können. Deshalb bestand das erste Ziel der vorliegenden Doktorarbeit darin, die tetradentaten Liganden Tris(2-pyridylmethyl)amin (tpa), Bis(2-pyridylmethyl)(2-quinolylmethyl)amin (bpqa), Bis(2-quinolyl-methyl)(2-pyridylmethyl)amin (bqpa) und Tris(2-quinolylmethyl)amin (tmqa) an eine faciale Mn(CO)3 Einheit zu koordinieren, deren Komplexe dann als photoactivatable CO-releasing molecules (PhotoCORM) fungieren sollten. Die Koordination der zusätzlichen Donorgruppe im Zuge der photolytischen CO Freisetzung wurde am Beispiel von [Mn(CO)3(tpa)]+ durch UV/Vis-, IR- und 1H NMR-Experimente gezeigt und durch DFT-Rechnungen untermauert. Alle Verbindungen der Serie zeigten in Phosphat-Puffer eine hohe Stabilität im Dunkeln. Durch Photoaktivierung bei einer Wellenlänge von 365 nm konnten aus den Komplexen zwei bis drei Äquivalente CO mit einer Halbwertszeit um 10 Minuten freigesetzt werden. Obwohl die photolytischen Eigenschaften der Komplexe sehr ähnlich waren, steigt die Lipophilie angegeben durch den logP-Wert mit steigender Anzahl der im Komplex enthaltenen Quinolin-Gruppen an, was die Gewebeaufnahme erleichtern sollte. Für [Mn(CO)3(tpa)]+ konnte ein deutlicher Anstieg der intrazellulären Mangankonzentration sowie die Bindung von freigesetztem CO an die Cytochrom c-Oxidasen in E. coli beobachtet werden. Auch zeigte diese Verbindung eine photoinduzierte Toxizität gegenüber diesen Bakterienkulturen, solange diese in Succinat-haltigem Nährmedium gezüchtet wurden und somit nicht in der Lage waren ihren Stoffwechsel auf die „mixed acid fermentation“ umzustellen. Im zweiten Teil der Arbeit sollte dann der hexadentate Ligand 1,4,7-Tris(2-pyridylmethyl)-1,4,7-triazacyclonane (py3tacn) an eine faciale Mn(CO)3-Einheit koordiniert werden. Der resultierende [Mn(CO)3(py3tacn-3N)]+ Komplex verfügt über eine freie Donorgruppe für jeden Kohlenstoffmonoxid-Liganden. Das Metall-Coligand-Fragment, [Mn(py3tacn-6N)]2+, welches als photolytisches Endprodukt erwartet wird, wurde über einen separaten Syntheseweg hergestellt und wird als Negativkontrolle in kommenden biologischen Testreihen eingesetzt werden. Untersuchungen zur CO-Freisetzung aus [Mn(CO)3(py3tacn-3N)]+ zeigten, dass die Verbindung sowohl in Dimethylsulfoxid als auch in gepuffertem Myoglobin im Dunkeln lange Zeit stabil ist. Bei Belichtung mit 412 nm können aus dem Komplex etwa drei Äquivalente CO mit einer Halbwertszeit von 22 Minuten freisetzt werden. Der Photolyseprozess wurde auch mittels IR-Spektroskopie verfolgt und die Zwischenstufen, welche Hinweis auf eine stufenweise Abgabe der CO-Liganden wie auch die Besetzung der freien Koordinationsstellen durch die freien Pyridingruppen gaben, durch DFT Rechnungen belegt. Aufgrund der Möglichkeit von Gewebeschädigungen durch kurzwelliges UV-Licht und den inversen Zusammenhang von Gewebeeindringtiefe und Belichtungswellenlänge, sollte das Absorptionsmaximum eines PhotoCORMs idealerweise im phototherapeutischen Fenster zwischen 600 und 1200 nm liegen. Deshalb wurden im dritten Teil dieser Arbeit hetereobinukleare Mn(CO)3/Ru(bpy)2 PhotoCORMs hergestellt, um die Absorption der Verbindungen in den roten Bereich des sichtbaren Spektrums zu verschieben. Für die Synthese der Mn(I)/Ru(II) PhotoCORMs wurden 2,3-Di(2-pyridyl)quinoxalin (dpx) und 3-(pyridin-2-yl)-1,2,4-triazin[5,6-f]-1,10-phenanthrolin (pytp) als verbrückende Liganden verwendet, wobei zunächst eine Bindungstasche mit Ru(bpy)2 und anschließend die zweite mit Mn(CO)3 gefüllt wurden. Die zwei resultierenden hetereobinukleare Metallkomplexe [Ru(bpy)2(dpx)MnBr(CO)3]2+ und [Ru(bpy)2(pytp)MnBr(CO)3]2+ sowie [Ru(etx)(tbx)MnBr(CO)3]2+, mit etx = Ethyl(2,2':6',2''-terpyridin)-4'-carboxylat und tbx = N-((2,2’:6’,2’’-Terpyridin)-4’-yl)2,2’-bipyridin-5-carboxamid, welcher aus einer Ruthenium-Vorstufe aus der Arbeitsgruppe von Prof. Dr. Katja Heinze synthetisiert wurde zeigten eine deutliche Verschiebung der intensivsten Absorptionsbande zu höheren Wellenlängen und eine Verdopplung der Extinktionskoeffizienten im Vergleich zu den analogen mononuklearen Mn(I)-Verbindungen. Jedoch konnte sowohl für die Mn(I)/Ru(II)- als auch für die Mn(I)-Komplexe selbst unter Lichtausschluss eine Zersetzung in gepuffertem Myoglobin festgestellt werden. Die Effizienz der CO-Freisetzung aus [Ru(etx)(tbx)MnBr(CO)3]2+ und [Ru(bpy)2(dpx)MnBr(CO)3]2+ lässt sich durch die Wahl einer geeigneten Anregungswellenlänge kontrollieren. Durch den Wechsel von 468 zu 525 nm oder sogar 660 nm wurde die Anzahl der freigesetzten CO-Äquivalente von zwei auf eins reduziert. Auch konnte eine Verlängerung der Halbwertszeiten festgestellt werden. Da Stickstoffmonoxid ebenfalls als small messenger molecule im menschlichen Körper bekannt ist, dessen Signalwege mit denen von CO interagieren, wurde ein gemischter CO/NO-Metallkomplex gesucht. [Mo(CO)2(NO)(iPr3tacn)]+ mit iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonan wurde aus der Literatur ausgewählt und synthetisiert. Die molekulare Struktur der Verbindung konnte erstmals durch Röntgenbeugung am Einkristall aufgeklärt werden und enthält mit einem Mo-N-O Winkel von 180° das Stickstoffmonoxids als NO+-Liganden. Das energiereiche UV-Licht, welches zur Photolyse von [Mo(CO)2(NO)(iPr3tacn)]+ benötigt wurde, führte unter den Bedingungen des Myoglobin-Assay jedoch zu einer Zersetzung des Proteins. Durch Photolyse-Experimente in Acetonitril, welche mit IR-Spektroskopie verfolgt wurden, konnte jedoch die Freisetzung der beiden CO-Liganden durch Belichtung mit 254 nm beobachtet werden während der Nitrosyl-Ligand an das Metallzentrum gebunden blieb. Die gefundenen Photolyseprodukte konnten auch mittels DFT-Rechnungen identifiziert werden. Zusammengefasst wurden im Rahmen dieser Doktorarbeit vier verschiedene Klassen von übergangsmetallbasierten photoactivatable CO-releasing molecules (PhotoCORMs) hergestellt und untersucht. Die erste Gruppe von Molekülen verfügt über eine zusätzliche freie Donorgruppe pro fac-Mn(CO)3-Einheit, variiert aber in der Anzahl der koordinierten Pyridyl- und Quinolinyl-Einheiten, wodurch die Lipophilie der Verbindungen eingestellt werden kann. Die Verbindungen der zweiten Generation beinhalten eine freie Donorgruppe pro labilen Carbonyl-Liganden. Dies führt zu wohldefinierten photolytischen Endprodukten, welche auch separat hergestellt und getestet werden können. Die dritte Klasse basiert auf Ru(II)-Photosensitizern, die an eine MnBr(CO)3-PhotoCORM-Einheit angebunden wurden. Dies hat im Fall von [Ru(bpy)2(dpx)MnBr(CO)3]2+ eine Verschiebung des Absorptionsmaximums von 500 nm zu 585 nm zur Folge. Schließlich konnte ein gemischtes CO/NO-Trägermolekül erstmals auf seine photolytischen Eigenschaften untersucht werden. Während beide CO-Liganden in[Mo(CO)2(NO)(iPr3tacn)]+ labil waren, konnte eine Freisetzung des NO-Liganden unter den vorliegenden Bedingungen nicht beobachtet werden. In der Weiterführung dieses Projekts sollten detaillierte Studien zur biologischen Aktivität der verschiedenen PhotoCORMs durchgeführt werden um das volle biomedizinische Potential dieser Verbindungen zu ermitteln. KW - Kohlenmonoxid KW - Ligand KW - Mangan KW - Metallcarbonyle KW - CO-releasing molecules KW - metal carbonyl KW - manganese KW - carbonmonoxide KW - biological activity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120376 ER - TY - THES A1 - Mailänder, Lisa T1 - Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien T1 - Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents N2 - Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien. Bei der Usetzung von Borolen mit Aziden, Diazoalkanen und Nitronen kam es zu Ringerweiterungsreaktionen und zur Bildung von neuen Borheterocyclen (z.B. 1,2-Azaborinine, 1,2-Azaborinin-substituierte Azofarbstoffe, Boracyclohexadiene, Oxazaborocine). N2 - Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents KW - Borole KW - Heterocyclische Verbindungen KW - Dipol <1,3-> KW - Ringerweiterungsreaktionen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127147 ER - TY - THES A1 - Kramer, Thomas T1 - Übergangsmetall-Bor-Wechselwirkungen in Boryl- und Boridkomplexen T1 - Transitionmetal-Boron-Interactions in Boryl and Boride Complexes N2 - Durch Untersuchungen zur Reaktivität von Boryl- und Boridverbindungen konnten deren Bindungssituationen aufgeklärt und neuartige Koordinationsmotive von Übergangsmetall-Bor-Verbindungen erhalten werden. Die erhaltenen Verbindungen wurden mittels NMR-Spektroskopie, IR-Spektroskopie, Elementaranalyse und Röntgendiffraktometrie untersucht und zusätzlich wurden DFT-Rechnungen angefertigt. An verschieden substituierten Eisenborylkomplexen wurden Reaktivitätsuntersuchungen gegenüber Halogenidabstraktionsmitteln und Reduktionsmitteln durchgeführt und im Falle der Boridkomplexe wurden Verbindungen mit bis dato unbekanntem Strukturmotiv erhalten. N2 - Investigations into the reactivities of boryl and boride complexes provided insight into their bonding and led to previously unknown coordination motifs for transition-metal-boron complexes. The resulting compounds were analyzed via NMR spectroscopy, IR spectroscopy, elemental analyses and crystal structure analyses. Their electronic structures were investigated by theoretical calculations using DFT methods. The reactivities of substituted iron boryl complexes toward halogenide abstracting and reducing reagents were studied and, in case of the boride complexes, novel structural motifs were dentified. KW - Übergangsmetall KW - Mehrkernige Komplexe KW - Borylgruppe KW - Dimerisierung KW - Übergangsmetall-Borverbindungen KW - Borchemie KW - Boridkomplexe KW - Isonitrilinsertion KW - Boride KW - Borylkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112222 ER - TY - THES A1 - Dück, Klaus T1 - Synthese, Untersuchung und Polymerisation neuartiger Sandwichkomplexe T1 - Synthesis, Investigation and Polymerization of new Sandwich Compounds N2 - In dieser Dissertation werden die Ergebnisse zur Synthese und Polymerisation gespannter Manganoarenophane vorgestellt. Weiterhin wird die Reaktivität von Bis(benzol)titan und die Synthese von ansa-Verbindungen dieses Komplexes, sowie Untersuchungen zu deren Eigenschaften beschrieben. Zum Vergeleich wird auch der Komplex Bis(mesityl)titan untersucht. Die Polymerisation von zinnverbrückten, gespannten Vanadium-Sandwichkomplexen und die Untersuchungen der paramagnetischen Eigenschaften ist ebenso in dieser Dissertationsschrift beschrieben. Zusätzlich wird die Synthese heteroleptischer Sandwichkomplexe des Scandiums und Yttriums dargestellt, sowie deren Ringsubstitution. Die Vorarbeiten zur Synthese heteroleptischer Sandwichkomplexe der Lanthanoide bildet ebenso einen Bestandteil dieser Schrift, wie die Synthese von ansa-Komplexen des Thorocens und Uranocens via flytrap-Methode. N2 - This Dissertation presents the results of the synthesis and polymerization of strained Manganoarenophanes. Furthermore the reactivity of bis(benzene)titanium and the synthesis of its ansa-compounds, as well as property investigations are shown. Comparative studies of the complex bis(mesityl)titanium are also described. The polymerization of tin-bridged, strained Vanadium sandwich compounds and the investigations of their paramagnetic properties are also described within this dissertation. Additionally the synthesis of heteroleptic sandwich complexes of Scandium and Yttrium and their ring substitution are presented. First results concerning the synthesis of heteroleptic sandwich complexes of the Lanthanides are a part of this work as well as the synthesis of ansa-compounds of Thorocene and Uranocene via flytrap-method. KW - Sandwich-Verbindungen KW - Überbrückte Verbindungen KW - Polymerisation KW - Lanthanoide KW - Actinoide KW - ansa-Komplexe/ ansa complexes KW - ringsubstituierte Sandwichverbindungen/ ring-substitueted sadnwich compounds KW - Verbrückte Verbindungen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112600 ER - TY - THES A1 - Brand, Johannes T1 - Darstellung und Untersuchung von niederkoordinierten Platinimino-, Platinoxo- und Platinalkylidenborylkomplexen T1 - Synthesis and investigation of low-coordinated platinum imino-, platinum oxo- and platinum alkylideneboryl complexes N2 - Diese Dissertation handelt von der Darstellung, Charakterisierung und Reaktivitätsuntersuchungen von neuartigen Platinalkylidenborylkomplexen und eines heteroleptischen Platiniminoborylkomplexes. Außerdem wurden Reaktivitätsuntersuchungen an einem Platinoxoborylkomplex durchgeführt und die erhaltenen Produkte wurden genau untersucht und charakterisiert. N2 - This dissertation is about the synthesis, characterisation and reactivity studies of new platinum alkylideneboryl complexes and a heteroleptic platinum iminoboryl complex. Furthermore reactivity studies of a platinum oxoboryl complex were carried out and the obtained products have been studied and characterised accurately. KW - Dreifachbindung KW - Doppelbindung KW - Iminogruppe KW - Oxoborane KW - alkylidengruppe KW - Alkylidenboryl komplexe KW - Iminoborylkomplexe KW - Oxoborylkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112306 ER - TY - THES A1 - Meyer, Larissa Valerie T1 - Dünne Filme, Detektoren sowie Co-Dotierungen und Mischbarkeiten auf Basis von lumineszierenden Erdalkali-/Selten-Erd-Imidazolat-Gerüstverbindungen T1 - Thin films, detectors as well as co-doping and miscibilities based on luminescent alkaline earth / rare earth imidazolate frameworks N2 - This thesis deals with the formation of thin films and luminescence based detectors as well as co-dopings and larger miscibilities in luminescent alkaline earth / rare earth imidazolate coordination polymers and MOFs (metal organic frameworks). The formation of luminescent thin films of the coordination polymers 3∞[Sr1-xEux(Im)2] (x = 0 - 1) and the MOFs 3∞[Tb(Im)3] and 3∞[Ce(Im)3ImH]·ImH on nanostructured alumina substrates (AAO-substrates) was enabled by a new in-situ coating method based on a solvent free melt synthesis. Various layer thicknesses as well as different degrees of coverage were achieved. For the in-situ deposition of 3∞[Sr0.95Eu0.05(Im)2] two different coating strategies for the AAO substrates were established. In addition to the melt approach an electride induced coating method was carried out. Extraordinary baryte rose analogue crystals were observed on the AAO surface for the electride induced coating method. The deposition of the MOFs 3∞[Tb(Im)3] and 3∞[Ce(Im)3ImH]·ImH also took place via CVD processes (chemical vapor deposition). Thin luminescent films of the framework 3∞[Eu(Im)2] on (0001)-sapphire sub-strates were created by a new femto-PLD-process (femto-pulsed-laser-deposition). The films displayed a switchable transparency depending on the wavelength of the incoming light. 3∞[Sr0.95Eu0.05(Im)2], 3∞[Tb(Im)3] and 3∞[Ce(Im)3ImH]·ImH were examined as potential sensors or detectors regarding eight solvents and four gases. The exposure of the networks to water lead to a complete loss of luminescence intensity. MeOH-exposure is followed by a batho-chromic shift of the chromaticity of 3∞[Sr0.95Eu0.05(Im)2] from turquoise to orange. Acetone, pyridine, toluene, hexane, acetonitrile and dichloromethane increase the luminescence in-tensity of 3∞[Sr0.95Eu0.05(Im)2] and 3∞[Tb(Im)3]. The luminescence intensity of 3∞[Ce(Im)3ImH]·ImH is increased by acetonitrile as well as dichloromethane, but decreased under the influence of the other investigated solvents. The interaction of O2 and CO2 lead to a decrease of luminescence intensity by a turn-off-effect with the compounds 3∞[Tb(Im)3] and 3∞[Ce(Im)3ImH]·ImH, whereas no influence on the luminescence intensity of 3∞[Sr0.95Eu0.05(Im)2] was observed during exposure to N2, Ar, O2 and CO2. New coordination polymers 3∞[La4(Im)12(ImH)5]∙xImH (x = 2 - 3) and 3∞[Gd(Im)3] were synthe-sized as missing parts in the field of rare earth imidazolates. Both networks and the known alkaline earth imidazolates 2∞[Ca(Im)2(ImH)2], 3∞[Sr(Im)2] and 3∞[Ba(Im)2] as well as the rare earth imidazolates 3∞[Y(Im)3], 3∞[Ln(Im)3ImH]·ImH (Ln = Ce, Pr, Nd, Sm), 3∞[Gd2(Im)6(ImH)1.5]·0.5 ImH and 3∞[Tb(Im)3] were used as host lattice for the intrinsic luminescence of the Ln-ions Ce3+, Sm3+, Eu2+, Tb3+, Dy3+ and Yb3+. In addition to co-doping, larger miscibilities and possible phase boundaries were investigated. The correlation be-tween structure and luminescence as well as the possibility of color tuning based on additive color mixing of the emission colors were explored with the obtained bulk materials. Furthermore, the solvent free approach was expanded to alkaline earth and lanthanide met-als and the bicyclic ligand 1H-benzimidazole. The monomeric complexes [M(BIm)2(BImH)4] (M = Ca, Sr, Eu) and the two dimensional coordination polymers ²[AE(BIm)2] (AE = Mg, Ba) and ²[Eu(BIm)2(BImH)2] were synthesized and fully characterized. In the case of the Ba con-taining network two polymorphic forms of the network were obtained. N2 - Die vorliegende Arbeit behandelt die Herstellung dünner Filme und lumineszenzbasierter Detektoren sowie die Untersuchung von Co-Dotierungen bis hin zu größeren Bereichen von Mischbarkeiten auf Basis von lumineszierenden Erdalkali-/Selten-Erd-Imidazolat-Gerüstverbindungen und MOFs (metal organic frameworks). Die Herstellung lumineszierender, dünner Filme der Koordinationspolymere 3∞[Sr1-xEux(Im)2] (x = 0-1) und der MOFs 3∞[Tb(Im)3] und 3∞[Ce(Im)3ImH]·ImH auf nanoporösen, vorstrukturier-ten Aluminiumoxid-Trägern (AAO-Träger) gelang durch eine neue in-situ-Beschichtungsmethode auf Basis der solvensfreien Schmelzsynthese. Es wurden Filme mit unterschiedlichen Schichtdicken sowie Bedeckungsgraden erhalten. Die in-situ-Beschichtung von 3∞[Sr0.95Eu0.05(Im)2] auf AAO-Trägern erfolgte neben der Schmelzsynthese durch tieftem-peratur- und elektridinduzierte Vororganisation der Metalle mit nachfolgender Schmelzsyn-these. Außergewöhnliche, Barytrosen-analoge Kristallite konnten dabei auf den AAO-Trägern beobachtet werden. Für die Abscheidung der beiden MOFs 3∞[Tb(Im)3] und 3∞[Ce(Im)3ImH]·ImH konnten zudem CVD-Prozesse (chemical vapor deposition) nachge-wiesen werden. Mittels eines neuen Femto-PLD-Verfahrens (femto-pulsed-laser-deposition) konnten zudem lumineszierende, dünne Filme aus 3∞[Eu(Im)2] auf (0001)-Saphirsubstraten erhalten werden, die eine optische Schaltbarkeit in Abhängigkeit vom eingestrahlten Licht aufweisen. 3∞[Sr0.95Eu0.05(Im)2], 3∞[Tb(Im)3] und 3∞[Ce(Im)3ImH]·ImH wurden auf ihre Fähigkeit untersucht, als potentielle Sensoren bzw. Detektoren für acht Lösungsmittel und für vier Gase zu fungie-ren. Unter dem Einfluss von Wasser wird die Lumineszenz aller drei Netzwerke sofort und vollständig gequencht. Der MeOH-Einfluss auf 3∞[Sr0.95Eu0.05(Im)2] führt zu einem bathochro-men Shift der Chromatizität von türkis zu orange. Die Lösungsmittel Aceton, Pyridin, Toluol, Hexan, Acetonitril und Dichlormethan führen zu turn-on-Effekten unterschiedlicher Stärke auf die Lumineszenzintensität von 3∞[Sr0.95Eu0.05(Im)2] und 3∞[Tb(Im)3]. Die Lumineszenz von 3∞[Ce(Im)3ImH]·ImH erfährt nur durch Acetonitril und Dichlormethan einen turn-on-Effekt, die übrigen Solventien führen zu einem turn-off-Effekt. Die Gasexpositionen führten im Fall der Polymere 3∞[Tb(Im)3] und 3∞[Ce(Im)3ImH]·ImH zu ei-nem turn-off-Effekt durch O2 und CO2 auf die Lumineszenz, wohingegen die Lumineszenz von 3∞[Sr0.95Eu0.05(Im)2] durch die untersuchten Gase N2, Ar, O2 und CO2 nicht beeinflusst wer-den konnte. In dieser Arbeit konnten mit den beiden neuen Koordinationspolyme-ren 3∞[La4(Im)12(ImH)5]∙xImH (x = 2 - 3) und 3∞[Gd(Im)3] fehlende Glieder in der Reihe der Sel-ten-Erd-Imidazolate synthetisiert und vollständig charakterisiert werden. Beide Gerüste so-wie die bereits bekannten Erdalkali-Imidazolate 2∞[Ca(Im)2(ImH)2], 3∞[Sr(Im)2] und 3∞[Ba(Im)2] und die Selten-Erd-Imidazolate 3∞[Y(Im)3], 3∞[Ln(Im)3ImH]·ImH (Ln = Ce, Pr, Nd, Sm), 3∞[Gd2(Im)6(ImH)1.5]·0.5 ImH und 3∞[Tb(Im)3] konnten als Wirtsgitter für die intrinsisch lumineszierenden Ln-Ionen Ce3+, Sm3+, Eu2+, Tb3+, Dy3+ und Yb3+ erfolgreich verwendet wer-den. Über Co-Dotierungen hinaus wurden auch größere Bereiche der Mischbarkeiten sowie das Auftreten von eventuellen Phasengrenzen untersucht. Die erhaltenen Bulkmaterialien wurden auf Struktur-Eigenschafts-Beziehungen sowie auf ein Farbtuning der Lumineszenz durch additive Farbmischung der zugrundeliegenden Emissionsfarben untersucht. Die Synthesestrategie der solvensfreien Schmelzsynthese konnte erfolgreich auf die Erdalka-li- und Lanthanidmetalle und den bicyclischen Liganden 1H-Benzimidazol übertragen wer-den. Es wurden neben den monomeren Komplexen [M(BIm)2(BImH)4] (M = Ca, Sr, Eu) die zweidimensionalen Koordinationspolymere ²[EA(BIm)2] (EA = Mg, Ba) synthetisiert und voll-ständig charakterisiert. Das Ba-Netzwerk tritt zudem in zwei Polymorphen auf. Im Fall der Umsetzung der Lanthanidmetalle konnte ²[Eu(BIm)2(BImH)2] erfolgreich synthetisiert und charakterisiert werden. KW - Metallorganisches Netzwerk KW - Lanthanoide KW - Erdalkalimetalle KW - Photolumineszenz KW - Mischbarkeit KW - Koordinationspolymere KW - coordination polymer KW - MOF KW - Beschichtungen KW - lumineszenzbasierte Detektoren KW - metal-organic framework KW - coatings KW - luminescence based detectors KW - Metallorganische Gerüstverbindung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121501 ER - TY - THES A1 - Geyer, Marcel T1 - Synthese und biologische Charakterisierung neuartiger siliciumorganischer Wirkstoffe sowie Synthese neuartiger siliciumorgansicher Synthese-Bausteine T1 - Synthesis and biological characterization of new silicon-containing drugs and synthesis of new silicon-containing building blocks for synthesis N2 - Aufbauend auf dem Konzept der C/Si-Bioisosterie beschreibt die vorliegende Arbeit die Synthese und biologische Charakterisierung siliciumorganischer Wirkstoffe sowie Beiträge zur Synthese von siliciumorganischen Synthese-Bausteinen unter Verwendung der Silicium-Schutzgruppen MOP (4-Methoxyphenyl), DMOP (2,6-Dimethoxyphenyl) und TMOP (2,4,6-Trimethoxyphenyl). Die entsprechenden Zielverbindungen sowie alle isolierten Zwischenstufen wurden durch NMR-Spektroskopie in Lösung (1H, 13C, 29Si) und Elementaranalyse (C, H, N) bzw. HRMS-Analytik (ESI) charakterisiert. Zusätzlich konnte in einigen Fällen eine strukturelle Charakterisierung durch Einkristall-Röntgenstrukturanalyse realisiert werden. N2 - Based on the concept “C/Si bioisosterism”, this doctoral thesis describes the synthesis and pharmacological characterization of silicon-containing drugs as well as contributions to the synthesis of silicon-containing building blocks containing the silicon protecting groups MOP (4-methoxyphenyl), DMOP (2,6-dimethoxyphenyl), and TMOP (2,4,6-trimethoxyphenyl). The identities of the respective target compounds and their isolated intermediates were established by NMR spectroscopic studies (1H, 13C, 29Si) and elemental analyses (C, H, N) or HRMS studies (ESI). In some cases, an additional characterization by single-crystal X-ray diffraction was performed. KW - Wirkstoff KW - siliciumorganische Wirkstoffe KW - Siliciumorganische Verbindungen KW - Silicium Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123766 ER - TY - THES A1 - Arnold, Nicole T1 - Reaktivität von Boranen gegenüber Übergangsmetall-Lewis-Basen T1 - Reactivity of boranes towards transition metal Lewis bases N2 - Im Rahmen der vorliegenden Arbeit wurden Dihydroborane (H2BR) sowie Dihalogenborane (X2BR) mit Übergangsmetall-Lewis-Basen umgesetzt und die Reaktivität der auf diese Weise erhaltenen Übergangsmetall–Bor-Komplexe eingehend untersucht. So wurde eine Serie neuer Borylkomplexe des Typs trans-[Pt{B(Br)R‘}Br(PR3)2] dargestellt und mit Salzen schwach-koordinierender Anionen umgesetzt. Diese Studien sollten die Triebkraft für die Bildung kationischer Borylenkomplexe näher beleuchten. Die experimentellen Ergebnisse zeigen, dass eine Substitution in ortho-Position des borgebundenen Arylliganden für den notwendigen [1,2]-Halogenshift vom Bor- zum Platinzentrum und somit zur Realisierung einer Pt=B-Mehrfachbindung unabdingbar ist. Demnach reagieren Komplexe mit para-substituierten Arylliganden bei Halogenidabstraktion aus Borylkomplexen zu T-förmigen, kationischen Borylplatinkomplexen, während die Duryl-substituierten Analoga unter [1,2]-Halogenwanderung in kationische Borylenplatinkomplexe überführt werden. Neben dem Substitutionsmuster des borgebundenen Arylliganden wurde auch der Einfluss des Phosphanliganden untersucht. Die Molekülstrukturen der Borylkomplexe 2 und 4 im Festkörper zeigen grundlegende Unterschiede im strukturellen Aufbau. Der Durylsubstituent ist in 2 im Vergleich zur (Ph-4-tBu)-Einheit in 4 deutlich aus der {Br2–Pt–B–Br1}-Ebene herausgedreht (2: Pt–B–C1–C2: 31.4(1); 4: 4.3(7)°), was vermutlich einen [1,2]-Halogenshift in 2 begünstigt. Die Pt–B-Bindungen der kationischen Borylenkomplexe 6 (1.861(5) Å) und 7 (1.863(5) Å) sind deutlich kürzer als im neutralen Borylkomplex 2 (2.004(4) Å), was ein eindeutiger Beleg für den Mehrfachbindungscharakter der Pt–B-Bindungen in 6 und 7 ist. Demzufolge scheint der sterische Anspruch des borgebundene Arylsubstituenten entscheidend für den Reaktionspfad bei Halogenidabstraktionen und somit für die Bildung kationischer Borylenplatinkomplexe zu sein, während diesen Studien zu Folge der Einfluss der Ligandensphäre am Platinzentrum eher eine untergeordnete Rolle spielt. Des Weiteren gelang die Synthese der neuartigen heteroleptischen Platinkomplexe [Pt(cAACMe)(PiPr3)] (13) und [Pt(cAACMe)(PCy3)] (14) durch Umsetzung von [Pt(PCy3)2] und [Pt(PiPr3)2] mit dem cyclischen (Alkyl)(Amino)Carben cAACMe (Schema 34, A), bzw. durch Umsetzung von [Pt(nbe)2(PCy3)] (Schema 34, B) mit cAACMe. Die Darstellung des literaturbekannten homoleptischen Komplexes [Pt(cAACMe)2] (11) konnte durch Reaktion von [Pt(nbe)3] mit cAACMe deutlich vereinfacht werden bei gleichzeitiger Steigerung der Ausbeute (96%, Literatur: 79%). Die ungewöhnlich intensiv orangene Farbe dieser Verbindungsklasse geht laut DFT-Rechnungen auf die elektronische Anregung aus dem HOMO in das LUMO zurück, wobei hauptsächlich die π-Wechselwirkungen zwischen den Platin- und Carbenkohlenstoffatomen des cAACMe-Liganden beteiligt sind (DFT-Rechnungen von Dr. Mehmet Ali Celik). Auch in ihren strukturellen Eigenschaften sind sich 11 - 14 sehr ähnlich, wohingegen deutliche Unterschiede in deren Elektrochemie und Reaktivität beobachtet wurden. So konnte für 11 eine quasi-reversible Oxidationswelle (E1/2 = –0.30 V gegen [Cp2Fe]/[Cp2Fe]+ in THF) bestimmt werden, während die heteroleptischen Komplexe 13 und 14 (Epa = –0.09 V; –0.11 V) sowie deren Vorläufer [Pt(PCy3)2] und [Pt(PiPr3)2] (Epa = 0.00 V; +0.12 V) irreversible Oxidationswellen zeigen. Demnach kann 13 und 14 im Vergleich zu [Pt(PCy3)2] und [Pt(PiPr3)2] ein größeres Reduktionsvermögen zugeordnet werden. Reaktivitätsstudien zeigen, dass der homoleptische Komplex 11 inert gegenüber vielen Substraten wie z.B. Boranen, Diboranen(4) und Lewis-Säuren ist. Im Gegensatz dazu haben sich die heteroleptischen Komplexe 13 und 14 als deutlich reaktiver erwiesen, womit diese eine Mittelstellung zwischen 11 und der Spezies [Pt(PR3)2] einnimmt. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Die Umsetzung von [Pt(cAACMe)(PiPr3)] (13) mit BBr3 und Br2BPh lieferte die Borylkomplexe 18 und 19, welche vollständig charakterisiert wurden. Die Reaktivität von 13 und 14 gegenüber den Lewis-Säuren GaCl3 und HgCl2 zeigt ebenfalls Analogien zu der von Bis(phosphan)platinkomplexen. Reaktion mit GaCl3 führte hierbei zur Bildung der MOLP-Komplexe [(cAACMe)(PiPr3)Pt→GaCl3] (21) und [(cAACMe)(PCy3)Pt→GaCl3] (22), während die oxidative Addition der Hg–Cl-Bindung an das Platinzentrum von 14 im Komplex [PtCl(HgCl)(cAACMe)(PiPr3)] (23) resultierte. Die Synthese von 23 gelang auch durch Umsetzung mit Kalomel unter Abscheidung eines Äquivalentes elementaren Quecksilbers. Ein weiterer Schwerpunkt dieser Arbeit lag auf der Übergangsmetall-vermittelten Dehydrokupplung von Dihydroboranen. Vor Beginn dieser Reaktivitätsstudien wurde zunächst eine vereinfachte Syntheseroute für Dihydroborane entwickelt. Durch Umsetzung von Cl2BDur mit HSiEt3 konnte auf diese Weise der Syntheseaufwand deutlich verringert und die Ausbeute an H2BDur von 74% auf 98% deutlich gesteigert werden. Zur Dehydrokupplung wurden neben Gold-, Rhodium- und Iridiumkomplexen auch Platinkomplexe mit H2BDur umgesetzt. Die Untersuchungen mit Gold- und Rhodiumverbindungen erwiesen sich hierbei als erfolglos und die Umsetzung der Iridiumpincerkomplexe [(PCP)IrH2] 26 und 27 (tBuPCP, AdPCP) mit H2BDur lieferte die Boratkomplexe 28 und 29 mit κ2-koordinierten {H2BHDur}-Liganden. Analog konnte bei Umsetzung von 26 mit H2BThx der Boratkomplex 30 spektroskopisch beobachtet, jedoch nicht isoliert werden. Bei den Komplexen 28 - 30 handelt es sich um die ersten κ2-σ:σ-Dihydroboratkomplexe mit sterisch anspruchsvollen Arylsubstituenten. Neben den Iridiumpincerkomplexen wurde auch der Komplex [Cp*IrCl2]2 mit H2BDur umgesetzt. Die Bildung des Boratkomplexes 34 ist mit einem [1,2]-Shift eines Chloratoms von Iridium auf das Borzentrum verbunden. Die Reaktivität von H2BDur gegenüber [Pt(PCy3)2] zeigte eine starke Abhängigkeit hängt von der Stöchiometrie. Bei der 1:1-Umsetzung konnten sowohl die farblosen Verbindungen trans-[(PCy3)2PtH2] und Cy3P→BH2Dur (48) isoliert werden, als auch die beiden dunkelroten Verbindungen [(Cy3P)3Pt3(2-B2Dur2)] (36) und [{(PCy3)Pt}4(2-BDur)2(4-BDur)] (37), kristallographisch untersucht werden. Der B–B-Abstand im π-Diborenkomplex 36 (1.614(6) Å) deutet eindeutig auf die Gegenwart einer B=B-Doppelbindung hin, wobei das Diboren side-on gebunden an zwei der drei Platinatome des Pt3-Gerüsts koordiniert ist. Die Zusammensetzung von 36 und 37 konnte auch durch Elementaranalysen bestätigt werden. Die Bildung von 36 und 37 deuten auch darauf hin, dass bei dieser Art der Dehydrokupplung multimetallische Wechselwirkungen eine wichtige Rolle für die Stabilisierung der borzentrierten Liganden spielen. So konnten bei der Reaktion von [Pt(PCy3)2] mit zwei Äquivalenten H2BDur neben Cy3P→BH2Dur (48) auch zwei weitere zweikernige Platinverbindungen isoliert und vollständig charakterisiert werden. Erhitzen der Reaktionslösung auf 68°C für 170 Minuten führte hierbei zur Bildung von [{(Cy3P)Pt}2(μ-BDur)(ƞ2:(μ-B)-HB(H)Dur)] (38) mit zwei verbrückenden borzentrierten Liganden, einem Borylen- (BDur) und einem Boranliganden (BH2Dur), welche im 11B{1H}-NMR Spektrum bei δ = 101.3 und δ = 32.8 ppm detektiert wurden. Die Röntgenstrukturanalyse von 38 lässt einen signifikanten σ-BH-Hinbindungsanteil des Boranliganden zu einem der Platinzentren vermuten, was einen anteiligen Pt2→B-Bindungscharakter andeutet. Dieser Befund konnte auch durch DFT-Rechnungen von Dr. William Ewing bestätigt werden. Die Studien haben auch gezeigt, dass die Bildung von 38 über eine Zwischenstufe verläuft, den hypercloso-Cluster [{(Cy3P)HPt}2(μ-H){μ:ƞ2-B2Dur2(μ-H)}] (39) mit einer tetraedrischen {Pt2B2}-Einheit, zwei terminalen Pt–H-Bindungen sowie je einen die Pt–Pt- bzw. B–B-Bindung verbrückenden Hydridliganden. 39 erwies sich als anfällig gegenüber H2-Eliminierung und lagert bei Raumtemperatur innerhalb von Tagen, bzw. bei 68°C innerhalb einer Stunde unter B–B-Bindungsbruch quantitativ in 38 um, welche selbst keinen direkten Bor–Bor-Kontakt mehr aufweist. Auf Grundlage der beschriebenen Resultate wurde zudem ein einfacher Zugang zu zweikernigen Platinkomplexen entwickelt. Demnach gelang es, den literaturbekannten zweikernigen Komplex [Pt2(μ:ƞ2-dppm)3] (50) (dppm = Ph2PCH2PPh2) durch Umsetzung von [Pt(nbe)3] mit dppm in guten Ausbeuten zu synthetisieren. Des Weiteren wurde die Reaktivität von 50 gegenüber verschiedenen Lewis-Säuren untersucht. Ein Großteil dieser Umsetzungen war mit der Bildung von schwer löslichen Feststoffen verbunden, weshalb lediglich bei der Reaktion mit Br2BPh und Br2BMes geringe Mengen an definiertem Produkt isoliert und durch Röntgenstrukturanalyse charakterisiert werden konnten. Demnach führte die Umsetzung von 50 mit Br2BPh oder Br2BMes zur oxidativen Addition beider B–Br-Bindungen an je eines der Platinzentren und der Bildung der verbrückenden Borylenplatinkomplexe 51 und 52. NMR-spektroskopische Studien deuteten eine analoge Reaktivität von Br2BDur und Br2BFc an, wobei die Komplexe 53 und 54 noch nicht vollständig charakterisiert werden konnten. N2 - Another focus of this work was the dehydrocoupling of dihydroboranes (H2BDur) mediated by late transition metals. Prior to these reactivity studies, an improved protocol for a less time-consuming synthetic route of dihydroboranes was developed. To this end, reaction of Cl2BDur with an excess HSiEt3 was shown to proceed quantitatively, affording H2BDur in 98% yield (lit: 74%). Unfortunately, dehydrocoupling experiments of H2BDur with gold, rhodium and iridium complexes were unsuccessful. However, it was possible to isolate two dihydroborate complexes (28, 29) by reaction of iridium pincer complexes [(PCP)IrH2] 26 and 27 (tBuPCP, AdPCP) with H2BDur. Here, the {H2BHDur} moiety binds as a bidentate unit to the metal center. Similarly, the reaction of 26 with H2BThx yielded an analogous species, which was detected by NMR spectroscopy, but could not be isolated. Complexes 28 and 29 have to be considered the first κ2-σ:σ-dihydroborate complexes with sterically demanding aryl substituents. In addition, the iridium complex [Cp*IrCl2]2 was treated with H2BDur and a crystal of the dihydroborate complex 34 was obtained. In this case, formation of 34 was accompanied by a [1,2]-shift of one chloride atom from iridium to the boron center. ... KW - Metallorganische Verbindungen KW - Borylene KW - Platinkomplexe KW - Platin KW - Dihydroborane KW - Borylkomplexe KW - Borylenkomplexe KW - Dehydrokupplung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125447 ER - TY - THES A1 - Dannenbauer, Nicole T1 - Koordinationspolymere und -verbindungen mit intrinsischer Lumineszenz auf Basis von Selten-Erd-Chloriden, Thiazol, Thiolaten und Amin-Co-Liganden T1 - Coordination polymers and compounds with intrinsic luminescence based on rare earth chlorides, thiazole, thiolates and amine co-ligands N2 - In dieser Arbeit konnten 69 neue und neuartige Koordinationspolymere sowie Komplexe mit schwefelhaltigen Liganden auf Selten-Erd-Chlorid-Basis synthetisiert und strukturell charak-terisiert werden. Durch die Umsetzung der Chloride mit dem Liganden Thiazol konnten bei Raumtemperatur, abhängig vom Ionenradius und der eingesetzten Menge Thiazol, sowohl Koordinationspolymere wie 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimere Komplexe [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] sowie monomere Komplexe [LnCl3(thz)4]2·thz (Ln = Sm , Eu , Tb, Ho) erhalten werden. Mittels temperaturabhängiger Pulverdiffraktometrie und in-situ Infra-rotspektroskopie sowie DTA/TG-Messungen konnte exemplarisch an 1∞[LaCl3(thz)6]·thz und [Pr2Cl6(thz)8] gezeigt werden, dass stufenweise thermisch bedingt Thiazolmoleküle aus den Strukturen abgegeben werden bis hin zur Rückbildung des eingesetzten LnCl3. Unter der Vo-raussetzung, dass die flüchtige Komponente Thiazol resorbiert wird, ist daher ein Kreispro-zess denkbar. Ferner konnten zusätzlich wasserhaltige Phasen wie der vierkernige Cluster [Pr4Cl10(OH)2(thz)8(H2O)2] erhalten werden. Durch die Zugabe eines geeigneten Linkermoleküls in das Reaktionssystem aus trivalenten Lanthanidchloriden und Thiazol konnten unter solvothermalen Bedingungen eine Vielzahl an Koordinationspolymeren und Komplexen erhalten werden. Als Linker oder als end-on Ligan-den eigneten sich sowohl eine Reihe an ditopischer Pyridylliganden 4,4'-Biypridin (bipy), 1,2-Di-(4-pyridyl)ethen (dpe), trans-1-(2-Pyridyl)-2-(4-pyridyl)ethylen (tppe), 1,2-Di-(4-pyridyl)ethan (dpa), sowie die Diazine Pyrazin (pyz) und Pyrimidin (pym) oder auch Azole wie 1,2,4-Triazol (tzH) und Pyrazol (pzH). Mittels Einkristallstrukturanalyse und pulverdiffrakto-metrischer Methoden konnten die dreidimensionalen Gerüstverbindungen 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), die Schichtstrukturen 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) und die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]· 0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) sowie die Komplexe [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pzH)3(thz)2] (Ln = Pr, Gd) charakterisiert werden.   Ferner konnten die erhaltenen Verbindungen weitestgehend auf ihre photolumineszenz-spektroskopischen sowie thermischen Eigenschaften hin untersucht werden. Außerdem konn-ten auch durch direkte Schwefelkoordination an die Ln3+-Zentren eindimensionale Koordina-tionspolymere 1∞[PrCl2(amt)(py)3] (amt- = 3-Amino-5-mercapto-1,2,4-triazolat), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) und Komplexe [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-Mercaptobenzimdiazolat) generiert werden N2 - This thesis deals with the structural characterization of 69 novel coordination polymers and complexes synthesized with sulfur containing heterocyclic ligands and trivalent rare earth chlorides. Depending on the ionic radii of the used lanthanide chloride and the amount of the ligand thiazole coordination polymers as 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimeric compounds [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] and monomeric complexes [LnCl3(thz)4]2·thz (Ln = Sm, Eu , Tb, Ho) were derived at room temperature. Using tempera-ture-dependent powder diffraction methods, in-situ IR-spectroscopy and DTA/TG measure-ments it was demonstrated that there is a stepwise, thermal induced release of thiazole molecules out of the structures to back-formation of crystalline lanthanide chloride in the cases of the coordination polymer 1∞[LaCl3(thz)6]·thz and the dimer [Pr2Cl6(thz)8]. This could be a cyclic process requiring the elusive ligand thiazole to be reabsorbed. Furthermore, hy-drous phases were also obtained like the tetranuclear cluster [Pr4Cl10(OH)2(thz)8(H2O)2]. It was possible to generate a series of various coordination polymers and complexes under solvothermal conditions adding suitable linker molecules into the reaction system of lantha-nide chloride and thiazole. Suitable linkers or end-on ligands are a range of ditopic pyridyl ligands like 4,4'-biypridine (bipy), 1,2-di-(4-pyridyl)ethene (dpe), trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (tppe), 1,2-di-(4-pyridyl)ethane (dpa), diazine as pyrazine (pyz) and pyrimi-dine (pym) as well as azole like 1,2,4-triazole (tzH) and pyrazole (pzH). By single-X-ray struc-ture determination and powder diffraction it was possible to characterize three dimensional networks 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), layer structures 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) and strand like coordination polymers 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]·0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) as well as the complexes [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pyr)3(thz)2] (Ln = Pr, Gd). Furthermore, nearly all of the generated structures were investigated with regards to their photoluminescent and thermal properties.   Moreover, one dimensional coordination polymers 1∞[PrCl2(amt)(py)3] (amt- = 3-amino-5-mercapto-1,2,4-triazolate), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) and complexes [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-mercaptobenzimdiazolate) were obtained by direct coordination of sulfur at Ln3+-centers. KW - Lanthanoide KW - Polymerkomplexe KW - Photolumineszenz KW - Thiolate KW - Thiazole KW - Selten-Erd-Chloride KW - Koordinationspolymere KW - Lumineszenz KW - Thiazol KW - rare earth chlorides KW - coordination polymers KW - luminescence KW - thiazole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136218 ER - TY - THES A1 - Fischer, Markus T1 - Synthese neuartiger siliciumorganischer Wirkstoffe sowie siliciumhaltiger Synthese-Bausteine unter Verwendung der 4-Methoxyphenyl-, 2,6-Dimethoxyphenyl- und 2,4,6-Trimethoxyphenyl-Schutzgruppe T1 - Synthesis of novel organosilicon drugs and silicon-containing building blocks using the 4-methoxyphenyl, 2,6-dimethoxyphenyl, and 2,4,6-trimethoxyphenyl protecting group N2 - Synthese siliciumhaltiger Wirkstoffe und Synthese-Bausteine des 4-Silapiperidin-Typs: Im Rahmen der systematischen Untersuchungen unseres Arbeitskreises zur C/Si-Bioisosterie wurde für bereits bekannte σ-Rezeptor-Antagonisten eine neue verbesserte Syntheseroute entwickelt, wobei die Endprodukte jeweils in einer sechsstufigen Synthese dargestellt und als entsprechende Hydrochloride isoliert wurden. Ein weiteres Teilprojekt der vorliegenden Arbeit betraf die Entwicklung einer Syntheseroute zur Darstellung von Sila-L-741,626, dem Sila-Analogon des selektiven D2-Dopamin-Rezeptorantagonisten L-741,626. In einem weiteren Teilprojekt der vorliegenden Arbeit wurde ein neuer, säurefreier Weg zu 4 Silapiperidin-Bausteinen mit NH-Funktion entwickelt, der eine Staudinger-Reaktion als ringschließenden Syntheseschritt beinhaltet. Am Beispiel einer Modellverbindung, die in zwei alternativen jeweils fünfstufigen Synthesen ausgehend von Dichlordiphenylsilan dargestellt und als Hydrochlorid isoliert wurde, konnte die neue Syntheseroute erfolgreich ausgearbeitet werden. Die anhand der Modellverbindung erfolgreich getestete Syntheseroute konnte im Folgenden auf ein Zielmolekül angewendet werden, das anstatt einer inerten Phenyl-Gruppe die säurelabilere 4-Methoxyphenyl- (MOP-) Gruppe trägt. Synthese siliciumhaltiger Wirkstoffe und Synthese-Bausteine des 4-Silacyclohexan-1-on- und (4-Silacyclohexan-1-yl)amin-Typs: Im Zusammenhang mit unseren systematischen Untersuchungen zur C/Si-Bioisosterie wurde Sila-pramiverin dargestellt. Dies gelang in einer vierstufigen Synthese, ausgehend von Dichlordiphenylsilan. Im Zuge dieser Synthese fand Brown’s DCME-Prozess Anwendung, um in einer Eintopf-Reaktion das entsprechende 4-Silacyclohexan-1-on und daraus durch anschließende reduktive Aminierung mit Isopropylamin Sila-pramiverin erstmals darzustellen. Analog zur Synthese von Sila-pramiverin konnten ebenfalls Synthese-Bausteine des 4 Silacyclohexan-1-on-Typs sowie des (4-Silacyclohexan-1-yl)amin-Typs unter Verwendung der 4 Methoxyphenyl- (MOP ), 2,6-Dimethoxyphenyl- (DMOP-) bzw. 2,4,6-Trimethoxyphenyl- (TMOP-) Schutzgruppe dargestellt werden. In einer Machbarkeitsstudie wurde zudem unter selektiver Abspaltung der 4 Methoxyphenyl- (MOP ), 2,6-Dimethoxyphenyl- (DMOP-) bzw. 2,4,6-Trimethoxyphenyl- (TMOP-) Schutzgruppe der phenylierten 4 Silacyclohexan-1-one mittels Chlorwasserstoff das entsprechende Chlorsilan dargestellt. Synthese siliciumhaltiger Synthese-Bausteine des 4-Silatetrahydropyran-Typs: Eine fast gänzlich unerforschte Klasse siliciumhaltiger Heterocyclen stellen 4 Silatetrahydropyrane dar. Im Rahmen der vorliegenden Arbeit konnte zunächst anhand einer Modellstudie das 4,4-Diphenyl-4-silatetrahydropyran dargestellt werden. Die für die Modellverbindung ausgearbeitete Syntheseroute konnte schließlich auf die Synthese der 4 Methoxyphenyl- (MOP-) und 2,6-Dimethoxyphenyl- (DMOP-) substituierten 4 Silatetra¬hydropyrane übertragen werden. Diese konnten jeweils in einer vierstufigen Synthese dargestellt werden. Lediglich die Synthese der 2,4,6-Trimethoxyphenyl- (TMOP-) substituierten 4 Silatetra¬hyropyrane gelang aufgrund der Instabilität der mesylierten Zwischenstufen nicht. N2 - Synthesis of silicon containing drugs and building blocks of the 4-silapiperidine type: In context with the systematic studies of our research group on C/Si bioisosterism, a novel and improved synthetic route for already reported σ receptor antagonists were established in six-step syntheses, and the final products were isolated as hydrochlorides. Another goal of this work concerned the development of a synthetic route for sila L 741,626, a silicon analogue of the selective D2 dopamin receptor antagonist L 741,626. In another project of this work, a novel acid-free method for the synthesis of 4-silapiperidine building blocks containing a NH function has been developed, using the Staudinger reaction as the key step. As a proof of principle, a model compound, isolated as hydrochloride, could be prepared in two alternative five-step syntheses, starting from dichlorodiphenylsilane. The novel synthetic route for the preparation of the model compound could then be sucessfully applied to the synthesis of a novel target molecule containing the more acid-labile 4 methoxyphenyl (MOP) group instead of the relatively inert phenyl group. Synthesis of silicon containing drugs and building blocks of the 4-silacyclohexan-1-one and the (4-silacyclohexan-1-yl)amine type: In context with our systematic studies on C/Si bioisosterism, sila-pramiverin was synthesized in a four-step synthesis, starting from dichloro¬diphenylsilane. In the course of the synthesis of the 4 silacyclohexan-1-one intermediate, a one-pot synthesis by using Brown’s DCME process was applied. Subsequent reductive amination with isopropylamine led to sila-pramiverin. Analogously to the synthesis of sila-pramiverin, building blocks of the 4 silacyclo¬hexan-1-one type and the (4-silacyclohexan-1-yl)amine type were synthesized by using the 4-methoxyphenyl (MOP), 2,6-dimethoxyphenyl (DMOP), or 2,4,6-trimethoxyphenyl (TMOP) protecting groups. As a proof of principle, the phenyl-substituted 4 silacyclo¬hexan-1-ones could then be transformed into the corresponding chlorosilane by selective cleavage of the 4-methoxyphenyl (MOP), 2,6-dimethoxyphenyl (DMOP), or 2,4,6-trimethoxyphenyl (TMOP) protecting group by using hydrogen chloride. Synthesis of silicon containing building blocks of the 4-silatetrahydropyrane type: 4-Silatetrahydropyranes represent a nearly unexplored class of silicon containing heterocycles. Within the scope of this work, the model compound 4,4-diphenyl-4-silatetrahydropyrane could be synthesized in a three-step synthesis, starting from dichlorodiphenylsilane. This synthetic route to the model compound could then also be applied successfully to the 4-methoxyphenyl (MOP) and 2,6-dimethoxyphenyl (DMOP) substituted 4-silatetrahydropyranes. However, the syntheses of the 2,4,6-trimethoxyphenyl (TMOP) substituted 4 silatetrahydropyranes remained unsuccessful due to the instability of their mesylated precursors. KW - Silicium KW - Wirkstoff KW - Schutzgruppe KW - Sila-Substitution KW - Sila-Wirkstoff KW - Synthese-Baustein KW - Siliciumorganische Verbindungen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113987 ER - TY - THES A1 - Ferkinghoff, Katharina T1 - Reaktivitätsstudien an Metalloborylenkomplexen und Eisen-substituierten Borirenen T1 - Reactivity studies of metalloborylene complexes and Iron-substituted borirenes N2 - D) Zusammenfassung Im Rahmen der vorgestellten Doktorarbeit wurde die Reaktivität des Metalloborylenkomplexes [{(η5-C5Me5)Fe(CO)2}(μ-B){Cr(CO)5}] (43) gegenüber weiterer Übergangsmetallfragmente, verschiedener Mono- bzw. Dialkine sowie unterschiedlicher Isonitrile untersucht. Mittels spektroskopischer und struktureller Befunde der dabei synthetisierten Verbindungen konnten bekannte Sachverhalte bestätigt und neue Erkenntnisse über die Metall–Bor-Bindung erhalten werden. Der Boridokomplex [{(η5-C5Me5)Fe(CO)2}(μ-B){W(CO)5}] (73) konnte auf dem klassischen Weg einer doppelten Salzeliminierungsreaktion des Dichloroborylkomplexes 11 und dem Metallcarbonylat Na2[W(CO)5] in einer Ausbeute von 46% dargestellt werden (Abbildung 96). Abbildung 96: Synthese des Boridokomplexes 73. Verbindung 73 weist die für terminale Borylenkomplexe charakteristische, lineare FeBW Einheit sowie ein extrem tieffeldverschobenes 11B{1H}-NMR-Signal auf. Es gelang ebenfalls, die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf ein weiteres Übergangsmetall-Fragment zu übertragen. Dieser intermetallische Transfer bietet neben der klassischen Salzeliminierungsreaktion einen neuen Syntheseweg für Boridokomplexe. Die Umsetzung von 43 mit dem Übergangsmetallkomplex [(η5 C5H5)(H)W(CO)3] resultiert in 52%-iger Ausbeute in der Bildung des Hydrid-verbrückten Boridokomplexes [{(η5-C5Me5)(CO)2Fe}(µ-B)(µ-H){CpW(CO)2}] (74) (Abbildung 97). Röntgenkristallographische Untersuchungen sowie NMR-spektroskopische Daten belegen die verbrückende Position des Hydridoliganden über die W–B-Bindung der linearen FeBW Einheit. Abbildung 97: Synthese des hydrid-verbrückten Boridokomplexes 74. Aus den Umsetzungen der Hydrid-verbrückten Boridokomplexe [{(η5-C5Me5)(CO)2Fe} (µ B)(µ-H){CpM(CO)2}] (M = W (74), Mo (75)) mit einem Äquivalent des Metall-basischen Platin-(0)-Komplexes [Pt(PCy3)2] konnten die Trimetallo-Boridokomplexe 76 und 77 in Ausbeuten von 27% und 33% isoliert und vollständig charakterisiert werden (Abbildung 98). Sie weisen die für Metall-basenstabilisierten Boridokomplexe typische T-förmige Struktur mit einem verbrückenden Hydridoliganden zwischen der M–Pt-Bindung sowie einer verbrückenden Carbonylgruppe zwischen der Fe–Pt-Bindung auf. Des Weiteren zeigte sich, dass in beiden Verbindungen die M–B-Bindungsabstände vergleichbar mit denen anderer Boridokomplexe sind, die Pt–B-Bindungsabstände jedoch gegenüber Platin-Borylkomplexen deutlich verlängert sind. Dieser Befund wurde bereits für andere Metall-Basen-Addukte beschrieben. Mit einem weiteren Metallbasen-Fragment gelang es die noch freie Koordinationsstelle am Bor-Zentrum zu besetzen. Hierzu wurden die Verbindungen 76 und 77 mit einem zweiten Äquivalent des niedervalenten Metallkomplexes [Pt(PCy3)2] umgesetzt (Abbildung 98). Folglich konnten die tetranuklearen Komplexe 78 und 79 in Ausbeuten von 44% und 30% isoliert werden. Die 1H-NMR-Kopplungsschemata des Hydridoliganden bestätigen seine verbrückende Position zwischen dem Metall (Wolfram, Molybdän) und Platin. Obwohl die Festkörperstruktur von 79 zwei unterschiedliche {Pt(PCy3)}-Fragmente aufweist, zeigt das 31P{1H}-NMR-Spektrum in Lösung nur ein Signal. Somit liegt bei Raumtemperatur in Lösung eine Fluktuation der verbrückenden Carbonylgruppe sowie des Hydridoliganden vor. Entgegen den Erwartungen nimmt Verbindung 79 eine stark gekippte Anordnung ein und nicht, wie die meisten bekannten Tetrametallo-Boridokomplexe eine quadratisch-planare Koordination (Anti-van`t Hoff-Le Bel-Verbindungen). Abbildung 98: Reaktivität des hydrid-verbrückten Boridokomplexes 74 gegenüber [Pt(PCy3)2]. Des Weiteren gelang es die Metalloborylen-Einheit {(η5-C5Me5)Fe(CO)2(B:)} aus 43 auf einige unterschiedlich substituierte Alkine zu übertragen und die Verbindungsklasse der bislang erst zwei bekannten Eisen-substituierten Borirene auf die Verbindungen 81-86 zu erweitern, welche in Ausbeuten von 24-61% isoliert werden konnten (Abbildung 99). Abbildung 99: Synthese der Ferroborirene 81-86. Das charakteristische Strukturmerkmal dieser Verbindungsklasse stellt der dreigliedrige Boracyclus dar, dessen Verkürzung der BC bzw. Verlängerung der C–C-Bindungen gegenüber B–C-Einfach- bzw. C=C Doppelbindungen auf eine Delokalisierung der π Elektronen über ein bindendes Molekülorbital bestehend aus den p-Orbitalen der Ring-Atome hindeuten. Durch den thermisch induzierten Borylentransfer und drastische Reaktionsbedingungen gelang es erstmals, ein Ferro(bis)boriren (87) vollständig zu charakterisieren. Die Umsetzung von 43 mit verschiedenen Dialkinen führte zur Bildung der Ferro(bis)borirene 87 89 (Abbildung 100). Abbildung 100: Synthese der Ferro(bis)borirene 87-89. Aufgrund der Verkürzung der C–C-Einfachbindung zwischen den beiden Dreiringen (1.411(3) Å) kann in dem Ferro(bis)boriren 87 von einer Delokalisation der π Elektronen über beide Boracyclen hinweg ausgegangen werden. Zahlreiche Versuche zur Spaltung der Fe–B-Bindung des Ferroborirens 63 mit H2, Br2 oder HCl, um Zugang zu Borirene mit veränderten Eigenschaften zu erhalten, waren nicht erfolgreich. Auch einige Quarternisierungsversuche des Ferroborirens 63 mit den weniger basischen Pyridinderivaten (3,5-Lutidin, 4 Picolin, 4-(Dimethylamino)-pyridin) waren nicht erfolgreich. Die Reaktionskontrolle mittels 11B{1H} NMR-Spektroskopie zeigte immer nur das Eduktsignal bei δ = 63.4 ppm. Sowohl nach dem Erhitzen für mehrere Stunden auf 80 °C sowie durch Abkühlen der Reaktionslösung war keine Reaktion zu erkennen. Die Umsetzung von 63 mit einem cyclischen Alkylaminocarben lieferte ebenfalls keine Reaktion. Weitere Untersuchungen zur Reaktivität von 63 ergaben, dass es durch die Umsetzung von 63 mit zwei Äquivalenten eines N-heterocyclischen Carbens zu einer heterolytischen FeB Bindungsspaltung unter Bildung der Boroniumionen 90-92 kommt (Abbildung 101). Auf diese Weise konnte das erste Borironium-Salz eines Borirens erhalten werden. Abbildung 101: Synthese der Boroniumionen 90-92. Durch die Quarternisierung des Boratoms ist in den Borironiumionen eine Delokalisierung der zwei π Elektronen über ein bindendes Molekülorbital bestehend aus den p-Orbitalen der Ring-Atome nicht mehr möglich, dies spiegelt sich in der Verlängerung der BC- sowie Verkürzung der C–C-Bindungen im Vergleich zur Ausgangsverbindung wieder. Ein weiteres Projekt dieser Arbeit umfasste Untersuchungen zur Reaktivität von Manganborylkomplexen gegenüber Isonitrilen. Es zeigte sich, dass durch Umsetzung des Mangan(dibromboryl)komplexes (94) mit Cyclohexyl- bzw. tert-Butylisonirtil die Lewis Säure-Base-Addukte 95 und 96 gebildet werden. Abbildung 102: Synthese der Lewis-Säure-Base-Addukte 95und 96. Im Gegensatz hierzu kommt es bei der Umsetzung des Phosphan-substituierten Manganborylkomplexes 98 mit Cyclohexyl- bzw. tert-Butylisonirtil zu keiner Adduktbildung, sondern zu einer Insertion zweier Isonitrile in die MnB Bindung unter Bildung eines carbenartigen Mangankomplexes und einem viergliedrigen Ring bestehend aus dem Kohlenstoff- und dem Stickstoffatom eines Isonitrils, dem Kohlenstoffatom des zweiten Isonitrils sowie dem Boratom der {BCl2}-Gruppe. Des Weiteren wurden zwei Carbonylgruppen durch Isonitrile ausgetauscht (Abbildung 103). Abbildung 103: Synthese der Isonitrilinsertionskomplexe 99 und 100. Das letzte Projekt dieser Arbeit umfasste die Untersuchung der Reaktivität von 43 gegenüber Isonitrilen. Während die Umsetzung des Boridokomplexes 43 mit tert-Butyl- bzw. Mesitylisonitril keine selektive Reaktion lieferte, führte die Umsetzung von 43 mit drei Äquivalenten Cyclohexylisonitril zu einer Insertion der Isonitrile in beide MB-Bindungen und somit zur Bildung der [2.3] Spiro-Verbindung 103. Da der Metalloborylenkomplex 43 formal eine Eisenboryl- und eine Chromborylen-Funktionalität aufweist, werden dementsprechend in dieser Reaktion zwei unterschiedliche Reaktivitäten in einem Molekül vereinigt. Diese sind zum einen vergleichbar zu der des Eisen(dichlorboryl)komplexes 11 und zum anderen zu der des Chrom(aminoborylen)komplexes 17. Abbildung 104: Synthese der [2,3]-Spiroverbindung 103. Bei der Umsetzung von 43 mit Supermesitylisonitril konnte anhand geeigneter Kristalle für die Röntgenstrukturanalyse das Chrom-Spaltungsprodukt [(OC)4(Mes*NC)2Cr] (109) erhalten werden. Dieser Befund sowie quantenchemische Rechnungen sprechen für die Bildung von 115 (Abbildung 105). Abbildung 105: Umsetzung von 43 mit Mes*NC. In den Untersuchungen zu der Isonitril-insertierten [2.3] Spiro-Verbindung 103 konnte zum einen die Reversibilität der Isonitrilinsertion in die FeB-Bindung durch Umsetzung mit der starken Lewis-Säure Tris(pentafluorphenyl)boran unter der Bildung des Lewis-Säure-Base-Addukts (C5F5)3B−CNtBu vermutet werden. Weitere Reaktivitätsuntersuchungen zu 103 zeigen, dass durch die HCl-Addition an die NB Bindung des dreigliedrigen Rings der Eisencarbenkomplex 118 gebildet wird (Abbildung 106). Dieser Befund deutet darauf hin, dass es sich bei der B–N-Bindung in 103 eher um eine dative N→B-Wechselwirkung handelt und diese somit leichter gespalten werden kann als die B–C-Einfachbindung des dreigliedrigen Rings. Abbildung 106: Synthese der Verbindung 118. N2 - E) Summary This work aims to investigate the reactivity of the metalloborylene complex [{(η5 C5Me5)Fe(CO)2}(μ-B){Cr(CO)5}] (43) towards other transition metal complexes, a variety of mono- and dialkynes, and several isonitriles. Thereby, discussion of spectroscopical and structural data of the prepared compounds confirms known facts and helps to determine the nature of the metal–boron bond. According to a well-established synthetic protocol, the borido complex [{(η5 C5Me5)Fe(CO)2}(μ-B){W(CO)5}] (73) could be prepared by a double salt-elimination reaction of the dichloroboryl compound 11 and the corresponding metal carbonylate Na2[W(CO)5] in isolated yields of 46% (Figure 107). Figure 107: Synthesis of the borido complex 73. As observed for related metalloborylene species, the borido complex 73 shows the typical linear FeB–W moiety (178.5(2)°) as well as a low-field-shifted 11B{1H} NMR (δ = 204.6 ppm) resonance. The borido complex 43 can be employed as a synthetic source of the metalloborylene fragment {(η5 C5Me5)Fe(CO)2(B:)}. The metalloborylene complex is known for its ability to transfer the borylene moiety to both organic and organometallic fragments. Thus, reaction of 43 with the tungsten hydride complex [(η5 C5H5)(H)W(CO)3] leads to the dinuclear hydridoborylene complex [{(η5-C5Me5)(CO)2Fe}(µ-B)(µ-H){CpW(CO)2}] (74) in yields of 52% (Figure 108). This intermetallic borylene transfer offers an alternative synthesis route to the well-known salt-elimination reaction. X-ray crystallographic studies and NMR spectroscopic data confirmed the bridging position of the hydride between the tungsten and the boron center. Figure 108: Synthesis of the borido complex 74. The addition of one equivalent of the zerovalent platinum fragment [Pt(PCy3)2] to the hydridoborylene complexes [{(η5-C5Me5)(CO)2Fe}(µ B)(µ-H){CpM(CO)2}] (M = W (74), M = Mo (75)) results in BH-bond breakage and the formation of the T-shaped trinuclear borido complexes [{(η5-C5Me5)Fe(CO)}(µ-CO){Pt(PCy3)}{CpM(CO)2}(µ3-B)] (M = W (76), Mo (77)) (Figure 109). The hydrido ligand occupies a bridging position between the MPt bond and single crystal X-ray analysis confirmed the absence of a BH interaction. Single crystal X ray diffraction studies of 76 and 77 revealed MB bond distances comparable to those found for other borido complexes. In addition, the PtB distances are significantly elongated and resemble those found in metal base adducts of other boron species. With an additional equivalent of the [Pt(PCy3)2] fragment it was possible to occupy the last free coordination site at the central boron atom. Thus, the tetranuclear species [{(Cp*)Fe(CO)}(µ-CO){Pt(PCy3)2}{CpM(CO)2}(µ4-B)] (M = W (78), M = Mo (79)) (Figure 109) were obtained in isolated yields of 44% and 30%. As was determined by the solid-state structure, the complex 79 retains the bridging hydride and carbonyl ligands of its precursor 77, adding a [Pt(PCy3)2] fragment to the boron atom held in place by two further bridging carbonyl ligands. The boron atom in 79 is even more distorted from planarity (angular sum around boron: 335.7(7)°) than the two published examples of planar tetracoordinate boron complexes (362.4° and 364.6°). Consequently the four metal atoms and the boron (FeBMo: 162.5(3)°, PtBPt: 91.1(2)°) form a saw-horse geometry and not the expected nearly-square-planar coordination mode (Anti-van`t Hoff-Le Bel-compounds). The 31P{1H} NMR spectra shows only one signal in solution, thus the bridging hydride and carbonyl ligands are fluxional at room temperature. Figure 109: Synthesis of the tri- and tetranuclear borido complexes 76-79. Furthermore, the metalloborylene moiety {(η5-C5Me5)Fe(CO)2(B:)} of 43 can also be transferred successfully to alkynes. The thermal borylene transfer has turned out to be applicable to a set of alkynes with different functional groups, expanding the class of ferroborirenes to 81-86 (Figure 110), which were obtained in yields of 24-61%. Figure 110: Synthesis of the ferroborirenes 81-86. The characteristic structural feature of these compounds is a three-membered BCC-ring. The short BC bonds as well as the long CC bonds suggests a delocalisation of the two π electrons over a three centered bonding molecular orbital comprised of the pz atomic orbitals of boron and carbon. The first complete characterization of a ferro(bis)borirene (87) was carried out by thermal metalloborylene transfer and drastic reaction conditions. Thus, the reaction of 43 with different diynes leads to the formation of the ferro(bis)borirenes 87-89 (Figure 111). Figure 111: Synthesis of the ferro(bis)borirenes 87-89. Due to the shortening of the C–C single bond between the two boracycles (1.411(3) Å) it can be assumed that there is a strong electronic interaction between the two boracyclopropene rings. Numerous attempts to cleave the Fe–B bond of the ferroborirene 63 with H2, Br2 or HCl to gain access to borirenes with modified properties failed. Additionally, several quaternization attempts of the ring boron atom from 63 with less basic pyridine derivates (3,5-lutidine, 4-(dimethylamino)-pyridine) were unsuccessful. The 11B{1H} NMR spectra showed in all cases only the reactant signal of 63 at δ = 63.4 ppm. The implementation of 63 with a cyclic (alkyl)(amino) carbene also yielded no reaction. Further investigations on the reactivity of 63 showed that it is possible to cleave the FeB bond. Treatment of 63 with two equivalents of the N-heterocyclic carbenes IMe, IMeMe and IiPr results in heterolytic FeB bond cleavage, yielding the boronium cations 90-92 (Figure 112). In this way, the first borironium salts of a borirene could be obtained. Figure 112: Synthesis of the boronium cations 90-92. Because of the quaternization of the boron atom the structural findings for the boronium cations are interpreted as indicative for annihilation of delocalization of the two π electrons over the three-centered bonding molecular orbital comprised of the pz atomic orbitals of boron and carbon. A further topic of this thesis focussed on the reactivity of manganese boryl complexes towards isonitriles. It turns out that the reaction of the dibromoboryl complex 94 with cyclohexyl- or tert-butylisonitrile leads to the formation of the Lewis-base adducts 95 and 96 (Figure 113). Figure 113: Synthesis of the base adducts 95 and 96. In contrast to the afore-mentioned reactions, treatment of the phosphine-substituted manganese dichloroboryl complex 98 with cyclohexyl- or tert-butylisonitrile leads not to the Lewis adduct formation, but insertion of the isonitriles into the MnB bond (Figure 114). In these complexes the former boryl unit is coordinated by the carbon and nitrogen atom of one isonitrile and by the carbon of the second isonitrile, forming a four-membered ring. This compound might be best described as a manganese carbene-like complex. Furthermore, two carbonyl ligands at the manganese were replaced by two isonitriles. Figure 114: Synthesis of insertion complexes 99 and 100. The last objective of this work was the exploration of the reactivity of the borido complex 43 with different isonitriles. While the treatment of the borido complex 43 with tert-butyl- or mesitylisonitrile does not lead to a selective reaction, the reaction of 43 with three equivalents of cyclohexylisonitrile leads to insertion of the isonitriles into the MB bonds, revealing a [2.3] spiro species 103 (Figure 115). In 103, the boron atom is coordinated to three separate isonitrile units, two of which have been coupled head-to-head. In this case, insertion into the FeB single bond shows reactivity similar to that observed with the iron boryl complex 11, while the double insertion into the Cr=B bond is analogous to the reactivity observed for the chromium aminoborylene complex 17. This reactivity, leading to 103, allows an interesting internal comparison of the boryl and borylene functionalities, which show distinct reactivity even within the same molecule. Figure 115: Synthesis of the spiro compound 103. X-ray diffraction of suitable crystals from the treatment of 43 with supermesitylisonitrile confirmed the formation of [(OC)4(Mes*NC)2Cr] (109). This finding, as well as quantum chemical calculations support the formation of 115 (Figure 116). Figure 116: Reaction of 43 with Mes*NC. As we were interested in the nature of the bonding within the three- and four-membered rings of the isonitrile-inserted [2.3] spiro complex 103, further investigations with the strong Lewis acid tris(pentafluorophenyl)borane revealed the formation of the Lewis adduct (C5F5)3B−CNtBu. Furthermore the possibility to selectively add HCl to the B−N bond of the three-membered ring without decomposition of the compound allowed the characterization of 118 (Figure 117). This finding suggests that the B–N bond in 103 can be described as a dative N→B interaction, thus being easier to cleave than the B–C single bond of the three-membered ring. KW - Borylene KW - Metalloborylenkomplexe KW - Eisen-substituierte Borirene KW - Borirene KW - Borylentransfer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118850 ER - TY - JOUR A1 - Matthes, Philipp R. A1 - Schönfeld, Fabian A1 - Zottnick, Sven H. A1 - Müller-Buschbaum, Klaus T1 - Post-synthetic shaping of porosity and crystal structure of Ln-Bipy-MOFs by thermal treatment JF - Molecules N2 - The reaction of anhydrous lanthanide chlorides together with 4,4'-bipyridine yields the MOFs \(^{2}\)\(_{∞}\)[Ln\(_{2}\)Cl\(_{6}\)(bipy)\(_{3}\)]*2bipy, with Ln = Pr-Yb, bipy = 4,4'-bipyridine, and \(^{3}\)\(_{∞}\)[La\(_{2}\)Cl\(_{6}\)(bipy)\(_{5}\)]*4bipy. Post-synthetic thermal treatment in combination with different vacuum conditions was successfully used to shape the porosity of the MOFs. In addition to the MOFs microporosity, a tuneable mesoporosity can be implemented depending on the treatment conditions as a surface morphological modification. Furthermore, thermal treatment without vacuum results in several identifiable crystalline high-temperature phases. Instead of collapse of the frameworks upon heating, further aggregation under release of bipy is observed. \(^{3}\)\(_{∞}\)[LaCl\(_{3}\)(bipy)] and \(^{2}\)\(_{∞}\)[Ln\(_{3}\)Cl\(_{9}\)(bipy)\(_{3}\)], with Ln = La, Pr, Sm, and \(^{1}\)\(_{∞}\)[Ho\(_{2}\)Cl\(_{6}\)(bipy)\(_{2}\)] were identified and characterized, which can also exhibit luminescence. Besides being released upon heating, the linker 4,4'-bipyridine can undergo activation of C-C bonding in ortho-position leading to the in-situ formation of 4,4':2',2 '':4 '',4'''-quaterpyridine (qtpy). qtpy can thereby function as linker itself, as shown for the formation of the network \(^{2}\)\(_{∞}\)[Gd\(_{2}\)Cl\(_{6}\)(qtpy)\(_{2}\)(bipy)\(_{2}\)]*bipy. Altogether, the manuscript elaborates the influence of thermal treatment beyond the usual activation procedures reported for MOFs. KW - energy transfer KW - ligand KW - Ln-MOFs KW - luminescence crystal structure KW - metal-organic frameworks KW - shaping of porosity KW - thermal treatment KW - luminescence KW - crystal scructure KW - coordination polymers KW - solid state Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148404 VL - 20 ER -