TY - THES A1 - Li, Han T1 - Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly T1 - Herstellung dünner Kohlenstoffnanorohr-Filme mittels verdunstungsinduzierter Selbstanordnung N2 - In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficiency of fabrication than what previously reported but also allowed us to monitor the pinning and depinning process carefully and further investigate the mechanism underlying the formation of different film morphologies. In contrast with the conventional "stick-slip" model, we have provided the new dynamical pinning and zipping model for the contact line (CL) behavior. By analyzing the motion of CL and varying deposited patterns, the traditionally so-called "stick" state should be treated as a dynamical pinning process due to the interfacial tension contrast between SWNT-covered and bare silicon surface. Besides, the plausible one-step "slip" motion could be dominated by the zipping-like kink propagation. In addition, the experiments with heated substrates at higher temperatures between 30°C and 50 °C have shown that the striped pattern could be fabricated by both much lower SWNT and SDS concentrations than that in room temperature, which is consistent with our model of interfacial tension contrast. In this situation, the deposition rate was increased but the quality of SWNT alignment was undermined because the corresponding moving velocity of SWNT was also too fast for SWNTs to rotate when the evaporative rate was high. The similar results were identified by the SWNT/polymer conjugates dispersed in chloroform under the similar setups and other identical conditions. The typical breathing motion of dynamical pinning and zipping-like propagation for depinning were confirmed by the new suspensions despite that some morphological parameters changed dramatically compared with that from the aqueous solution. For example, the spacing between stripes reached 100 µm ~ 200 µm because the large contact angle contrast between HDMS- and SWNT-covered surface accompanies with the high evaporation rate of chloroform in the pinning and depinning process. Likewise the average CL velocity for fabrication reached around 20 µm/s due to the much higher evaporation rate of chloroform than water. Using alike suspensions, the modified EISA method called dose-controlled floating evaporative self-assembly (DFES) was employed to implement the self-assembly of SWNTs on the water/air interface and then deposit them on solid substrate by directed floating. Although the stripes were fabricated successfully by drops with certain doses and SWNT concentrations, there inevitably existed randomly oriented SWNTs from the water surface that built networks between the stripes containing well-aligned tubes. In order to slow down the evaporation rate and monitor the process detailedly, we used chlorobenzene as the solvent instead of chloroform and find the typical pinning/depinning movement of the CL. A preliminary analysis of the results in terms of chlorobenzene implied that the CL possibly followed the similar pinning/depinning process in consistence with our model with capillary bridge. In the last part of the thesis, the primary research on the optical properties of these stripes of ultrahigh purity semiconducting nanotubes was conducted by fluorescence microscopy and photoluminescence excitation (PLE) spectroscopy. The energy transfer of the photogenerated excitons was confirmed between different tube species with controlled band gaps. In short, the experiments performed in this thesis allowed to gain new insights about the fabrication of large-area SWNT thin films by the cost-effective solution-processed method and most importantly to uncover its intrinsic mechanism as well. Combined with the separation and selection technique like density gradient centrifugation or polyfluorene derivatives assisted method, highly monodisperse semiconducting nanotubes could be deposited into organized, controllable and functional arrays. Beyond the ambient conditions, precise control for the evaporation under preset temperature and vapor pressure could possibly extend the technique to the industry level. Assisted by some other mature techniques such as roll-to-roll printing, the cost-effective method could be widely used in the manufacture of various thin film devices. More complex 2D or even 3D structures could be designed and accomplished by the method for the functional or stretchable requirements. Further research on the fundamental exciton transition and diffusion in different networks or structures of SWNTs will be the significant precondition for the real applications. Looking ahead, from the individual carbon nanotube to its thin film, this promising material with outstanding properties had many challenges to overcome before the real-world applications. Thanks to the availability of pure and well-defined materials, the scalable solution-processed approaches for fabrication of thin films should be able to unlock the potential of carbon nanotubes and exploit them in (opto-)electronic devices in the foreseeing future. N2 - Im Rahmen der vorliegenden Arbeit wurden über die Methode der Verdunstungsinduzierten Selbstanordnung (evaporation-induced self-assembly, EISA) dünne Filme aus einwandigen Kohlenstoffnanoröhren (SWNTs) hergestellt. Die Verwendung eines individuell anpassbaren Zwei-Platten- oder Linsen-Aufbaus ermöglichte durch präzise Kontrolle der Konzentrationen der verwendeten SWNT-Suspensionen und der unterschiedlichen Reaktionsbedingungen die Herstellung verschiedenster Arten und Anordnungen von SWNT-Dünnfilmen. Durch Ausnützen der speziellen Geometrie des Meniskus einer Kapillarbrücke zwischen zwei Oberflächen konnte nicht nur eine effizientere Herstellung im Vergleich zu früheren Veröffentlichungen erzielt werden, sondern es konnte auch der Mechanismus der Selbstanordnung (Pinning und Depinning) in Abhängigkeit der Reaktionsbedingungen und die resultierende Dünnfilmmorphologie untersucht werden. Es konnte gezeigt werden, dass im Gegensatz zum gängigen "stick-slip" Modell durch ein dynamisches Reißverschluss-Modell (dynamical pinning and zipping model) das Verhalten an der Kontaktlinie (contact line, CL) besser beschrieben werden kann. Eine Analyse der CL-Bewegung unter unterschiedlichen Abscheidungsbedingungen führte zu dem Schluss, dass der bisher verwendete "Stick"-Zustand als dynamischer Pinning-Zustand betrachtet werden sollte, dessen Zustandekommen auf der unterschiedlichen Oberflächenspannung zwischen SWNT-bedeckten und -freien Bereichen auf der Abscheidungsoberfläche beruht. Beim bisher als einschrittige "Slip"-Bewegung beschriebenen Fortschreiten der CL ist dagegen eine Reißverschluss-ähnliche Knick-Bewegung vorherrschend. Weiterführende temperaturabhängige Abscheidungsstudien zur Dünnfilmpräparation konnten zeigen, dass Dünnfilme in Streifenanordnung bei wesentlich geringeren SWNT- und Seifenkonzentrationen im Vergleich zu Raumtemperatur hergestellt werden können. Auch diese Prozesse konnten durch das oben beschriebene Oberflächenspannungskontrastmodell erklärt werden. Die Abscheidungsrate nimmt mit höherer Temperatur zu, wobei die Ordnung der abgeschiedenen SWNTs im Dünnfilm abnimmt, da die Bewegungsgeschwindigkeit hin zur CL im Vergleich zur Rotationsgeschwindigkeit stark zunimmt. Auch für SWNT/Polymer Suspensionen in organischen Lösungsmitteln konnte das Verhalten der CL nach dem dynamischen Reißverschluss-Modell erklärt werden und gestreifte Dünnfilme hergestellt werden. Die Filmmorphologie und der Streifenabstand unterschieden sich jedoch maßgeblich von denen aus wässrigen SWNT Suspensionen hergestellten Dünnfilmen. Hierfür ist auch die mit 20 µm/s sehr hohe Herstellungsgeschwindigkeit verantwortlich. Unter Verwendung der organischen SWNT Suspensionen wurden auch Experimente zu einer von EISA entlehnten Abscheidungsmethode (dose-controlled floating evaporative self-assembly, DFES) durchgeführt. Hierbei wurden gestreifte SWNT Dünnfilme durch SWNT-Selbstanordnung schwimmend an der Flüssig/Luft-Grenzfläche und anschließender Abscheidung auf festem Substrat hergestellt. Auch hier konnte ein CL-verhalten, welches dem dynamischen Reißverschluss-Modell folgt nachgewiesen werden. Detailliertere Betrachtung des Zwischenstreifenraumes zeigte jedoch willkürlich angeordnete SWNTs unabhängig der Herstellungsparameter. Im letzten Teil der Dissertation wurden mittels Fluoreszenz-Anregungs-Spektroskopie und Fluoreszenzmikroskopie die optischen Eigenschaften der Streifen-Dünnfilme, bestehend aus hochaufgereinigten halbleitenden SWNTs untersucht. Bei Streifenmustern aus unterschiedlichen SWNT Spezies konnte ein Energietransfer der exzitonischen angeregten Zustände zwischen SWNTs mit unterschiedlicher Bandlücke nachgewiesen werden. Zusammengefasst lässt sich sagen, dass die im Rahmen dieser Dissertation durchgeführten Experimente ein tieferes Verständnis der Herstellung großflächiger SWNT Dünnfilme durch Entdeckung des zugrundeliegenden Mechanismus ermöglichten. In Kombination mit Auftrennungsverfahren wie Dichtegradientenultrazentrifugation oder Polymer-basierten Ansätzen können so monodisperse, halbleitende SWNTs kontrolliert zu geordneten, funktionellen Arrays angeordnet werden. Präzise Kontrolle der Umgebungsbedingungen, wie Temperatur oder Druck, könnten die Technik auch für industrielle Anwendung interessant machen. Unterstützt durch etablierte Methoden wie dem Rollendruck könnte die kostengünstige Methode großflächig zur Herstellung von verschiedenen Dünnfilmen zur Anwendung kommen. Komplexere, funktionelle, dehnbare 2D oder 3D Strukturen könnten so entworfen werden. Weitere Untersuchungen hinsichtlich der exzitonischen Übergänge und Exzitondiffusion in solchen SWNT-Netzwerken oder -Strukturen wären die Grundvoraussetzung für tatsächliche Anwendungsmöglichkeiten. Vorausschauend lässt sich sagen, dass auf dem Weg von der individuellen Nanoröhre hin zu SWNT Dünnfilmen noch zahlreiche Herausforderungen bestehen, bevor eine reale Anwendung dieser vielversprechenden Materialien möglich erscheint. Durch hochreines und wohldefiniertes Ausgangsmaterial könnte die frei skalierbare Herstellung von SWNT Dünnfilmen über die hier beschriebenen Methoden aber eine Anwendungsmöglichkeit für das lange prognostizierte Potential der Kohlenstoffnanoröhren in (opto-)elektronischen Vorrichtungen in näherer Zukunft ermöglichen. KW - Kohlenstoff-Nanoröhre KW - Carbon Nanotube KW - Evaporation-Induced Self-Assembly KW - thin film KW - verdunstungsinduzierter Selbstanordnung KW - dünner Filme KW - Dünne Schicht KW - Selbstorganisation KW - Verdunstung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123407 ER - TY - THES A1 - Späth, Florian Leonhard T1 - Präparation und Charakterisierung einwandiger Kohlenstoffnanorohr-Polyfluoren-Komplexe T1 - Preparation and characterization of single-wall carbon nanotube-polyfluorene-complexes N2 - Im Fokus dieser Arbeit standen (6,5)-SWNT-PFO-BPy-Komplexe als Vertreter für polyfluorenstabilisierte, einwandige Kohlenstoffnanoröhren. In einem ersten Projekt wurden präparative Verfahren zur Dispergierung und Abscheidung dieser Proben weiterentwickelt. Es ist gelungen, die Ansatzgröße von 15 mL auf 200 mL hochzuskalieren sowie dünne SWNT-Filme über Rotationsbeschichtung herzustellen. Des Weiteren wurde die lichtinduzierte Dynamik in halbleitenden SWNTs von der ps- bis zur µs-Zeitskala untersucht. Hier wurde ein umfassendes Bild zur Singulett- und Triplett-Exzitonendynamik in halbleitenden Kohlenstoffnanoröhren gezeichnet, welches maßgeblich durch diffusionslimitierte Prozesse geprägt ist. Abschließend wurde eine Methode vorgestellt, mit der sich Informationen zur Struktur von SWNT-Polymer-Komplexen und anderen supramolekularen Systemen gewinnen lassen. Diese basiert auf der Kombination von polarisationswinkelaufgelöster Absorptionsspektroskopie an anisotropen Proben und globaler Datenanalyse. N2 - This work’s focus was set on (6,5)-SWNT-PFO-BPy complexes as representatives for polyfluorene-stabilized single-wall carbon nanotubes. As a first project, preparative methods for dispersion and deposition of these samples were refined. The batch size was successfully scaled up from 15 mL to 200 mL and thin SWNT-films were prepared by spin coating. Furthermore, light-induced dynamics from the ps to the µs time scale were investigated in semiconducting SWNTs. Here, a comprehensive picture of the singlet and triplet exciton dynamics in semiconducting SWNTs was provided, which is significantly affected by diffusion-limited processes. Finally, a method providing information about the structure of SWNT-polymer complexes and other supramolecular system was introduced. It is based on a combination of polarization angle-resolved absorption spectroscopy of anisotropic samples and global data analysis. KW - Kohlenstoff-Nanoröhre KW - Dispergierung KW - Fotophysik KW - Polyfluorene KW - Diffusion KW - Nanorohr-Polymer-Komplexe KW - nanotube-polymer-complexes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123874 ER - TY - THES A1 - Bergler, Felix T1 - Photolumineszenzbasierte Untersuchung der Struktur und der thermodynamischen Bildungsparameter mizellar stabilisierter (6,5)-Kohlenstoffnanoröhren T1 - Photoluminescence based study on structure and thermodynamic properties of micellarly stabilized (6,5) carbon nanotubes N2 - In dieser Arbeit werden die Wechselwirkungen zwischen der Oberfläche von Kohlenstoffnanoröhren und verschiedenen Dispergierreagenzien anhand der Photolumineszenz (PL) der (6,5)-Nanoröhren untersucht. Um den Einfluss der verschiedenen Reagenzien auf die exzitonischen Eigenschaften und die PL-Emission zu quantifizieren, wurden die Dispergierreagenzien ausgetauscht, die Temperaturabhängigkeit bestimmt und die Konzentration der Reagenzien variiert. Die Dispergierreagenzien eines immobilisierten, SC-stabilisierten (6,5)-SWNT-Ensembles wurden im Mikrofluidikkanal ausgetauscht. Wird der Kanal mit Wasser gespült, verringern sich die PL-Intensität und die Emissionsenergie, da der Wasserfluss die Tensidmoleküle von der Oberfläche entfernt. Beim Austausch einer DOC-Umgebung gegen Wasser nimmt die PL-Intensität ebenfalls ab und die PL-Emissionsenergie verringert sich. Die Austauschexperimente verlaufen reversibel und der instantane Anstieg der Emissionsenergie bei der Tensidadsorption weist auf eine kooperative Anlagerung hin. Deshalb ist anzunehmen, dass sich Tensid-SWNT-Heteromizellen ausbilden. Anschließend werden die Emissionsenergie und die PL-Intensität in verschiedenen Dispergierreagenzien und in Wasser verglichen. Die größte Emissionsenergie und PL-Intensität werden während des Wechsels von einer SDS- zu einer (GT)16-Lösung gemessen. Dies kann auf die lückenlose Bedeckung der SWNT-Oberfläche mit einer heterogenen Schicht aus SDS-Molekülen und (GT)16-Strängen zurückgeführt werden. In reiner SDS-Umgebung emittieren die Nanoröhren Licht mit der zweithöchsten Energie, aber die PL-Intensität liegt unter der in einer SC-Umgebung. Die Emissionsenergie in der SC-Umgebung ist geringer und davon abhängig, ob die SWNTs bereits mit (GT)16-Strängen stabilisiert waren, da dies eine permanente Rotverschiebung der Emissionsenergie in der SC-Umgebung sowie eine verringerte PL-Intensität verursacht. In wässriger Umgebung verringert sich nach erfolgtem (GT)16-Kontakt die PL-Intensität dauerhaft. Danach wurde die Anlagerung von Tensidmolekülen an die (6,5)-SWNT-Oberfläche in Suspensionen mit der Temperatursprungmethode untersucht. Die Temperatur im Mikrofluidikkanal wurde anhand der linearen Abnahme der Emissionsenergie SC- und DOC-stabilisierter SWNTs mit steigender Temperatur bestimmt. Die Suspensionstemperatur ist in den verschiedenen Temperatursprungexperimenten unabhängig von der Messposition im Mikrofluidikkanal und wird durch die absolute Position auf den Peltier-Elementen bestimmt. Zudem stimmen die im Kanal gemessenen Temperaturen für SC- und DOC-stabilisierte (6,5)-SWNTs überein, weshalb in diesem Experiment nicht die erwartete Einstellung eines Gleichgewichts wie in einem Temperatursprungexperiment der Fall, sondern die Momentantemperatur gemessen wird. Die schnelle Gleichgewichtseinstellung zwischen freien und auf der SWNT-Oberfläche adsorbierten Tensidmolekülen beim Temperatursprung zeigt, dass die SC- und DOC-(6,5)-SWNT-Suspensionen thermochrome Farbstoffe sind. Wegen der Temperaturabhängigkeit der Emissionsenergie ist es bei wissenschaftlichen Arbeiten wichtig, neben dem verwendeten Dispergierreagenz auch die Temperatur der SWNT-Suspension anzugeben. Abschließend wurden die kritischen Mizellenkonzentrationen von Tensid-SWNT-Suspensionen in Verdünnungsexperimenten und daraus die thermodynamischen Bildungsparameter der Tensid-SWNT-Heteromizellen ermittelt. In der temperaturabhängigen Analyse der SC-SWNT-Mizellenbildung wird ein konstanter Hill-Koeffizient erhalten, der die Mizellenbildung als positiv kooperativ klassifiziert. Für die Bestimmung der Freien Mizellierungsenthalpie wurden nur die CMCs aus den Verdünnungsexperimenten verwendet, da die Mizellenbildung bei der Aufkonzentration teils kinetisch gehemmt ist. Da die Freie Mizellierungsenthalpie bei allen Temperaturen negativ ist, stabilisiert die Bildung der Heteromizellen das System. Die Triebkraft für die Mizellenbildung ist über 322 K die Enthalpie, während unterhalb von 316 K der Entropiegewinn dominiert. Die Verdünnung einer DOC-SWNT-Suspension zeigt keine Änderung der Emissionsenergie, obwohl dabei sowohl die primäre als auch die sekundäre CMC von DOC unterschritten werden. Zuletzt wurden die Verdünnungsexperimente mit einer SDS-SWNT-Suspension durchgeführt und die thermodynamischen Parameter der Mizellenbildung bestimmt. Da auf die Auflösung der Mizellenstruktur direkt die Aggregation der SWNTs folgt, wurde für die Ermittlung der CMC näherungsweise die Konzentration am Maximum der Emissionsenergie verwendet. Daraus ergibt sich bei jeder Temperatur eine negative Freie Mizellierungsenthalpie, deren Beiträge analog zu SC bei kleineren Temperaturen als 323 K entropisch und bei höheren Temperaturen enthalpisch dominiert werden. Somit ermöglichen die Experimente mit SC- und SDS-SWNT-Suspensionen die temperaturabhängige Bestimmung der CMC und damit die Berechnung der Freien Mizellierungsenthalpie sowie der zugehörigen enthalpischen und entropischen Beiträge. N2 - The goal of this thesis is to study the interplay between the SWNT surface and various dispersion agents. The influence of different surfactants on photoluminescence (PL) intensity and emission energy of (6,5)-SWNTs was quantified experimentally. The experiments are separated into three categories: surfactant exchange, determination of the temperature dependency of the PL, and the variaton of surfactant concentration. The dispersion agents of immobilized (6,5)-SWNT ensembles, that are placed in a microfluidic channel, are exchanged. Purging water through the microfluidic channel diminishes the PL intensity and red shifts PL emission energy, as the surfactants either SC or DOC are removed from the SWNT surface. The decrease of the PL intensity and emission energy are also observed if solution is exchanged for water. The surfactant exchange is reversible and the surfactant adsorption shows cooperativity features, which provide evidence for the formation of a surfactant SWNT hetero micelle. Afterwards the PL intensity and PL emission energy of the SWNTs are compared in different dispersing agents and water. The peak values for PL emission energy and PL intensity are measured when exchanging the SDS surfactant for (GT)16 ssDNA. They are caused by a complete coverage of the SWNT surface with a hetero-layer consisting of both species. The second highest PL emission energy is emitted in pure SDS environment followed by SC environment. Regarding the PL intensity the opposite effect is observed. A SC shell yields higher PL intensities than the SDS shell. If the SWNTs had previously been in contact with the (GT)16 ssDNA, the PL intensity was permanently reduced in the SC environment and was accompanied by a permanent red shift of the PL emission energy. The decreased PL intensity renders the water environment indistinguishable from the (GT)16 ssDNA covered SWNTs because they now show the same emission energy and equally low intensities. Subsequently the attachment of surfactant molecules to the surface of colloidally stabilized SWNTs is analyzed by using a temperature jump method. The temperature in the microfluidic channel was measured using the linear relationship between the temperature increase and the decrease of the PL emission energy of SC- and DOC-SWNT solutions. The solution temperature in the temperature jump experiments is independent of the channel position but determined by the absolute position on the Peltier element. In addition, the use of DOC instead of SC as surfactant showed no difference in temperature development, which leads to the conclusion that instead of the equilibration process, the actual liquid temperature is measured since the former is too fast for this experimental approach. The instantaneous equilibration of free and adsorbed surfactant molecules allows to deduce the solution temperature. Thus, SC- and DOC-SWNT solutions can be used as thermochromic dyes. More importantly, the correlation of PL intensity and PL emission energy with temperature emphasizes the importance of providing solution temperatures alongside the dispersing agents and their respective concentrations in scientific studies. Critical micelle concentrations (CMC) of surfactant SWNT solutions are determined in dilution experiments. Afterwards, thermodynamic parameters of the SWNT surfactant heteromicelle formation process are calculated. Hill analysis was used to identify the CMC at the inflection point of the sigmoidal PL emission energy decrease and to determine the Hill coefficient, classifying the micelle formation to be cooperative. Only the CMCs of the dilution experiments were used to calculate the micellar Gibbs energies since the micelle formation in the titration experiments is kinetically hindered at lower temperatures. Since the micellar Gibbs energy is negative at all temperatures, the micelle formation stabilizes the system. At temperatures above 322 K the micellar Gibbs Energy is dominated by the enthalpic contribution while the micelle formation is driven entropically below 316 K. The same experiment was conducted using DOC as dispersion agent, but showed no difference in the PL emission energy passing both the primary and the secondary CMCs of a pure DOC solution. Further experiments feature the dilution of SDS-SWNT solutions and the calculation of the thermodynamic parameters. As the breakup of the micellar structure is directly followed by SWNT aggregation, the CMC is approximately defined as concentration at the PL emission energy maximum. As the micellar Gibbs energy is always negative, the micelle formation provides a stabilization of the SDS-SWNT System, which is driven entropically below 323 K and dominated by enthalpy at higher temperatures. In conclusion, dilution experiments allow for the temperature dependent determination of CMCs and calculation of micellar Gibbs Energy with corresponding entropic and enthalpic contributions. KW - Kohlenstoff-Nanoröhre KW - Tensid KW - Kooperativität KW - Photolumineszenzspektroskopie KW - Strukturaufklärung KW - Mizelle KW - micelle KW - Mikrofluidikchip KW - microfluidic chip KW - Temperaturabhängigkeit KW - temperature dependence KW - SWNT-Ensemble KW - SWNT-ensemble KW - Freie Enthalpie KW - Gibbs Energy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123586 ER - TY - THES A1 - Hain, Tilman Christian T1 - Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie T1 - Development of an experimental setup for characterizing nanoscopic matter by means of fluorescence spectroscopy and fluorescence microscopy N2 - Die vorliegende Dissertation leistet einen Beitrag zur spektroskopischen Messmethodik nanoskaliger Strukturen. Im Mittelpunkt der Arbeit steht die Entwicklung und Erprobung eines spektrofluorimetrischen Aufbaus, mit dessen Hilfe ein aus Kohlenstoffnanoröhren und DNA-Oligomeren bestehendes supramolekulares Modellsystem einer optischen Untersuchung zugänglich gemacht wird. Die Vielseitigkeit der Messeinheit aus Mikroskop und Spektrometer wird an einer weiteren Substanzklasse untermauert. So wird das Emissionsverhalten von in Siliziumcarbidkristallen induzierten Defektzentren einer räumlich, spektral und zeitlich aufgelösten Charakterisierung unterzogen. Die zentrale Komponente des Spektrofluorimetrieaufbaus stellt eine Superkontinuumlichtquelle dar. In Verbindung mit einem elektronisch geregelten Filtermodul zur Wellenlängenselektion erlaubt sie die Durchführung von Photolumineszenz-Anregungsexperimenten. Im Gegensatz zu kommerziell erhältlichen Systemen, die überwiegend auf eine spektroskopische Charakterisierung gelöster oder kolloidal stabilisierter Substanzen abzielen, erlaubt der hier realisierte Aufbau auch die PL- mikroskopische Untersuchung kondensierter Proben, was durch die Epi-Bauweise auch opake Substrate einschließt. Der Einsatz von InGaAs-Sensoren weitet das Detektionsfenster auf den Nahinfrarotbereich aus, sowohl hinsichtlich des Kamera- als auch des Spektroskopiekanals. Anhand verschiedenartiger Kohlenstoffnanorohrproben, die entweder in flüssiger Phase dispergiert oder in festem Zustand als Film abgeschieden vorliegen, wird die Leistungsfähigkeit des PLE-Experiments unter Beweis gestellt. Neben der Zuordnung der Chiralitäten in polydispersen SWNT-Suspensionen wird dies auch durch die Untersuchung von Energietransferprozessen und die Studie von Umgebungseinflüssen demonstriert. Die Charakterisierung des DNA-SWNT-Modellsystems in mikrofluidischer Umgebung macht von der fluoreszenzmikroskopischen Detektionseinheit Gebrauch. Während die intrinsische Photolumineszenz der Nanoröhren sicherstellen soll, dass Letztere in ausreichender Anzahl auf den mikrostrukturierten Substraten vorhanden sind, wird die extrinsische Photolumineszenz der funktionalisierten Oligonukleotide als spektroskopisches Maß für die DNA-Konzentration herangezogen. Das hierbei beobachtete Agglomerationsverhalten der farbstoffmarkierten Oligomere geht mit einer lokal erhöhten Fluoreszenzintensität einher und erlaubt damit die quantitative Auswertung der auf PL-Einzelbildern basierenden Zeitserien. Zugleich wird damit eine Abschätzung der DNA-Belegung auf den Nanoröhren möglich. Im Falle der aus 16 alternierenden Guanin-Thymin-Einheiten bestehenden Basensequenz lösen sich nach Initiieren des Desorptionsvorgangs ein Großteil der Oligomere von der Nanorohroberfläche ab. Lediglich ein Fünftel bleibt in adsorbierter Form zurück, was sich jedoch für die Hybridstabilität als ausreichend erweist. Die Freisetzung weiterer Oligomere bleibt bei der Versuchstemperatur von 20 °C trotz der hohen Verdünnung aus, da aufgrund des größeren Interadsorbatabstands und der damit verbundenen Abnahme repulsiver Wechselwirkungen die Aktivierungsbarriere für ihre Desorption steigt. Die Stabilität der DNA-SWNT-Konjugate liegt demnach in ihrer kinetischen Inertheit begründet, die sie vor einer Reaggregation bewahrt. Die Studie der in Siliziumcarbid induzierten Fehlstellendefekte kann als Beleg für die breite Anwendbarkeit des spektrofluorimetrischen Aufbaus gelten. PL-Mikroskopaufnahmen zeigen hierbei, dass die Anzahl der Defektzentren mit der Bestrahlungsintensität kontrolliert werden kann – von einer kontinuierlichen Verteilung bei hohen Strahlungsintensitäten über heterogene Defektansammlungen bis hin zu Einzeldefektstellen bei niedrigen Strahlungsdosen. Letztere resultieren in beugungsbegrenzten Signaturen und erlauben damit eine Charakterisierung des abbildenden Systems sowie des Anregungsfokus. Anhand der PLE-Analyse lässt sich das Absorptionsmaximum abschätzen. Aussagen zur zeitlichen Entwicklung des Emissionsverhaltens werden durch TCSPC-Messungen erhalten. Die abschließende Untersuchung des Photonenflusses mit Hilfe von Korrelationsexperimenten nach Hanbury Brown-Twiss zeigt bei Raumtemperatur kein Auftreten von Photonantibunching. N2 - Within the scope of this dissertation, a contribution towards the spectroscopic investigation of nanomaterials has been made. The approach applied here is a spectrofluorometric one, which allows the optical characterization of an oligonucleotide/single-wall carbon nanotube comprised supramolecular model system. The flexibility of the developed setup is demonstrated by studying another class of nanoscale samples, that is defect centers in silicon carbide crystals. Their emission behavior is subject to a spacial, spectral and temporal analysis. The key role in the combined microscope and spectrograph assembly is held by a supercontinuum light source. With the help of this device, excitation measurements can be conducted by shifting the wavelength with an electronically driven filter accessory. In contrast to commercially available systems, which predominantly focus on a spectroscopic characterization of substances in solution or in colloidal suspension, it is also possible to carry out PL microscopic studies of condensed matter. Because of an epifluorescence configuration, the samples to be measured imply opaque substrates as well. Using complementary sensor materials including InGaAs arrays enlarges the accessible range of emission for both imaging and spectroscopy. Differently processed carbon nanotube samples, occurring in either dispersed or deposited form, serve as a benchmark in assessing the capability of the PLE setup established here. For instance, it can be used to assign chiralities in heterogeneous SWNT suspensions or to analyze energy transfer as well as the impact of varying colloidal conditions. The studies of the DNA-SWNT model system are accomplished through the use of fluorescence microscopy under microfluidic control. The intrinsic photoluminescence of carbon nanotubes can be exploited to estimate, to what extent they cover the lithographically treated silicon wafers. The extrinsic photoluminescence of functionalized oligonucleotides is used as a spectroscopic probe for DNA concentration measurements. Bright spots with distinct shape are observed and attributed to an agglomeration of dye-labeled oligomers. By recording time series of PL images, the locally enhanced emission signal in these discrete sites can be quantitatively analyzed, representing the progress of DNA adsorption on SWNTs. Based on a DNA sequence consisting of 16 alternating guanine-thymine moieties, the present experiments reveal the release of most of the oligonucleotides, when starting off the desorption process. Only one fifth of the initially adsorbed amount remains attached to the nanotube surface, without the modified environment affecting hybrid stability. Remarkably, an ongoing desorption does not take place at the test temperature of 20 °C in spite of the vast dilution applied. This circumstance can be explained by an increased distance between the residually adsorbed oligonucleotides, resulting in less pronounced repulsive forces between them. Consequently, the activation energy barrier for inducing further detachment is raised. In case of sufficiently long base compositions, this suggests that the stability of conjugates is founded in their kinetic inertness. The absence of continued desorption eventually prevents these DNA-SWNT hybrids from reaggregating. The investigation of vacancy defects in silicon carbide proves the broad applicability of the spectrofluorimetric setup. PL microscopic studies show that the amount of defect sites can be controlled by tuning electron irradiance. The corresponding defect pattern evolves from a continuous distribution towards discrete clusters. By lowering the exposure dose even more, single defects emerge showing diffraction-limited signatures, which can help to elucidate the imaging system as well as the excitation focus in more detail. PLE mapping and time-correlated single photon counting of the fluorescence decay provide insight in photophysical parameters, including the absorption maxium and the lifetime of the excited state. Studying the photon flux by means of correlation measurements according to Hanbury Brown-Twiss does not give rise to photon antibunching under ambient conditions. KW - Fluoreszenzspektroskopie KW - Fluoreszenzmikroskopie KW - Kohlenstoff-Nanoröhre KW - Oligonucleotide KW - Siliciumcarbid KW - PLE-Spektroskopie KW - DNA-SWNT-Konjugate KW - Sorptionsstudien KW - SiC-Fehlstellendefekte KW - Korrelationsfunktion zweiter Ordnung KW - PLE spectroscopy KW - DNA-SWNT hybrids KW - sorption studies KW - SiC vacancy defects KW - second-order correlation function Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116618 ER - TY - THES A1 - Hartleb, Holger Edgar Heinz Erich T1 - Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren T1 - Spectroelectrochemical investigation of semiconducting carbon nanotubes N2 - Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandlücke besitzt und der in der Literatur geprägte Begriff der Elektrochemischen Bandlücke aufgrund einer fehlenden allgemeingültigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandlücke. Dies wurde auf die diffusionskontrollierte Löschung der Exzitonen an Ladungszentren zurückgeführt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden Änderungen der elektronischen Eigenschaften diskutiert. Neben SWNTs wurden die Übergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, über den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zurückgeführt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet. In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode für die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefelsäure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten. N2 - The main focus of this work was on spectroelectrochemical studies of semiconducting SWNTs. For the first time, absorption and photoluminescence spectra of one and the same sample were recorded simultaneous under electrochemical control of the potential. It was shown, that the optical method has a significant influence on the resulting band gap. Therefore, the term electrochemical band gap, which has developed in literature, is problematic due to a missing general definition. Photoluminescence measurements yield the smallest band gap in comparison to Raman or absorption measurements. This was attributed to the diffusion limited quenching of excitons at charges. Furthermore, the optical spectra of charged SWNTs were analysed and the underlying electronic changes were discussed. In addition to SWNTs, the transition metal dichalcogenides MoS2 and WS2 were studied with spectroelectrochemical methods as well. Striking, when compared to the measurements of SWNTs, was the broad potential range during which the decrease of the excitonic signals could be observed. This can be attributed to the different electronic structures of TMDs and SWNTs and the small amount of mono layers in the TMD samples. Under the influence of charges it was furthermore possible to observe a signal in the absorption spectra, which points to the formation of trions. In the last part of this work an electrochemical cell for the investigation of hydrogen production at metallic SWNT electrodes was developed and tested. The activation procedure of SWNTs with sulphuric acid, which was published by Das et al., was successfully reproduced, and a catalytic effect on the hydrogen production by the SWNTs was observed. KW - Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Absorptionsspektroskopie KW - Spektroelektrochemie KW - Übergangsmetalldichalkogenide KW - Elektrolyse KW - elektrochemische Bandlücke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116628 ER - TY - THES A1 - Mann, Christoph T1 - Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen T1 - Exciton size and -dynamics in (6,5) carbon nanotubes N2 - Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanoröhren durch Absorption von Licht hauptsächlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenwärtig noch nicht vollständig verstanden. Zeitaufgelöste Spektroskopie bietet die Möglichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanoröhren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpräparation, der Aggregationsgrad sowie der durch das Lösungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengröße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanoröhren mittels transienter Absorptionsspektroskopie sowie stationärer und zeitaufgelöster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanoröhren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. Für die temperaturabhängigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilität bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengröße erfolgte mit Hilfe des Phasenraumfüllmodells, das die intensitätsabhängige Änderung der Oszillatorstärke eines Übergangs mit der Exzitonengröße verknüpft. Hierfür wurden leistungsabhängige Messungen der transienten Absorption durchgeführt und die Signalintensität des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Größen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengröße berechnen lässt, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu können und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten Röhrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale Überlapp von Photoabsorptions- und Photobleichbande Berücksichtigung fanden, ergab für individualisierte (6,5)-Nanoröhren einen Wert von 12.0 nm für die Größe des S1-Exzitons, während diese bei der aggregierten Röhrenprobe nur 5.6 nm beträgt. Die Probenabhängigkeit der Exzitonengröße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern für die Exzitonengröße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen für Vakuum, was verglichen zu einer experimentell in Lösung bzw. im Film bestimmten Exzitonengröße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengröße von 12.0 nm nicht erklärt werden. Setzt man experimentell und theoretisch für Vakuum bestimmte Werte für die Exzitonengröße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengröße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte für die Bindungsenergie von (6,5)-Kohlenstoffnanoröhren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgeschätzt. Weitere experimentelle und theoretische Untersuchungen könnten klären, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV für (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanoröhren durch eine Dynamik zwischen verschiedenen Zuständen sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese für die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabhängige Messungen der stationären und zeitaufgelösten Photolumineszenz sowie der transienten Absorption durchgeführt. Die Ergebnisse der stationären PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV für die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten lässt, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus möglich ist. Mit diesen Annahmen kann das temperaturabhängige Verhalten der stationären Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgelösten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte Löschen an Defektstellen oder Röhrenenden Berücksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder Röhrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgelöste PL-Messungen belegt werden. Abhängig von der zur Verfügung stehenden thermischen Energie und der Höhe der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschränkt werden, dass diese eine fast bis um den Faktor zwei längere PL-Lebensdauer aufweisen als höherenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgelöster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands hauptsächlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend geklärt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß für die Höhe der Potenzialbarrieren bzw. für die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass Sättigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanoröhren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begründen kann man dies damit, dass das Sättigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanoröhren einer starken Beeinflussung durch die Umgebung. Abhängig vom Lösungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz sättigt. N2 - Numerous theoretical and experimental studies have proved that in semiconducting carbon nanotubes, mainly excitons are created by light absorption. The photophysical properties and in particular the processes after optical excitation are to date not fully understood. Thanks to time-resolved spectroscopy, these processes can be pursued gaining detailed insight into the photophysical behavior of carbon nanotubes. Extrinsic factors like synthesis and preparation method, degree of aggregation as well as environmental effects appear to play a major role in this content. In this work, exciton size and dynamics in single-wall carbon nanotubes were studied by transient absorption spectroscopy as well as steady-state and time-resolved photoluminescence experiments. All measurements were done with semiconducting nanotubes of the (6,5)-chirality, which were obtained by density gradient ultracentrifugation. For temperature dependent measurements, an optimised surfactant stabilised gelatine film was developed which has a high temperature stability while minimising scattered light effects. The exciton size was determined by phase space filling analysis, which relates the intensity dependent reduction in oscillator strength of a transition with the size of the corresponding exciton. Therefore, the transient absorption was measured as a function of the power, and the intensity of the photobleach signal was plotted against the number of absorbed photons. The exciton size was calculated from the linear relationship between these two quantities at low exciton densities. Hence, great emphasis was put on working with high precision at low excitation fluences. In order to quantify the influence of the aggregation and in order to facilitate the comparison with literature, both individualised and aggregated nanotube samples were used in the experiments. From the data, the first subband exciton size was determined to be 12.0 nm and 5.6 nm for the individualised and the aggregated (6,5)-sample, respectively. Here, for the first time, both the stimulated emission and the spectral overlap of the photoabsorption and photobleach signal were taken into account. Thus, the exciton size strongly depends on the sample. This makes it difficult to compare the results with experimental values as shown in literature which almost exclusively lie between 1.0 nm and 4.5 nm but were partially determined using aggregated and polydisperse samples. Theory predicts an exciton size between 1 nm and 4 nm. In fact, some of these theoretical values were obtained for vacuum conditions leading to a smaller exciton size compared to experimental determination. However, the discrepance from the exciton size determined in this work can not be explained purely by this effect itself. Relating experimental and theoretical values of the exciton size and binding energy, an exciton size of 12.0 nm corresponds to a binding energy between 0.21 eV and 0.27 eV. Two-photon absorption experiments yield an exciton binding energy between 0.37 eV and 0.42 eV using a simplified cylindrical model. Further experimental and theoretical studies might clarify if an exciton binding energy between 0.21 eV and 0.27 eV is a realistic approach. In (6,5) carbon nanotubes, both radiative and nonradiative decay to the ground state appear to be influenced by multiple excitonic states as well as exciton diffusion. To better understand the relevant recombination processes, the stationary and time-resolved photoluminescence as well as the transient absorption was measured as a function of temperature. The stationary PL experiments suggest an exciton scattering between the optically active singlet state with A2 symmetry (hereinafter referred to as [B]) and a lower lying dark state [D]. Neglecting radiative recombination from [D], the data is well-explained by a dark-bright excitonic splitting of 5 meV and a nonthermal exciton distribution. With regard to the band structure of (6,5) carbon nanotubes, this gives rise to the presumption that [D] is the dipole forbidden A1 singlet state. This assumption explains the temperature dependent behaviour of the stationary photoluminescence quite well, but not the behaviour of the time-resolved photoluminescence. A model that is dominated solely by diffusion does not work either. Therefore, to interpret the PL decay, both exciton scattering between [B] and [D] and diffusion limited quenching at defects or tube ends have to be taken into account. The importance of exciton diffusion to defects or tube ends where non-radiative decay preferentially takes place can be proved by spectral- and time-resolved PL measurements. Depending on the available thermal energy and the height of the potential barriers in the considered system, diffusion can be restricted in that way that low energy excitons which are located in minimums of the potential energy landscape exhibit an almost twice longer PL lifetime than high energy excitons. The differences in transient absorption and time-resolved PL between 14 K and 35 K demonstrate that recovery to the ground state occurs from another state, different from the state [B] in radiative recombination. The nature of this dark state remains unclear. Due to inhomogeneous broadening, the FWHM of the absorption bands is a measurement of the height of the potential barriers and of the energetic exciton distribution in the excited state. In this work, the fact that transient absorption saturation behaviour of (6,5) carbon nanotubes and absorption band width follow the same trend could be shown by four different nanotube suspensions. The reason for this is that transient absorption saturation behaviour is governed by exciton-exciton annihilation. Due to their one-dimensional structure, carbon nanotubes are strongly influenced by environmental effects, resulting in a varying inhomogeneous broadening of the absorption bands and thus in different excited state potential barriers for various solvents and dispersion agents. Low potential barriers permit a long ranged exciton diffusion. Hence, efficient exciton-exciton annihilation takes place at comparatively low exciton densities and the transient absorption signal saturates at low pulse fluences. KW - Exziton KW - (6,5)-Kohlenstoffnanoröhren KW - Exzitonengröße KW - Transiente Absorption KW - Exzitonendynamik KW - Zeitaufgelöste Photolumineszenz KW - (6,5) carbon nanotubes KW - exciton size KW - transient absorption KW - exciton dynamics KW - time-resolved photoluminescence KW - Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Zeitauflösung KW - Zeitaufgelöste Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116712 ER - TY - THES A1 - Brunecker, Frank T1 - Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren T1 - Carbon Nanotube Complexes - Adsorption and Desorption of (Bio-)Polymers N2 - Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberflächen stellen Komplexe aus Kohlenstoffnanoröhren und (Bio-)Polymeren aufgrund der großen Oberfläche der Nanoröhren und der kommerziellen Verfügbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher Länge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilität derartiger Komplexe zu untersuchen und dadurch Rückschlüsse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanoröhren die Resultate der durchgeführten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erwägung gezogen werden müssen. N2 - Interactions between organic dispersants and nanoscopic surfaces are of crucial interest in the field of nanotechnology. For characterization of such interactions, complexes of single-wall carbon nanotubes and (bio-)polymers are considered to be a promising model system due to the large specific surface of the nanotubes as well as the commercial availability of fluorescently labeled, length-scaled DNA oligomers and intrinsic fluorescent synthetic polymers. The present dissertation focused on probing suitable methods for the investigation of the stability of these complexes in order to determine the adsorption behavior of the examined (bio-)polymers. The findings of the performed experiments are inconsistent with the previously published helical adsorption of DNA to carbon nanotubes but give rise to additional adsorption conformations. KW - Kohlenstoff-Nanoröhre KW - Adsorption KW - Desorption KW - Reaktionskinetik KW - Kinetik KW - Konzentrationssprungmethode KW - Numerische Verfahren KW - Einzelstrang-DNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113485 ER -