TY - JOUR A1 - Peters, Marcell K. A1 - Hemp, Andreas A1 - Appelhans, Tim A1 - Behler, Christina A1 - Classen, Alice A1 - Detsch, Florian A1 - Ensslin, Andreas A1 - Ferger, Stefan W. A1 - Frederiksen, Sara B. A1 - Gebert, Frederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Claudia A1 - Kindeketa, William J. A1 - Mwangomo, Ephraim A1 - Ngereza, Christine A1 - Otte, Insa A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Costa, David Schellenberger A1 - Tardanico, Joseph A1 - Zancolli, Giulia A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Peters, Ralph S. A1 - Rödel, Mark-Oliver A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Kakengi, Victor A1 - Zhang, Jie A1 - Böhning-Gaese, Katrin A1 - Brandl, Roland A1 - Kalko, Elisabeth K.V. A1 - Kleyer, Michael A1 - Nauss, Thomas A1 - Tschapka, Marco A1 - Fischer, Markus A1 - Steffan-Dewenter, Ingolf T1 - Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level JF - Nature Communications N2 - The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities. KW - community ecology KW - macroecology KW - tropical ecology KW - biodiversity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169374 VL - 7 ER - TY - JOUR A1 - Thormann, Birthe A1 - Ahrens, Dirk A1 - Armijos, Diego Marín A1 - Peters, Marcell K. A1 - Wagner, Thomas A1 - Wägele, Johann W. T1 - Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae) of an Ecuadorian Mountain Forest Using DNA Barcoding JF - PLoS ONE N2 - Background Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates. Methodology/Principal Findings Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284–289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469–481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation. Conclusions/Significance Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a valuable tool for evaluating biodiversity of hyperdiverse insect communities, especially when exact taxonomic identifications are missing. KW - leaf beetle KW - Coleoptera: Chrysomelidae KW - Podocarpus National Park KW - DNA-based species delimitation KW - biodiversity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167253 VL - 11 IS - 2 ER - TY - JOUR A1 - Ziegler, Alice A1 - Meyer, Hanna A1 - Otte, Insa A1 - Peters, Marcell K. A1 - Appelhans, Tim A1 - Behler, Christina A1 - Böhning-Gaese, Katrin A1 - Classen, Alice A1 - Detsch, Florian A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Ferger, Stefan W. A1 - Fischer, Markus A1 - Gebert, Friederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Andreas A1 - Hemp, Claudia A1 - Kakengi, Victor A1 - Mayr, Antonia V. A1 - Ngereza, Christine A1 - Reudenbach, Christoph A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Schellenberger Costa, David A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Steffan-Dewenter, Ingolf A1 - Tardanico, Joseph A1 - Tschapka, Marco A1 - Vollstädt, Maximilian G. R. A1 - Wöllauer, Stephan A1 - Zhang, Jie A1 - Brandl, Roland A1 - Nauss, Thomas T1 - Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro JF - Remote Sensing N2 - The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results. KW - biodiversity KW - species richness KW - LiDAR KW - elevation KW - partial least square regression KW - arthropods KW - birds KW - bats KW - predictive modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262251 SN - 2072-4292 VL - 14 IS - 3 ER -