TY - JOUR A1 - Rödel, Michaela A1 - Baumann, Katrin A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Simultaneous structuring and mineralization of silk fibroin scaffolds JF - Journal of Tissue Engineering N2 - Silk fibroin is commonly used as scaffold material for tissue engineering applications. In combination with a mineralization with different calcium phosphate phases, it can also be applied as material for bone regeneration. Here, we present a study which was performed to produce mineralized silk fibroin scaffolds with controlled macroporosity. In contrast to former studies, our approach focused on a simultaneous gelation and mineralization of silk fibroin by immersion of frozen silk fibroin monoliths in acidic calcium phosphate solutions. This was achieved by thawing frozen silk fibroin monoliths in acidic calcium phosphate solution, leading to the precipitation of monocalcium phosphate within the silk fibroin matrix. In the second approach, a conversion of incorporated -tricalcium phosphate particles into brushite was successfully achieved. Furthermore, a controlled cryostructuring process of silk fibroin scaffolds was carried out leading to the formation of parallel-oriented pores with diameters of 30-50 mu m. KW - Brushite KW - calcium phosphate KW - cryostructuring KW - hydrogel KW - mineralization KW - silk fibroin scaffolds Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226427 VL - 9 ER - TY - JOUR A1 - Hettich, Georg A1 - Schierjott, Ronja A. A1 - Epple, Matthias A1 - Gbureck, Uwe A1 - Heinemann, Sascha A1 - Mozaffari-Jovein, Hadi A1 - Grupp, Thomas M. T1 - Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity JF - Materials N2 - Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89% and 85%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94% and 98%, respectively). After loading, the porosity was highest for BC (46%), lowest for CALC (25%) and comparable for TEPO and PYRA (37%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34% of the TEPO volume and 36% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defect KW - calcium phosphate KW - granules KW - biomechanics KW - bone graft substitutes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193233 SN - 1996-1944 VL - 12 IS - 21 ER - TY - JOUR A1 - Ouhaddi, Yassine A1 - Charbonnier, Baptiste A1 - Porge, Juliette A1 - Zhang, Yu-Ling A1 - Garcia, Isadora A1 - Gbureck, Uwe A1 - Grover, Liam A1 - Gilardino, Mirko A1 - Harvey, Edward A1 - Makhoul, Nicholas A1 - Barralet, Jake T1 - Development of neovasculature in axially vascularized calcium phosphate cement scaffolds JF - Journal of Functional Biomaterials N2 - Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7–3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials. KW - angiogenesis KW - axial vascularization KW - bioceramic KW - bioinorganic KW - calcium phosphate KW - NLRP3 KW - inflammation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304026 SN - 2079-4983 VL - 14 IS - 2 ER -